E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Active
Туре	-
Interface	-
Clock Rate	-
Non-Volatile Memory	-
On-Chip RAM	-
Voltage - I/O	-
Voltage - Core	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-2111bg-80

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Fabricated in a high speed, submicron, double-layer metal CMOS process, the highest-performance ADSP-21xx processors operate at 25 MHz with a 40 ns instruction cycle time. Every instruction can execute in a single cycle. Fabrication in CMOS results in low power dissipation.

The ADSP-2100 Family's flexible architecture and comprehensive instruction set support a high degree of parallelism. In one cycle the ADSP-21xx can perform all of the following operations:

- Generate the next program address
- Fetch the next instruction
- Perform one or two data moves
- Update one or two data address pointers
- Perform a computation

- Receive and transmit data via one or two serial ports
- Receive and/or transmit data via the host interface port (ADSP-2111 only)

The ADSP-2101, ADSP-2105, and ADSP-2115 comprise the basic set of processors of the family. Each of these three devices contains program and data memory RAM, an interval timer, and one or two serial ports. The ADSP-2103 is a 3.3 volt power supply version of the ADSP-2101; it is identical to the ADSP-2101 in all other characteristics. Table I shows the features of each ADSP-21xx processor.

The ADSP-2111 adds a 16-bit host interface port (HIP) to the basic set of ADSP-21xx integrated features. The host port provides a simple interface to host microprocessors or microcontrollers such as the 8031, 68000, or ISA bus.

TABLE OF CONTENTS

GENERAL DESCRIPTION	. 1
Development Tools	. 4
Additional Information	. 4
ARCHITECTURE OVERVIEW	. 4
Serial Ports	. 5
Host Interface Port (ADSP-2111)	. 6
Interrupts	. 6
Pin Definitions	. 7
SYSTEM INTERFACE	. 7
Clock Signals	. 7
Reset	. 8
Program Memory Interface	10
Program Memory Maps	10
Data Memory Interface	12
Data Memory Map	12
Boot Memory Interface	12
Bus Interface	12
Low Power IDLE Instruction	13
ADSP-216x Prototyping	13
Ordering Procedure for ADSP-216x ROM Processors	13
Water Products	14
Functional Differences for Older Revision Devices	14
	15
SPECIFICATIONS	
(ADSP-2101/2105/2115/2161/2163)	17
Recommended Operating Conditions	17
Electrical Characteristics	17
Supply Current & Power (ADSP-2101/2161/2163)	18
Fower Dissipation Example	19
Capacitive Loading	19
Test Conditions	20
	20
SPECIFICATIONS	
(ADSP-2111)	21
Recommended Operating Conditions	21
Electrical Unaracteristics	21 99
Dewer Dissipation Example	22 22
Fourisipation Example	22 22
	20

Capacitive Loading	23 24
SPECIFICATIONS (ADSP-2103/2162/2164)	25
Recommended Operating Conditions	25
Electrical Characteristics	25
Supply Current & Power	26
Power Dissipation Example	27
Environmental Conditions	27
Capacitive Loading	27
Test Conditions	28
TIMING PARAMETERS	
(ADSP-2101/2105/2111/2115/2161/2163)	29
Clock Signals	20 30
Interrupts & Flags	31
Bus Request-Bus Grant	32
Memory Read	33
Memory Write	34
Serial Ports	35
Host Interface Port (ADSP-2111)	36
TIMING PARAMETERS (ADSP-2103/2162/2164)	44
Clock Signals	45
Interrupts & Flags	46
Bus Request-Bus Grant	47
Memory Read	48
Memory Write	49
Serial Ports	50
PIN CONFIGURATIONS	
68-Pin PGA (ADSP-2101)	51
68-Lead PLCC (ADSP-2101/2103/2105/2115/216x)	52
80-Lead PQFP (ADSP-2101/2103/2115/216x)	53
80-Lead TQFP (ADSP-2115)	53
100-Pin PGA (ADSP-2111)	54
100-Lead PQFP (ADSP-2111)	55
PACKAGE OUTLINE DIMENSIONS	
68-Pin PGA	56
68-Lead PLCC	57
80-Lead PQFP, 80-Lead TQFP	58
1 00-Pin PGA	59
100-Lead PQFP	60
ORDERING GUIDE 61	-62

The interrupt force and clear register, IFC, is a write-only register that contains a force bit and a clear bit for each interrupt (except for level-sensitive interrupts and the ADSP-2111 HIP interrupts—these cannot be forced or cleared in software).

When responding to an interrupt, the ASTAT, MSTAT, and IMASK status registers are pushed onto the status stack and the PC counter is loaded with the appropriate vector address. The status stack is seven levels deep (nine levels deep on the ADSP-2111) to allow interrupt nesting. The stack is automatically popped when a return from the interrupt instruction is executed.

Pin Definitions

Table IV (on next page) shows pin definitions for the ADSP-21xx processors. Any inputs not used must be tied to V_{DD} .

Table III.	Interrupt	Vector	Addresses	& Priori	ity
------------	-----------	--------	-----------	----------	-----

ADSP-2105 Interrupt Source	Interrupt Vector Address	
RESET Startup	0x0000	
IRQ2	0x0004 (High Priority)	
SPORT1 Transmit or IRQ1	0x0010	
SPORT1 Receive or IRQ0	0x0014	
Timer	0x0018 (Low Priority)	

ADSP-2101/2103/2115/216x Interrupt Source	Interrupt Vector Address		
RESET Startup	0x0000		
IRQ2	0x0004 (High Priority)		
SPORT0 Transmit	0x0008		
SPORT0 Receive	0x000C		
SPORT1 Transmit or IRQ1	0x0010		
SPORT1 Receive or IRQ0	0x0014		
Timer	0x0018 (Low Priority)		

ADSP-2111 Interrupt Source	Interrupt Vector Address		
RESET Startup	0x0000		
IRQ2	0x0004 (High Priority)		
HIP Write from Host	0x0008		
HIP Read to Host	0x000C		
SPORT0 Transmit	0x0010		
SPORT0 Receive	0x0014		
SPORT1 Transmit or IRQ1	0x0018		
SPORT1 Receive or IRQ0	0x001C		
Timer	0x0020 (Low Priority)		

SYSTEM INTERFACE

Figure 3 shows a typical system for the ADSP-2101, ADSP-2115, or ADSP-2103, with two serial I/O devices, a boot EPROM, and optional external program and data memory. A total of 15K words of data memory and 16K words of program memory is addressable for the ADSP-2101 and ADSP-2103. A total of 14.5K words of data memory and 15K words of program memory is addressable for the ADSP-2115.

Figure 4 shows a system diagram for the ADSP-2105, with one serial I/O device, a boot EPROM, and optional external program and data memory. A total of 14.5K words of data memory and 15K words of program memory is addressable for the ADSP-2105.

Figure 5 shows a system diagram for the ADSP-2111, with two serial I/O devices, a host processor, a boot EPROM, and optional external program and data memory. A total of 15K words of data memory and 16K words of program memory is addressable.

Programmable wait-state generation allows the processors to easily interface to slow external memories.

The ADSP-2101, ADSP-2103, ADSP-2115, and ADSP-2111 processors also provide either: one external interrupt ($\overline{IRQ2}$) and two serial ports (SPORT0, SPORT1), *or* three external interrupts ($\overline{IRQ2}$, $\overline{IRQ1}$, $\overline{IRQ0}$) and one serial port (SPORT0).

The ADSP-2105 provides either: one external interrupt (IRQ2) and one serial port (SPORT1), *or* three external interrupts (IRQ2, IRQ1, IRQ0) with no serial port.

Clock Signals

The ADSP-21xx processors' CLKIN input may be driven by a crystal or by a TTL-compatible external clock signal. The CLKIN input may not be halted or changed in frequency during operation, nor operated below the specified low frequency limit.

If an external clock is used, it should be a TTL-compatible signal running at the instruction rate. The signal should be connected to the processor's CLKIN input; in this case, the XTAL input must be left unconnected.

Because the ADSP-21xx processors include an on-chip oscillator circuit, an external crystal may also be used. The crystal should be connected across the CLKIN and XTAL pins, with two capacitors connected as shown in Figure 2. A parallelresonant, fundamental frequency, microprocessor-grade crystal should be used.

Figure 2. External Crystal Connections

THE TWO $\,$ MSBs of the data BUS (D_{23-22}) are used to supply the two MSBs of the boot memory eprom address. This is only required for the 27256 and 27512.

THE TWO MSBs OF THE DATA BUS (D $_{23-22}$) ARE USED TO SUPPLY THE TWO MSBs OF THE BOOT MEMORY EPROM ADDRESS. THIS IS ONLY REQUIRED FOR THE 27256 AND 27512.

Figure 4. ADSP-2105 System

Data Memory Interface

The data memory address bus (DMA) is 14 bits wide. The bidirectional external data bus is 24 bits wide, with the upper 16 bits used for data memory data (DMD) transfers.

The data memory select (\overline{DMS}) signal indicates access to data memory and can be used as a chip select signal. The write (\overline{WR}) signal indicates a write operation and can be used as a write strobe. The read (\overline{RD}) signal indicates a read operation and can be used as a read strobe or output enable signal.

The ADSP-21xx processors support memory-mapped I/O, with the peripherals memory-mapped into the data memory address space and accessed by the processor in the same manner as data memory.

Data Memory Map ADSP-2101/ADSP-2103/ADSP-2111

For the ADSP-2101, ADSP-2103, and ADSP-2111, on-chip data memory RAM resides in the 1K words beginning at address 0x3800, as shown in Figure 10. Data memory locations from 0x3C00 to the end of data memory at 0x3FFF are reserved. Control and status registers for the system, timer, wait-state configuration, and serial port operations are located in this region of memory.

ADSP-2105/ADSP-2115

For the ADSP-2105 and ADSP-2115, on-chip data memory RAM resides in the 512 words beginning at address 0x3800, also shown in Figure 10. Data memory locations from 0x3A00 to the end of data memory at 0x3FFF are reserved. Control and status registers for the system, timer, wait-state configuration, and serial port operations are located in this region of memory.

Figure 10. Data Memory Map (All Processors)

All Processors

The remaining 14K of data memory is located off-chip. This external data memory is divided into five zones, each associated with its own wait-state generator. This allows slower peripherals to be memory-mapped into data memory for which wait states are specified. By mapping peripherals into different zones, you can accommodate peripherals with different wait-state requirements. All zones default to seven wait states after RESET.

Boot Memory Interface

On the ADSP-2101, ADSP-2103, and ADSP-2111, boot memory is an external 64K by 8 space, divided into eight separate 8K by 8 pages. On the ADSP-2105 and ADSP-2115, boot memory is a 32K by 8 space, divided into eight separate 4K by 8 pages. The 8-bit bytes are automatically packed into 24-bit instruction words by each processor, for loading into onchip program memory.

Three bits in the processors' System Control Register select which page is loaded by the boot memory interface. Another bit in the System Control Register allows the forcing of a boot loading sequence under software control. Boot loading from Page 0 after $\overrightarrow{\text{RESET}}$ is initiated automatically if MMAP = 0.

The boot memory interface can generate zero to seven wait states; it defaults to three wait states after **RESET**. This allows the ADSP-21xx to boot from a single low cost EPROM such as a 27C256. Program memory is booted one byte at a time and converted to 24-bit program memory words.

The \overline{BMS} and \overline{RD} signals are used to select and to strobe the boot memory interface. Only 8-bit data is read over the data bus, on pins D8-D15. To accommodate up to eight pages of boot memory, the two MSBs of the data bus are used in the boot memory interface as the two MSBs of the boot memory address: D23, D22, and A13 supply the boot page number.

The ADSP-2100 Family Assembler and Linker allow the creation of programs and data structures requiring multiple boot pages during execution.

The \overline{BR} signal is recognized during the booting sequence. The bus is granted after loading the current byte is completed. \overline{BR} during booting may be used to implement booting under control of a host processor.

Bus Interface

The ADSP-21xx processors can relinquish control of their data and address buses to an external device. When the external device requires control of the buses, it asserts the bus request signal (\overline{BR}). If the ADSP-21xx is not performing an external memory access, it responds to the active \overline{BR} input in the next cycle by:

- Three-stating the data and address buses and the PMS, DMS, BMS, RD, WR output drivers,
- Asserting the bus grant (\overline{BG}) signal,
- and halting program execution.

If the Go mode is set, however, the ADSP-21xx will not halt program execution until it encounters an instruction that requires an external memory access. If the ADSP-21xx is performing an external memory access when the external device asserts the \overline{BR} signal, it will not threestate the memory interfaces or assert the \overline{BG} signal until the cycle after the access completes (up to eight cycles later depending on the number of wait states). The instruction does not need to be completed when the bus is granted; the ADSP-21xx will grant the bus in between two memory accesses if an instruction requires more than one external memory access.

When the \overline{BR} signal is released, the processor releases the \overline{BG} signal, re-enables the output drivers and continues program execution from the point where it stopped.

The bus request feature operates at all times, including when the processor is booting and when $\overrightarrow{\text{RESET}}$ is active. If this feature is not used, the $\overrightarrow{\text{BR}}$ input should be tied high (to V_{DD}).

Low Power IDLE Instruction

The IDLE instruction places the ADSP-21xx processor in low power state in which it waits for an interrupt. When an interrupt occurs, it is serviced and execution continues with instruction following IDLE. Typically this next instruction will be a JUMP back to the IDLE instruction. This implements a low-power standby loop.

The *IDLE n* instruction is a special version of IDLE that slows the processor's internal clock signal to further reduce power consumption. The reduced clock frequency, a programmable fraction of the normal clock rate, is specified by a selectable divisor, *n*, given in the IDLE instruction. The syntax of the instruction is:

IDLE n;

where n = 16, 32, 64, or 128.

The instruction leaves the chip in an idle state, operating at the slower rate. While it is in this state, the processor's other internal clock signals, such as SCLK, CLKOUT, and the timer clock, are reduced by the same ratio. Upon receipt of an enabled interrupt, the processor will stay in the IDLE state for up to a maximum of *n* CLKIN cycles, where *n* is the divisor specified in the instruction, before resuming normal operation.

When the *IDLE n* instruction is used, it slows the processor's internal clock and thus its response time to incoming interrupts-the 1-cycle response time of the standard IDLE state is increased by *n*, the clock divisor. When an enabled interrupt is received, the ADSP-21xx will remain in the IDLE state for up to a maximum of *n* CLKIN cycles (where n = 16, 32, 64, or 128) before resuming normal operation.

When the *IDLE* n instruction is used in systems that have an externally generated serial clock (SCLK), the serial clock rate may be faster than the processor's reduced internal clock rate. Under these conditions, interrupts must not be generated at a faster rate than can be serviced, due to the additional time the processor takes to come out of the IDLE state (a maximum of n CLKIN cycles).

ADSP-216x Prototyping

You can prototype your ADSP-216x system with either the ADSP-2101 or ADSP-2103 RAM-based processors. When code is fully developed and debugged, it can be submitted to Analog

Devices for conversion into a ADSP-216x ROM product.

The ADSP-2101 EZ-ICE emulator can be used for development of ADSP-216x systems. For the 3.3 V ADSP-2162 and ADSP-2164, a voltage converter interface board provides 3.3 V emulation.

Additional overlay memory is used for emulation of ADSP-2161/62 systems. It should be noted that due to the use of offchip overlay memory to emulate the ADSP-2161/62, a performance loss may be experienced when both executing instructions and fetching program memory data from the off-chip overlay memory in the same cycle. This can be overcome by locating program memory data in on-chip memory.

Ordering Procedure for ADSP-216x ROM Processors

To place an order for a custom ROM-coded ADSP-2161, ADSP-2162, ADSP-2163, or ADSP-2164 processor, you must:

1. Complete the following forms contained in the *ADSP ROM Ordering Package*, available from your Analog Devices sales representative:

ADSP-216x ROM Specification Form ROM Release Agreement ROM NRE Agreement & Minimum Quantity Order (MQO) Acceptance Agreement for Pre-Production ROM Products

- 2. Return the forms to Analog Devices along with two copies of the Memory Image File (.EXE file) of your ROM code. The files must be supplied on two 3.5" or 5.25" floppy disks for the IBM PC (DOS 2.01 or higher).
- 3. Place a purchase order with Analog Devices for non-recurring engineering changes (NRE) associated with ROM product development.

After this information is received, it is entered into Analog Devices' ROM Manager System which assigns a custom ROM model number to the product. This model number will be branded on all prototype and production units manufactured to these specifications.

To minimize the risk of code being altered during this process, Analog Devices verifies that the .EXE files on both floppy disks are identical, and recalculates the checksums for the .EXE file entered into the ROM Manager System. The checksum data, in the form of a ROM Memory Map, a hard copy of the .EXE file, and a ROM Data Verification form are returned to you for inspection.

SPECIFICATIONS (ADSP-2101/2105/2115/2161/2163) POWER DISSIPATION EXAMPLE

To determine total power dissipation in a specific application, the following equation should be applied for each output:

 $C \times V_{DD}^2 \times f$

C = load capacitance, f = output switching frequency.

Example:

In an ADSP-2101 application where external data memory is used and no other outputs are active, power dissipation is calculated as follows:

Assumptions:

- External data memory is accessed every cycle with 50% of the address pins switching.
- External data memory writes occur every other cycle with 50% of the data pins switching.
- Each address and data pin has a 10 pF total load at the pin.
- The application operates at $V_{DD} = 5.0$ V and $t_{CK} = 50$ ns. Total Power Dissipation = $P_{INT} + (C \times V_{DD}^2 \times f)$

 P_{INT} = internal power dissipation (from Figure 11).

 $(C \times V_{DD}^2 \times f)$ is calculated for each output:

Output	# of Pins	×C	$ imes V_{DD}^2$	×f
Address, DMS Data, WR RD CLKOUT	8 9 1 1	× 10 pF × 10 pF × 10 pF × 10 pF	$\begin{array}{c} \times \ 5^2 \ V \\ \times \ 5^2 \ V \end{array}$	× 20 MHz = 40.0 mW × 10 MHz = 22.5 mW × 10 MHz = 2.5 mW × 20 MHz = 5.0 mW
				70.0 mW

Total power dissipation for this example = P_{INT} + 70.0 mW.

ENVIRONMENTAL CONDITIONS

Ambient Temperature Rating:

$$\begin{split} T_{AMB} &= T_{CASE} - (PD \times \theta_{CA}) \\ T_{CASE} &= Case \ Temperature \ in \ ^{\circ}C \end{split}$$

```
PD = Power Dissipation in W
```

 θ_{CA} = Thermal Resistance (Case-to-Ambient)

 θ_{JA} = Thermal Resistance (Junction-to-Ambient)

 θ_{JC} = Thermal Resistance (Junction-to-Case)

Package	θ _{JA}	θ _{JC}	θ_{CA}
PGA	18°C/W	9°C/W	9°C/W
PLCC	27°C/W	16°C/W	11°C/W
PQFP	60°C/W	18°C/W	42°C/W
TQFP	60°C/W	18°C/W	42°C/W

CAPACITIVE LOADING

Figures 12 and 13 show capacitive loading characteristics for the ADSP-2101, ADSP-2105, ADSP-2115, and ADSP-2161/2163.

Figure 12. Typical Output Rise Time vs. Load Capacitance, C₁ (at Maximum Ambient Operating Temperature)

Figure 13. Typical Output Valid Delay or Hold vs. Load Capacitance, C_L (at Maximum Ambient Operating Temperature)

SPECIFICATIONS (ADSP-2101/2105/2115/2161/2163)

TEST CONDITIONS

Figure 14 shows voltage reference levels for ac measurements.

Figure 14. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

Output Disable Time

Output pins are considered to be disabled when they have stopped driving and started a transition from the measured output high or low voltage to a high impedance state. The output disable time (t_{DIS}) is the difference of $t_{MEASURED}$ and t_{DECAY} , as shown in Figure 15. The time $t_{MEASURED}$ is the interval from when a reference signal reaches a high or low voltage level to when the output voltages have changed by 0.5 V from the measured output high or low voltage.

The decay time, t_{DECAY} , is dependent on the capacitative load, C_L , and the current load, i_L , on the output pin. It can be approximated by the following equation:

$$t_{DECAY} = \frac{C_L \times 0.5 V}{i_L}$$

from which

$$t_{DIS} = t_{MEASURED} - t_{DECAY}$$

is calculated. If multiple pins (such as the data bus) are disabled, the measurement value is that of the last pin to stop driving.

Output Enable Time

Output pins are considered to be enabled when they have made a transition from a high-impedance state to when they start driving. The output enable time (t_{ENA}) is the interval from when a reference signal reaches a high or low voltage level to when the output has reached a specified high or low trip point, as shown in Figure 15. If multiple pins (such as the data bus) are enabled, the measurement value is that of the first pin to start driving.

Figure 16. Equivalent Device Loading for AC Measurements (Except Output Enable/Disable)

SPECIFICATIONS (ADSP-2111)

SUPPLY CURRENT & POWER (ADSP-2111)

Parameter		Test Conditions	Min	Max	Unit
I _{DD}	Supply Current (Dynamic) ¹	@ V_{DD} = max, t_{CK} = 50 ns ²		60	mA
		@ $V_{DD} = max$, $t_{CK} = 60 ns^2$		52	mA
		@ $V_{DD} = \max$, $t_{CK} = 76.9 \text{ ns}^2$		46	mA
I _{DD}	Supply Current (Idle) ^{1, 3}	@ $V_{DD} = max$, $t_{CK} = 50 ns$		18	mA
		@ $V_{DD} = max$, $t_{CK} = 60 ns$		16	mA
		@ $V_{DD} = max$, $t_{CK} = 76.9 ns$		14	mA

NOTES

¹Current reflects device operating with no output loads.

 $^{2}V_{IN} = 0.4 \text{ V} \text{ and } 2.4 \text{ V}.$

³Idle refers to ADSP-21xx state of operation during execution of IDLE instruction. Deasserted pins are driven to either V_{DD} or GND.

For typical supply current (internal power dissipation) figures, see Figure 17.

Figure 17. ADSP-2111 Power (Typical) vs. Frequency

SPECIFICATIONS (ADSP-2111) POWER DISSIPATION EXAMPLE

To determine total power dissipation in a specific application, the following equation should be applied for each output:

 $C \times V_{DD}^2 \times f$

C =load capacitance, f =output switching frequency.

Example:

In an ADSP-2111 application where external data memory is used and no other outputs are active, power dissipation is calculated as follows:

Assumptions:

- External data memory is accessed every cycle with 50% of the address pins switching.
- · External data memory writes occur every other cycle with 50% of the data pins switching.
- Each address and data pin has a 10 pF total load at the pin.
- The application operates at $V_{DD} = 5.0$ V and $t_{CK} = 50$ ns. Total Power Dissipation = $P_{INT} + (C \times V_{DD}^2 \times f)$
- P_{INT} = internal power dissipation (from Figure 17).

 $(C \times V_{DD}^2 \times f)$ is calculated for each output:

Output	# of Pins	×C	$ imes V_{DD}^2$	×f
Address, DMS	8	$\times 10 \text{ pF}$	$ imes 5^2 m V$	\times 20 MHz = 40.0 mW
Data, WR	9	$\times 10 \text{ pF}$	$ imes 5^2 { m V}$	$\times 10 \text{ MHz} = 22.5 \text{ mW}$
RD	1	$\times 10 \mathrm{pF}$	$ imes 5^2 { m V}$	$\times 10 \text{ MHz} = 2.5 \text{ mW}$
CLKOUT	1	× 10 pF	$ imes 5^2 m V$	\times 20 MHz = 5.0 mW

Total power dissipation for this example = P_{INT} + 70.0 mW.

ENVIRONMENTAL CONDITIONS

Ambient Temperature Rating:

- $$\begin{split} T_{AMB} &= T_{CASE} (PD \times \theta_{CA}) \\ T_{CASE} &= Case \ Temperature \ in \ ^{\circ}C \end{split}$$
- PD = Power Dissipation in W
- θ_{CA} = Thermal Resistance (Case-to-Ambient)
- θ_{JA} = Thermal Resistance (Junction-to-Ambient)
- θ_{JC} = Thermal Resistance (Junction-to-Case)

Package	kage θ_{JA} θ_{JC}		θ _{CA}	
PGA	35°C/W	18°C/W	17°C/W	
PQFP	42°C/W	18°C/W	23°C/W	

CAPACITIVE LOADING

Figures 18 and 19 show capacitive loading characteristics for the ADSP-2111.

Figure 18. Typical Output Rise Time vs. Load Capacitance, C₁ (at Maximum Ambient Operating Temperature)

Figure 19. Typical Output Valid Delay or Hold vs. Load Capacitance, C_L (at Maximum Ambient Operating Temperature)

70.0 mW

SPECIFICATIONS (ADSP-2111)

TEST CONDITIONS

Figure 20 shows voltage reference levels for ac measurements.

Figure 20. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

Output Disable Time

Output pins are considered to be disabled when they have stopped driving and started a transition from the measured output high or low voltage to a high impedance state. The output disable time (t_{DIS}) is the difference of $t_{MEASURED}$ and t_{DECAY} , as shown in Figure 21. The time $t_{MEASURED}$ is the interval from when a reference signal reaches a high or low voltage level to when the output voltages have changed by 0.5 V from the measured output high or low voltage.

The decay time, t_{DECAY} , is dependent on the capacitative load, C_L , and the current load, i_L , on the output pin. It can be approximated by the following equation:

from which

$$t_{DIS} = t_{MEASURED} - t_{DECAY}$$

 $t_{DECAY} = \frac{C_L \times 0.5 V}{i_L}$

is calculated. If multiple pins (such as the data bus) are disabled, the measurement value is that of the last pin to stop driving.

Output Enable Time

Output pins are considered to be enabled when they have made a transition from a high-impedance state to when they start driving. The output enable time (t_{ENA}) is the interval from when a reference signal reaches a high or low voltage level to when the output has reached a specified high or low trip point, as shown in Figure 21. If multiple pins (such as the data bus) are enabled, the measurement value is that of the first pin to start driving.

Figure 22. Equivalent Device Loading for AC Measurements (Except Output Enable/Disable)

TIMING PARAMETERS (ADSP-2101/2105/2111/2115/2161/2163)

GENERAL NOTES

Use the exact timing information given. Do not attempt to derive parameters from the addition or subtraction of others. While addition or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical variations and worst cases. Consequently, you cannot meaningfully add parameters to derive longer times.

TIMING NOTES

Switching characteristics specify how the processor changes its signals. You have no control over this timing—circuitry external to the processor must be designed for compatibility with these signal characteristics. Switching characteristics tell you what the processor will do in a given circumstance. You can also use

switching characteristics to ensure that any timing requirement of a device connected to the processor (such as memory) is satisfied.

Timing requirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read operation. Timing requirements guarantee that the processor operates correctly with other devices.

MEMORY REQUIREMENTS

The table below shows common memory device specifications and the corresponding ADSP-21xx timing parameters, for your convenience.

Memory	ADSP-21xx	Timing
Device	Timing	Parameter
Specification	Parameter	Definition
Address Setup to Write Start	t _{ASW}	A0–A13, DMS, PMS Setup before WR Low
Address Setup to Write End	t _{AW}	A0–A13, DMS, PMS Setup before WR Deasserted
Address Hold Time	t _{WRA}	A0–A13, DMS, PMS Hold after WR Deasserted
Data Setup Time	t _{DW}	Data Setup before WR High
Data Hold Time	t _{DH}	Data Hold after WR High
OE to Data Valid	t _{RDD}	RD Low to Data Valid
Address Access Time	t _{AA}	A0–A13, DMS, PMS, BMS to Data Valid

TIMING PARAMETERS (ADSP-2101/2105/2111/2115/2161/2163) CLOCK SIGNALS & RESET

Parameter		13 MHz 13.824 MH Min Max Min Ma		MHz Max	16.67 MHz Min Max		20 MHz Min Max		25 MHz Min Max		Frequency Dependency Min Ma	x Unit	
Timing H	Requirement:												
t _{CK}	CLKIN Period	76.9	150	72.3	150	60	150	50	150	40	150		ns
t _{CKL}	CLKIN Width Low	20		20		20		20		15		20	ns
t _{CKH}	CLKIN Width High	20		20		20		20		15		20	ns
t _{RSP}	RESET Width Low	384.5		361.5		300		250		200		5t _{CK} ¹	ns
Switching	g Characteristic:												
t _{CPL}	CLKOUT Width Low	28.5		26.2		20		15		10		0.5t _{CK} - 10	ns
t _{CPH}	CLKOUT Width High	28.5		26.2		20		15		10		0.5t _{CK} - 10	ns
t _{CKOH}	CLKIN High to CLKOUT	0	20	0	20	0	20	0	20	0	15		ns
	High												

NOTES

¹Applies after powerup sequence is complete. Internal phase lock loop requires no more than 2000 CLKIN cycles, assuming stable CLKIN (not including crystal oscillator startup time).

Figure 29. Clock Signals

TIMING PARAMETERS (ADSP-2101/2105/2111/2115/2161/2163) memory read

Para	Parameter			13.824 MHz Min Max		16.67 MHz Min Max		20 MHz Min Max		25 MHz Min Max		Unit
Timin	g Requirement:											
t _{RDD}	RD Low to Data Valid		23.5		23.2		17		12		7	ns
t _{AA}	A0–A13, $\overline{\text{PMS}}$, $\overline{\text{DMS}}$, $\overline{\text{BMS}}$ to Data Valid		37.7		36.2		27		19.5		12	ns
t _{RDH}	Data Hold from RD High	0		0		0		0		0		ns
Switch	hing Characteristic:											
t _{RP}	RD Pulse Width	33.5		28.2		22		17		12		ns
t _{CRD}	CLKOUT High to $\overline{\text{RD}}$ Low	14.2	29.2	13.1	28.1	10	25	7.5	22.5	5	20	ns
t _{ASR}	A0–A13, PMS, DMS, BMS Setup before	9.2		8.1		5		2.5		1.5^{1}		ns
	RD Low											
t _{RDA}	A0–A13, $\overline{\text{PMS}}$, $\overline{\text{DMS}}$, $\overline{\text{BMS}}$ Hold after $\overline{\text{RD}}$	10.2		9.1		6		3.5		1		ns
	Deasserted											
t _{RWR}	$\overline{\mathrm{RD}}$ High to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	33.5		31.2		25		20		15		ns

Parar	neter	Frequency Depender (CLKIN ≤ 25 MHz) Min	асу Мах	Unit
Timin	g Requirement:			
t _{RDD}	RD Low to Data Valid		$0.5t_{CK} - 13 + w$	ns
t _{AA}	A0–A13, $\overline{\text{PMS}}$, $\overline{\text{DMS}}$, $\overline{\text{BMS}}$ to Data Valid		$0.75t_{CK} - 18 + w$	ns
t _{RDH}	Data Hold from RD High	0		
Switch	ning Characteristic:			
t _{RP}	RD Pulse Width	$0.5t_{CK} - 8 + w$		ns
t _{CRD}	CLKOUT High to RD Low	0.25t _{CK} – 5	$0.25t_{CK} + 10$	ns
t _{ASR}	A0–A13, PMS, DMS, BMS Setup before			
	RD Low	$0.25t_{CK} - 10^1$		ns
t _{RDA}	A0–A13, $\overline{\text{PMS}}$, $\overline{\text{DMS}}$, $\overline{\text{BMS}}$ Hold after $\overline{\text{RD}}$			
	Deasserted	$0.25t_{CK} - 9$		ns
t _{RWR}	$\overline{\text{RD}}$ High to $\overline{\text{RD}}$ or $\overline{\text{WR}}$ Low	$0.5t_{CK} - 5$		ns

NOTES

 $^1For~25$ MHz only minimum frequency dependency formula for t_{ASR} = (0.25t_{CK} - 8.5).

w = wait states \times t_{CK.}

Figure 32. Memory Read

TIMING PARAMETERS (ADSP-2101/2105/2111/2115/2161/2163) serial ports

Paran	Parameter			13.0 Min	MHz Max	13.82 Min	4 MHz* Max	Frequer Depend Min	ncy ency Max	Unit
Timing	g Requirement:									
t _{SCK}	SCLK Period	80		76.9		72.3				ns
t _{SCS}	DR/TFS/RFS Setup before SCLK Low	8		8		8				ns
t _{SCH}	DR/TFS/RFS Hold after SCLK Low	10		10		10				ns
t _{SCP}	SCLK _{IN} Width	30		28		28				ns
Switch	ing Characteristic:									
t _{CC}	CLKOUT High to SCLK _{OUT}	20	35	19.2	34.2	18.1	33.1	0.25t _{CK}	$0.25t_{CK} + 15ns$	
t _{SCDE}	SCLK High to DT Enable	0		0		0				ns
t _{SCDV}	SCLK High to DT Valid		20		20		20			ns
t _{RH}	TFS/RFS _{OUT} Hold after SCLK High	0		0		0				ns
t _{RD}	TFS/RFS _{OUT} Delay from SCLK High		20		20		20			ns
t _{SCDH}	DT Hold after SCLK High	0		0		0				ns
t _{TDE}	TFS (Alt) to DT Enable	0		0		0				ns
t _{TDV}	TFS (Alt) to DT Valid		18		18		18			ns
t _{SCDD}	SCLK High to DT Disable		25		25		25			ns
t _{RDV}	RFS (Multichannel, Frame Delay Zero)		20		20		20			ns
	to DT Valid									

*Maximum serial port operating frequency is 13.824 MHz for all processor speed grades except the 12.5 MHz ADSP-2101 and 13.0 MHz ADSP-2111.

Figure 34. Serial Ports

Figure 35. Host Interface Port (HMD1 = 0, HMD0 = 0)

Figure 37. Host Interface Port (HMD1 = 1, HMD0 = 0)

TIMING PARAMETERS (ADSP-2103/2162/2164) memory write

Param	neter	10.24 Min	MHz Max	Frequency Dependency Min	Max	Unit
Switchi	ing Characteristic:					
t _{DW}	Data Setup before WR High	38.8		$0.5t_{CK} - 10 + w$		ns
t _{DH}	Data Hold after WR High	14.4		0.25t _{CK} -10		ns
t _{WP}	WR Pulse Width	43.8		$0.5t_{CK} - 5 + w$		ns
t _{WDE}	WR Low to Data Enabled	0				
t _{ASW}	A0–A13, $\overline{\text{DMS}}$, $\overline{\text{PMS}}$ Setup before $\overline{\text{WR}}$ Low	12.4		0.25t _{CK} -12		ns
t _{DDR}	Data Disable before \overline{WR} or \overline{RD} Low	14.4		0.25t _{CK} - 10		ns
t _{CWR}	CLKOUT High to \overline{WR} Low	19.4	34.4	0.25t _{CK} - 5	$0.25t_{CK} + 10$	ns
t _{AW}	A0–A13, $\overline{\text{DMS}}$, $\overline{\text{PMS}}$, Setup before $\overline{\text{WR}}$ Deasserted	58.2		$0.75t_{CK} - 15 + w$,	ns
t _{WRA}	A0–A13, DMS, PMS Hold After WR Deasserted	14.4		0.25t _{CK} -10		ns
t _{WWR}	$\overline{\mathrm{WR}}$ High to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	38.8		0.5t _{CK} – 10		ns

w = wait states \times t_{CK.}

Figure 43. Memory Write

80-Lead PQFP 80-Lead TQFP

PQFP/ TQFP Number	Pin Name	PQFP/ TQFP Number	Pin Name	PQFP/ TQFP Number	Pin Name	PQFP/ TQFP Number	Pin Name
1	A5	21	CLKOUT	41	NC	61	GND
2	A6	22	WR	42	NC	62	GND
3	GND	23	RD	43	NC	63	D19
4	GND	24	DT0	44	D4	64	D20
5	A7	25	TFS0	45	D5	65	D21
6	A8	26	RFS0	46	D6	66	D22
7	A9	27	GND	47	D7	67	D23
8	A10	28	GND	48	D8	68	V _{DD}
9	A11	29	DR0	49	D9	69	V _{DD}
10	A12	30	SCLK0	50	D10	70	MMAP
11	A13	31	FO <i>(DT1)</i>	51	D11	71	BR
12	PMS	32	IRQ1 (TFS1)	52	GND	72	IRQ2
13	DMS	33	IRQ0 (RFS1)	53	GND	73	RESET
14	BMS	34	FI <i>(DR1)</i>	54	D12	74	A0
15	BG	35	SCLK1	55	D13	75	A1
16	XTAL	36	V _{DD}	56	D14	76	A2
17	CLKIN	37	D0	57	D15	77	A3
18	NC	38	D1	58	D16	78	A4
19	NC	39	D2	59	D17	79	V _{DD}
20	NC	40	D3	60	D18	80	V _{DD}

PIN CONFIGURATIONS

100-Pin PGA

PGA Number	Pin Name	PGA Number	Pin Name
N13	D23	B13	A10
N12	D21	A13	V_{DD}
M13	MMAP	A12	A13
M12	GND	B12	A12
L13	BR	A11	HD14
L12	RESET	B11	HD15
K13	PMS	A10	HD12
K12	V _{DD}	B10	HD13
J13	BMS	A9	HD10
J12	DMS	B9	HD11
H13	BG	A8	GND
H12	WR	B8	HD8
H11	RD	C8	HD9
G13	A2	A7	HD6
G12	A0	B7	V_{DD}
G11	A1	C7	HD7
F13	A3	A6	HD5
F12	A4	B6	HD4
F11	A5	C6	XTAL
E13	GND	A5	CLKIN
E12	A6	B5	HD3
D13	A7	A4	HD2
D12	A8	B4	HD1
C13	A9	A3	HD0
C12	A11	B3	HA1

PGA	Pin		PGA	Pin
Number	Name		Number	Name
C3	Index (NC)		L2	FL2
A2	HA2/ALE		M1	FL1
A1	HA0		N1	VDD
B1	HWR/HDS		N2	DI
B2	HSEL		M2	D0
C1	HSIZE		N3	D3
C2	HRD/HRW		M3	D2
D1	HMD0		N4	D5
D2	HMD1		M4	D4
E1	IRQ2		N5	D7
E2	BMODE		M5	D6
F1	DT0		N6	D10
F2	CLKOUT		M6	D9
F3	HACK		L6	D8
G1	DR0		N7	D12
G2	TFS0		M7	D11
G3	RFS0		L7	GND
H1	SCLK0		N8	D13
H2	GND		M8	D14
H3	FO <i>(DT1)</i>		L8	D15
J1	IRQ1 (TFS1)		N9	D16
J2	IRQ0 (RFS1)		M9	D17
K1	FI <i>(DR1)</i>		N10	D18
K2	SCLK1		M10	D19
L1	FL0		N11	D20
		,	M11	D22

OUTLINE DIMENSIONS

PQFP

TQFP

	Ν	1ILLIME	TERS	INCHES			Ν	IILLIME	TERS	INCHES		
SYMBOL	MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX
А			2.45			0.096			1.60			0.063
A ₁	0.25			0.010			0.05		0.15	0.002		0.006
A ₂	1.90	2.00	2.10	0.075	0.079	0.083	1.35	1.40	1.45	0.053	0.055	0.057
D, E	16.95	17.20	17.45	0.667	0.678	0.690	15.75	16.00	16.25	0.620	0.630	0.640
D ₁ , E ₁	13.90	14.00	14.10	0.547	0.551	0.555	13.95	14.00	14.05	0.549	0.551	0.553
D ₃ , E ₃		12.35	12.43		0.486	0.490		12.35	12.43		0.486	0.490
L	0.65	0.80	0.95	0.026	0.031	0.037	0.50	0.60	0.75	0.020	0.024	0.030
е	0.57	0.65	0.73	0.023	0.026	0.029	0.57	0.65	0.73	0.022	0.026	0.029
В	0.22	0.30	0.38	0.009	0.012	0.015	0.25	0.30	0.35	0.010	0.012	0.014
D			0.10			0.004			0.10			0.004