E·XFL

NXP USA Inc. - MC908MR16VFUE Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, SPI
Peripherals	LVD, POR, PWM
Number of I/O	44
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-QFP
Supplier Device Package	64-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc908mr16vfue

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Chapter 1 General Description

1.1	Introduction	17
1.2	Features	17
1.3	MCU Block Diagram	18
1.4	Pin Assignments	20
1.4.1	Power Supply Pins (V _{DD} and V _{SS})	22
1.4.2	Oscillator Pins (OSC1 and OSC2)	22
1.4.3	External Reset Pin (RST)	22
1.4.4	External Interrupt Pin (IRQ)	22
1.4.5	CGM Power Supply Pins (V _{DDA} and V _{SSAD})	22
1.4.6	External Filter Capacitor Pin (CGMXFC)	23
1.4.7	Analog Power Supply Pins (V _{DDAD} and V _{SSAD})	23
1.4.8	ADC Voltage Decoupling Capacitor Pin (V _{REFH})	23
1.4.9	ADC Voltage Reference Low Pin (V _{REFL})	23
1.4.10	Port A Input/Output (I/O) Pins (PTA7–PTA0).	23
1.4.11	Port B I/O Pins (PTB7/ATD7–PTB0/ATD0)	23
1.4.12	Port C I/O Pins (PTC6–PTC2 and PTC1/ATD9–PTC0/ATD8)	23
1.4.13	Port D Input-Only Pins (PTD6/IS3–PTD4/IS1 and PTD3/FAULT4–PTD0/FAULT1)	23
1.4.14	PWM Pins (PWM6–PWM1)	23
1.4.15	PWM Ground Pin (PWMGND)	24
1.4.16	Port E I/O Pins (PTE7/TCH3A–PTE3/TCLKA and PTE2/TCH1B–PTE0/TCLKB)	24
1.4.17	Port F I/O Pins (PTF5/TxD–PTF4/RxD and PTF3/MISO–PTF0/SPSCK)	24

Chapter 2 Memory

2.1	Introduction	25
2.2	Unimplemented Memory Locations	25
2.3	Reserved Memory Locations	25
2.4	I/O Section	26
2.5	Memory Map	26
2.6	Monitor ROM	37
2.7	Random-Access Memory (RAM)	37
2.8	FLASH Memory (FLASH)	38
2.8.1	FLASH Control Register	38
2.8.2	FLASH Page Erase Operation	39
2.8.3	FLASH Mass Erase Operation.	40
2.8.4	FLASH Program Operation	41
2.8.5	FLASH Block Protection.	43
2.8.6	FLASH Block Protect Register	43

General Description

1.4 Pin Assignments

Figure 1-2 shows the 64-pin QFP pin assignments and Figure 1-3 shows the 56-pin SDIP pin assignments.

Figure 1-2. 64-Pin QFP Pin Assignments

Analog-to-Digital Converter (ADC)

Figure 3-1. Block Diagram Highlighting ADC Block and Pins

46

Chapter 4 Clock Generator Module (CGM)

4.1 Introduction

This section describes the clock generator module (CGM, version A). The CGM generates the crystal clock signal, CGMXCLK, which operates at the frequency of the crystal. The CGM also generates the base clock signal, CGMOUT, from which the system integration module (SIM) derives the system clocks.

CGMOUT is based on either the crystal clock divided by two or the phase-locked loop (PLL) clock, CGMVCLK, divided by two. The PLL is a frequency generator designed for use with crystals or ceramic resonators. The PLL can generate an 8-MHz bus frequency without using a 32-MHz external clock.

4.2 Features

Features of the CGM include:

- PLL with output frequency in integer multiples of the crystal reference
- Programmable hardware voltage-controlled oscillator (VCO) for low-jitter operation
- Automatic bandwidth control mode for low-jitter operation
- Automatic frequency lock detector
- Central processor unit (CPU) interrupt on entry or exit from locked condition

4.3 Functional Description

The CGM consists of three major submodules:

- 1. Crystal oscillator circuit The crystal oscillator circuit generates the constant crystal frequency clock, CGMXCLK.
- 2. Phase-locked loop (PLL) The PLL generates the programmable VCO frequency clock, CGMVCLK.
- 3. Base clock selector circuit This software-controlled circuit selects either CGMXCLK divided by two or the VCO clock, CGMVCLK, divided by two as the base clock, CGMOUT. The SIM derives the system clocks from CGMOUT.

Figure 4-1 shows the structure of the CGM.

Table 7-1	Instruction	Sat	Summary	(Shoot 6 of 6)
	mstruction	Sei	Summary	

Source	Operation	Description					Effect on CCR				ress le	ode	rand	es
Form	operation	Description					I	N	z	С	Add Mod	Opc	Ope	Cycl
SWI	Software Interrupt	$\begin{array}{c} PC \leftarrow (PC) + 1; Pus\\ SP \leftarrow (SP) - 1; Pus\\ SP \leftarrow (SP) - 1; Pu\\ SP \leftarrow (SP) - 1; Pu\\ SP \leftarrow (SP) - 1; Pus\\ SP \leftarrow (SP) - 1; Pus\\ SP \leftarrow (SP) - 1; L SP\\ CH \leftarrow Interrupt Vector\\ PCL \leftarrow Interrupt Vector\\ \end{array}$	_	_	1	_	_	_	INH	83		9		
TAP	Transfer A to CCR	$CCR \gets (A)$			\$	1	1	1	\$	\$	INH	84		2
TAX	Transfer A to X	$X \gets (A)$			Ι	-	-		-	-	INH	97		1
TPA	Transfer CCR to A	$A \gets (CCR)$			Ι	-	-		-	-	INH	85		1
TST opr TSTA TSTX TST opr,X TST ,X TST opr,SP	Test for Negative or Zero	(A) – \$00 or (X) – \$00 o	\$00	0	_	_	t	t	-	DIR INH INH IX1 IX SP1	3D 4D 5D 6D 7D 9E6D	dd ff ff	3 1 1 3 2 4	
TSX	Transfer SP to H:X	$H:X \gets (SP) +$	1		Ι	-	-		-	-	INH	95		2
TXA	Transfer X to A	$A \gets (X)$			Ι	-	-		-	-	INH	9F		1
TXS	Transfer H:X to SP	$(SP) \gets (H{:}X) -$	1		Ι	-	-		-	-	INH	94		2
WAIT	Enable Interrupts; Wait for Interrupt	I bit ← 0; Inhibit CPU until interrupte	clockir d	ıg	-	-	0		_	-	INH	8F		1
A Accumu C Carry/bo CCR Conditio dd Direct a DD Direct a DD Direct a DD Direct to DIR Direct a DIX+ Direct to ee ff High an EXT Extende ff Offset b H Half-car H Index re hh II High an- I Interrup ii Immedia IMD Immedia IMD Immedia IMH Inherent IX Indexed IX+ Indexed IX+ Indexed IX+ Indexed IX1 Indexed IX2 Indexed IX2 Indexed M Memory N Negative	n opr PCH PCL REl rr SSP U ∨ X Z & $ \oplus () - \# \ll + ?$: $\ddagger -$	Any bit Operar Progra Progra Relativ Relativ Relativ Stack p Stack p Undefii Overfic Index r Zero bi Logica Logica Conter Negatii Immed Sign ez Loadec If Concat Set or Not aff	md m m m m m m m m m m m m m m m m m m	(on could co	e or nter nter ress ram ram ; 8-I ; 16- ; 17- ;	two hig low ing co co bit c bit IVE	b b h b v b mu un un un un off te E C uple	byte byte ode iter iter iset Set DR em	es) e offset byt offset byt addressir t addressi	ie ig mode ng mod	e le			

7.8 Opcode Map

See Table 7-2.

Chapter 9 Low-Voltage Inhibit (LVI)

9.1 Introduction

This section describes the low-voltage inhibit (LVI) module, which monitors the voltage on the V_{DD} pin and can force a reset when the V_{DD} voltage falls to the LVI trip voltage.

9.2 Features

Features of the LVI module include:

- Programmable LVI reset
- Programmable power consumption
- Digital filtering of V_{DD} pin level
- Selectable LVI trip voltage

9.3 Functional Description

Figure 9-1 shows the structure of the LVI module. The LVI is enabled out of reset. The LVI module contains a bandgap reference circuit and comparator. The LVI power bit, LVIPWR, enables the LVI to monitor V_{DD} voltage. The LVI reset bit, LVIRST, enables the LVI module to generate a reset when V_{DD} falls below a voltage, V_{LVRX} , and remains at or below that level for nine or more consecutive CGMXCLK. V_{LVRX} and V_{LVHX} are determined by the TRPSEL bit in the LVISCR (see Figure 9-2). LVIPWR and LVIRST are in the configuration register (CONFIG). See Chapter 5 Configuration Register (CONFIG).

Figure 9-1. LVI Module Block Diagram

Input/Output (I/O) Ports (PORTS)

Chapter 11 Power-On Reset (POR)

11.1 Introduction

This section describes the power-on reset (POR) module.

11.2 Functional Description

The POR module provides a known, stable signal to the microcontroller unit (MCU) at power-on. This signal tracks V_{DD} until the MCU generates a feedback signal to indicate that it is properly initialized. At this time, the POR drives its output low.

The POR is not a brown-out detector, low-voltage detector, or glitch detector. V_{DD} at the POR must go completely to 0 to reset the microcontroller unit (MCU). To detect power-loss conditions, use a low-voltage inhibit module (LVI) or other suitable circuit.

Pulse-Width Modulator for Motor Control (PWMMC)

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
	PWM Output Control	Read:	0		OUT6	OUT5	OLIT4	OUT3	OUT2	OUT1
\$0025	Register (PWMOUT)	Write:		CONCIL	0010	0010	0011	0010	0012	0011
	See page 154.	Reset:	0	0	0	0	0	0	0	0
PWM	PWM Counter Register High	Read:	0	0	0	0	Bit 11	Bit 10	Bit 9	Bit 8
\$0026	(PCNTH)	Write:								
	See page 143.	Reset:	0	0	0	0	0	0	0	0
PWM Co \$0027	PWM Counter Register Low	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	(PCNTL)	Write:								
	See page 143.	Reset:	0	0	0	0	0	0	0	0
	PWM Counter Modulo Register	Read:	0	0	0	0	Dit 11	Bit 10	Rit 0	Dit 0
\$0028	High (PMODH)	Write:					DILTI	DIL IU	DIL 9	DILO
	See page 144.	Reset:	0	0	0	0	Х	Х	Х	Х
PWM Counter \$	PWM Counter Modulo Register Low (PMODL)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 144.	Reset:	Х	Х	Х	Х	Х	Х	Х	Х
PWM 1 Va \$002A	PWM 1 Value Register High (PVAL1H)	Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 145.	Reset:	0	0	0	0	0	0	0	0
PWM 1 Val \$002B	PWM 1 Value Register Low (PVAL1L)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 145.	Reset:	0	0	0	0	0	0	0	0
PWM 2 Val \$002C	PWM 2 Value Register High (PVAL2H)	Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 145.	Reset:	0	0	0	0	0	0	0	0
\$002D	PWM 2 Value Register Low (PVAL2L)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 145.	Reset:	0	0	0	0	0	0	0	0
\$002E	PWM 3 Value Register High (PVAL3H)	Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 145.	Reset:	0	0	0	0	0	0	0	0
\$002F	PWM 3 Value Register Low (PVAL3L)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See paye 145.	Reset:	0	0	0	0	0	0	0	0
			R	= Reserved	k	Bold	= Buffered	X = Inde	eterminate	

Figure 12-3. Register Summary (Sheet 2 of 3)

Pulse-Width Modulator for Motor Control (PWMMC)

Figure 12-14. Dead-Time Generators

NOTE

When reading this bit, the value read is the buffer value (not necessarily the value the output control block is currently using).

The IPOLx bits take effect at the beginning of the next load cycle, regardless of the state of the load okay bit, LDOK.

IPOL2 — Top/Bottom Correction Bit for PWM Pair 2 (PWMs 3 and 4)

This buffered read/write bit selects which PWM value register is used if top/bottom correction is to be achieved without current sensing.

1 = Use PWM value register 4.

0 = Use PWM value register 3.

NOTE

When reading this bit, the value read is the buffer value (not necessarily the value the output control block is currently using).

IPOL3 — Top/Bottom Correction Bit for PWM Pair 3 (PWMs 5 and 6)

This buffered read/write bit selects which PWM value register is used if top/bottom correction is to be achieved without current sensing.

1 = Use PWM value register 6.

0 = Use PWM value register 5.

NOTE

When reading this bit, the value read is the buffer value (not necessarily the value the output control block is currently using).

PRSC1 and PRSC0 — PWM Prescaler Bits

These buffered read/write bits allow the PWM clock frequency to be modified as shown in Table 12-9.

NOTE

When reading these bits, the value read is the buffer value (not necessarily the value the PWM generator is currently using).

Prescaler Bits PRSC1 and PRSC0	PWM Clock Frequency
00	f _{OP}
01	f _{OP} /2
10	f _{OP} /4
11	f _{OP} /8

Table 12-9. PWM Prescaler

13.3.2 Transmitter

Figure 13-5 shows the structure of the SCI transmitter.

Figure 13-5. SCI Transmitter

Serial Communications Interface Module (SCI)

RT3, RT5, and RT7 Samples	Start Bit Verification	Noise Flag
000	Yes	0
001	Yes	1
010	Yes	1
011	No	0
100	Yes	1
101	No	0
110	No	0
111	No	0

Table 13-1. Start Bit Verification

If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins.

To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 13-2 summarizes the results of the data bit samples.

RT8, RT9, and RT10 Samples	Data Bit Determination	Noise Flag
000	0	0
001	0	1
010	0	1
011	1	1
100	0	1
101	1	1
110	1	1
111	1	0

Table 13-2. Data Bit Recovery

NOTE

The RT8, RT9, and RT10 samples do not affect start bit verification. If any or all of the RT8, RT9, and RT10 start bit samples are 1s following a successful start bit verification, the noise flag (NF) is set and the receiver assumes that the bit is a start bit.

To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 13-3 summarizes the results of the stop bit samples.

RT8, RT9, and RT10 Samples	Framing Error Flag	Noise Flag
000	1	0
001	1	1
010	1	1
011	0	1
100	1	1
101	0	1
110	0	1
111	0	0

Table 13-3. Stop Bit Recovery

System Integration Module (SIM)

Figure 14-8. Interrupt Processing


```
I/O Signals
```

The TIMA remains active after the execution of a WAIT instruction. In wait mode, the TIMA registers are not accessible by the CPU. Any enabled CPU interrupt request from the TIMA can bring the MCU out of wait mode.

If TIMA functions are not required during wait mode, reduce power consumption by stopping the TIMA before executing the WAIT instruction.

16.6 I/O Signals

Port E shares five of its pins with the TIMA:

- PTE3/TCLKA is an external clock input to the TIMA prescaler.
- The four TIMA channel I/O pins are PTE4/TCH0A, PTE5/TCH1A, PTE6/TCH2A, and PTE7/TCH3A.

16.6.1 TIMA Clock Pin (PTE3/TCLKA)

PTE3/TCLKA is an external clock input that can be the clock source for the TIMA counter instead of the prescaled internal bus clock. Select the PTE3/TCLKA input by writing logic 1s to the three prescaler select bits, PS[2:0]. See 16.7.1 TIMA Status and Control Register.

The maximum TCLK frequency is the least: 4 MHz or bus frequency \div 2.

PTE3/TCLKA is available as a general-purpose I/O pin when not used as the TIMA clock input. When the PTE3/TCLKA pin is the TIMA clock input, it is an input regardless of the state of the DDRE3 bit in data direction register E.

16.6.2 TIMA Channel I/O Pins (PTE4/TCH0A-PTE7/TCH3A)

Each channel I/O pin is programmable independently as an input capture pin or an output compare pin. PTE2/TCH0 and PTE4/TCH2 can be configured as buffered output compare or buffered PWM pins.

16.7 I/O Registers

These input/output (I/O) registers control and monitor TIMA operation:

- TIMA status and control register (TASC)
- TIMA control registers (TACNTH–TACNTL)
- TIMA counter modulo registers (TAMODH-TAMODL)
- TIMA channel status and control registers (TASC0, TASC1, TASC2, and TASC3)
- TIMA channel registers (TACH0H–TACH0L, TACH1H–TACH1L, TACH2H–TACH2L, and TACH3H–TACH3L)

16.7.1 TIMA Status and Control Register

The TIMA status and control register:

- Enables TIMA overflow interrupts
- Flags TIMA overflows
- Stops the TIMA counter
- Resets the TIMA counter
- Prescales the TIMA counter clock

Timer Interface B (TIMB)

MSxB — Mode Select Bit B

This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIMB channel 0.

Setting MS0B disables the channel 1 status and control register and reverts TCH1B to general-purpose I/O.

Reset clears the MSxB bit.

- 1 = Buffered output compare/PWM operation enabled
- 0 = Buffered output compare/PWM operation disabled

MSxA — Mode Select Bit A

When ELSxB:A \neq 00, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. See Table 17-2.

1 = Unbuffered output compare/PWM operation

0 = Input capture operation

When ELSxB:A = 00, this read/write bit selects the initial output level of the TCHx pin once PWM, input capture, or output compare operation is enabled. See Table 17-2. Reset clears the MSxA bit.

1 = Initial output level low

0 = Initial output level high

NOTE

Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIMB status and control register (TBSC).

ELSxB and ELSxA — Edge/Level Select Bits

When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x.

When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs.

When ELSxB and ELSxA are both clear, channel x is not connected to port E, and pin PTEx/TCHxB is available as a general-purpose I/O pin. However, channel x is at a state determined by these bits and becomes transparent to the respective pin when PWM, input capture, or output compare mode is enabled. Table 17-2 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits.

NOTE

Before enabling a TIMB channel register for input capture operation, make sure that the PTEx/TBCHx pin is stable for at least two bus clocks.

TOVx — Toggle-On-Overflow Bit

When channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the TIMB counter overflows. When channel x is an input capture channel, TOVx has no effect. Reset clears the TOVx bit.

1 = Channel x pin toggles on TIMB counter overflow.

0 = Channel x pin does not toggle on TIMB counter overflow.

Chapter 18 Development Support

18.1 Introduction

This section describes the break module, the monitor read-only memory (MON), and the monitor mode entry methods.

18.2 Break Module (BRK)

The break module (BRK) can generate a break interrupt that stops normal program flow at a defined address to enter a background program. Features include:

- Accessible input/output (I/O) registers during the break interrupt
- Central processor unit (CPU) generated break interrupts
- Software-generated break interrupts
- Computer operating properly (COP) disabling during break interrupts

18.2.1 Functional Description

When the internal address bus matches the value written in the break address registers, the break module issues a breakpoint signal to the CPU. The CPU then loads the instruction register with a software interrupt instruction (SWI) after completion of the current CPU instruction. The program counter vectors to \$FFFC and \$FFFD (\$FEFC and \$FEFD in monitor mode).

These events can cause a break interrupt to occur:

- A CPU-generated address (the address in the program counter) matches the contents of the break address registers.
- Software writes a logic 1 to the BRKA bit in the break status and control register.

When a CPU-generated address matches the contents of the break address registers, the break interrupt begins after the CPU completes its current instruction. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the microcontroller unit (MCU) to normal operation. Figure 18-1 shows the structure of the break module.

18.2.1.1 Flag Protection During Break Interrupts

The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state.

258

Monitor Mode Signal Requirements and Options									
External	COMOUT	Bus		Со	For Se	rial ation ⁽²⁾	Comment		
Clock ⁽¹⁾	CGMOOT	Frequency P		PTA0	PTA7 (S3)	Baud Rate ^{(3) (4)}	Comment		
Х	0	0	Disabled	Х	Х	0	No operation until reset goes high		
4 9152	4 9152	2 4576		1	0	9600	PTC3 and PTC2 voltages only required if		
MHz	MHz	IHz MHz Disabled		х	1	DNA	IRQ = V _{TST} ; PTC2 determines frequency divider		
9 8304	4 9152	2 4576		1	0	9600	PTC3 and PTC2 voltages only required if		
MHz	MHz	MHz	Disabled	х	1	DNA	IRQ = V _{TST} ; PTC2 determines frequency divider		
9.8304	4.9152	2.4576	Disabled	1	0	9600	External frequency always divided by 4		
	NALLNALL_								

DNA

_

_

Enters user mode — will encounter an

illegal address reset

Enters user mode

Х

Х

Х

Enabled

Enabled

1

Х

Х

Table 18-2. Monito

MHz

_

1. External clock is derived by a 32.768 kHz crystal or a 4.9152/9.8304 MHz off-chip oscillator. 2. DNA = does not apply, X = don't care 3. PAT0 = 1 if serial communication; PTA0 = X if parallel communication 4. PTA7 = 0 \rightarrow serial, PTA7 = 1 \rightarrow parallel communication for security code entry

PTC2

(S2)

Х

0

1

Х

Х

Х

MHz

Х

Х

MHz

RESET

(S1)

GND

 V_{DD}

or

 V_{TST} V_{DD}

or

V_{TST}

 V_{DD}

 V_{TST}

 V_{DD}

or

V_{TST}

IRQ

Х

V_{TST}

 V_{TST}

 V_{DD}

 V_{DD}

or

GND

 V_{DD}

or

GND

\$FFFE

/\$FFFF

Х

Х

Х

\$FFFF

Blank

\$FFFF

Blank

Non-\$FF

Programmed

PLL

Х

OFF

OFF

OFF

OFF

OFF

PTC3 PTC4

Х

0

0

Х

Х

Х

Х

1

1

Х

Х

Х

20.4 56-Pin Shrink Dual In-Line Package (SDIP)

Ordering Information and Mechanical Specifications