Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Active | | Core Processor | R8C | | Core Size | 16-Bit | | Speed | 20MHz | | Connectivity | LINbus, SIO, UART/USART | | Peripherals | POR, PWM, Voltage Detect, WDT | | Number of I/O | 25 | | Program Memory Size | 8KB (8K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 512 x 8 | | Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V | | Data Converters | A/D 12x10b; D/A 2x8b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 32-LQFP | | Supplier Device Package | 32-LQFP (7x7) | | Purchase URL | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f212f2dfp-u0 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ### Notice - 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. - Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. - 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. - 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information. - 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. - 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein. - 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc. - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support. - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. - 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges. - 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you. - 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. - 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics - 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. - (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries. - (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. # 1.1.2 Specifications Tables 1.1 and 1.2 outlines the Specifications for R8C/2E Group and Tables 1.3 and 1.4 outlines the Specifications for R8C/2F Group. Table 1.1 Specifications for R8C/2E Group (1) | Item | Function | Specification | |---------------|-------------------|---| | CPU | Central | R8C/Tiny series core | | | processing unit | Number of fundamental instructions: 89 | | | | Minimum instruction execution time: | | | | 50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V) | | | | 100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V) | | | | Multiplier: 16 bits × 16 bits → 32 bits | | | | • Multiply-accumulate instruction: 16 bits × 16 bits + 32 bits → 32 bits | | | | Operation mode: Single-chip mode (address space: 1 Mbyte) | | Memory | ROM, RAM | Refer to Table 1.5 Product List for R8C/2E Group. | | Power Supply | Voltage | Power-on reset | | Voltage | detection circuit | Voltage detection 2 | | Detection | | Totage detection _ | | I/O Ports | Programmable | Input-only: 3 pins | | ,, 0 , 0, 10 | I/O ports | CMOS I/O ports: 25, selectable pull-up resistor | | | " o porto | • High current drive ports: 8 | | Clock | Clock generation | 2 circuits: XIN clock oscillation circuit (with on-chip feedback resistor), | | Olook | circuits | On-chip oscillator (high-speed, low-speed) | | | Onouns | (high-speed on-chip oscillator has a frequency adjustment | | | | function) | | | | Oscillation stop detection: XIN clock oscillation stop detection | | | | function | | | | • Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16 | | | | • Low power consumption modes: | | | | | | | | Standard operating mode (high-speed clock, high-speed on-chip | | Interrupte | | oscillator, low-speed on-chip oscillator), wait mode, stop mode | | Interrupts | | • External: 4 sources, Internal: 13 sources, Software: 4 sources | | Watchdog Tim | or | Priority levels: 7 levels 15 bits x 1 (with prescaler), reset start selectable | | Timer | Timer RA | 8 bits × 1 (with 8-bit prescaler) | | Tillel | Tilllel KA | Timer mode (period timer), pulse output mode (output level inverted | | | | every period), event counter mode, pulse width measurement mode, | | | | pulse period measurement mode | | | Timer RB | 8 bits × 1 (with 8-bit prescaler) | | | Tilliel IXD | Timer mode (period timer), programmable waveform generation | | | | mode (PWM output), programmable one-shot generation mode, | | | | programmable wait one-shot generation mode | | | Timer RC | 16 bits × 1 (with 4 capture/compare registers) | | | Timer ite | Timer mode (input capture function, output compare function), PWM | | | | mode (output 3 pins), PWM2 mode (PWM output pin) | | | Timer RE | 8 bits × 1 | | | | Output compare mode | | Serial | UART0 | Clock synchronous serial I/O/UART x 1 | | Interface | | | | LIN Module | l | Hardware LIN: 1 (timer RA, UART0) | | A/D Converter | • | 10-bit resolution × 12 channels, includes sample and hold function | | D/A Converter | | 8-bit resolution × 2 circuits | | Comparator | | 2 circuits | | | | 1 | Table 1.3 Specifications for R8C/2F Group (1) | Item | Function | Specification | |-----------------------------|-------------------|---| | CPU | Central | R8C/Tiny series core | | | processing unit | Number of fundamental instructions: 89 | | | | Minimum instruction execution time: | | | | 50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V) | | | | 100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V) | | | | Multiplier: 16 bits × 16 bits → 32 bits | | | | • Multiply-accumulate instruction: 16 bits × 16 bits + 32 bits → 32 bits | | | | Operation mode: Single-chip mode (address space: 1 Mbyte) | | Memory | ROM, RAM | Refer to Table 1.6 Product List for R8C/2F Group. | | Power Supply | Voltage detection | Power-on reset | | Voltage | circuit | Voltage detection 2 | | Detection | | 75.11.1g0 45.15511511 <u>-</u> | | I/O Ports | Programmable | • Input-only: 3 pins | | ., 0 . 0.10 | I/O ports | CMOS I/O ports: 25, selectable pull-up resistor | | | "O porto | High current drive ports: 8 | | Clock | Clock generation | 2 circuits: XIN clock oscillation circuit (with on-chip feedback resistor), | | Olook | circuits | On-chip oscillator (high-speed, low-speed) | | | onound | (high-speed on-chip oscillator has a frequency adjustment | | | | function) | | | | Oscillation stop detection: XIN clock oscillation stop detection | | | | function | | | | • Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16 | | | | • Low power consumption modes: | | | | Standard operating mode (high-speed clock, high-speed on-chip | | | | oscillator, low-speed on-chip oscillator), wait mode, stop mode | | Interrupts | | • External: 4 sources, Internal: 13 sources, Software: 4 sources | | interrupts | | • Priority levels: 7 levels | | Watchdog Tim | Δr | 15 bits × 1 (with prescaler), reset start selectable | | Timer | Timer RA | 8 bits × 1 (with 8-bit prescaler) | | Tilliei | TilleritA | Timer mode (period timer), pulse output mode (output level inverted | | | | every period), event counter mode, pulse width measurement mode, | | | | pulse period measurement mode | | | Timer RB | 8 bits × 1 (with 8-bit prescaler) | | | 111101112 | Timer mode (period timer), programmable waveform generation | | | | mode (PWM output), programmable one-shot generation mode, | | | | programmable wait one-shot generation mode | | | Timer RC | 16 bits × 1 (with 4 capture/compare registers) | | | | Timer mode (input capture function, output compare function), PWM | | | | mode (output 3 pins), PWM2 mode (PWM output pin) | | | Timer RE | 8 bits x 1 | | | | Output compare mode | | Serial | UART0 | Clock synchronous serial I/O/UART x 1 | | Interface | | | | LIN Module | | Hardware LIN: 1 (timer RA, UART0) | | A/D Converter | | 10-bit resolution × 12 channels, includes sample and hold function | | | | | | D/A Converter
Comparator | , | 8-bit resolution × 2 circuits 2 circuits | Table 1.4 Specifications for R8C/2F Group (2) | · | | |-------------------------------|---| | Item | Specification | | Flash Memory | Programming and erasure voltage: VCC = 2.7 to 5.5 V | | | Programming and erasure endurance: 10,000 times (data flash) | | | 1,000 times (program ROM) | | | Program security: ROM code protect, ID code check | | | Debug functions: On-chip debug, on-board flash rewrite function | | Operating Frequency/Supply | f(XIN) = 20 MHz (VCC = 3.0 to 5.5 V), | | Voltage | f(XIN) = 10 MHz (VCC = 2.7 to 5.5 V) | | Current consumption | Typ. 10 mA (VCC = 5.0 V, f(XIN) = 20 MHz) | | | Typ. 6 mA ($\dot{V}CC = 3.0 \text{ V, } f(\dot{X}IN) = 10 \text{ MHz})'$ | | | Typ. 23 μA (VCC = 3.0 V, wait mode (peripheral clock off)) | | | Typ. 0.7 μ A (VCC = 3.0 V, stop mode) | | Operating Ambient Temperature | -20 to 85°C (N version) | | | -40 to 85°C (D version) ⁽¹⁾ | | Package | 32-pin LQFP | | | Package code: PLQP0032GB-A (previous code: 32P6U-A) | ## NOTE: 1. Specify the D version if D version functions are to be used. ## 1.3 Block Diagram Figure 1.3 shows a Block Diagram. Figure 1.3 Block Diagram #### 2. **Central Processing Unit (CPU)** Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank. Figure 2.1 **CPU Registers** ## 2.8.7 Interrupt Enable Flag (I) The I flag enables maskable interrupts. Interrupt are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged. ## 2.8.8 Stack Pointer Select Flag (U) ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed. ## 2.8.9 Processor Interrupt Priority Level (IPL) IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled. ### 2.8.10 Reserved Bit If necessary, set to 0. When read, the content is undefined. ### 3.2 R8C/2F Group Figure 3.2 is a Memory Map of R8C/2F Group. The R8C/2F group has 1 Mbyte of address space from addresses 00000h to FFFFFh. The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh. The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine. The internal ROM (data flash) is allocated addresses 02400h to 02BFFh. The internal RAM area is allocated higher addresses, beginning with address 00400h. For example, a 1-Kbyte internal RAM is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged. Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users. Figure 3.2 Memory Map of R8C/2F Group # 4. Special Function Registers (SFRs) An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.7 list the special function registers. Table 4.1 SFR Information (1)⁽¹⁾ | | • • | | | |-----------------|--|--------------|--------------------------| | Address | Register | Symbol | After reset | | 0000h | , and the second | | | | 0001h | | | | | 0002h | | | | | 0003h | | | | | 0004h | Processor Mode Register 0 | PM0 | 00h | | 0005h | Processor Mode Register 1 | PM1 | 00h | | 0006h | System Clock Control Register 0 | CM0 | 01101000b | | 0007h | System Clock Control Register 1 | CM1 | 00100000b | | 0008h | , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | | | | 0009h | | | | | 000Ah | Protect Register | PRCR | 00h | | 000Bh | | | | | 000Ch | Oscillation Stop Detection Register | OCD | 00000100b | | 000Dh | Watchdog Timer Reset Register | WDTR | XXh | | 000Eh | Watchdog Timer Start Register | WDTS | XXh | | 000Fh | Watchdog Timer Control Register | WDC | 00X11111b | | 0010h | Address Match Interrupt Register 0 | RMAD0 | 00h | | 0011h | Triadicos maior morrape registor o | | 00h | | 0011h | | | 00h | | 0012H | Address Match Interrupt Enable Register | AIER | 00h | | 0014h | Address Match Interrupt Register 1 | RMAD1 | 00h | | 0014II
0015h | A consistent interrupt register i | TANK DI | 00h | | 0015h | | | 00h | | 0010H | | + | 0011 | | 0018h | | | | | 0019h | | | + | | 0019H | | | + | | 001An | | | | | 001Ch | Count Source Protection Mode Register | CSPR | 00h | | 001011 | Count Source Protection Mode Register | COFK | | | 00451 | | | 10000000b ⁽⁴⁾ | | 001Dh | | | | | 001Eh | | | | | 001Fh | | | | | 0020h | | | | | 0021h | | | | | 0022h | | EDAO | 001 | | 0023h | High-Speed On-Chip Oscillator Control Register 0 | FRA0 | 00h | | 0024h | High-Speed On-Chip Oscillator Control Register 1 | FRA1 | When shipping | | 0025h | High-Speed On-Chip Oscillator Control Register 2 | FRA2 | 00h | | 0026h | | | | | 0027h | | | | | 0028h | | | | | 0029h | | | 1 | | 002Ah | | | | | 002Bh | | ED.4= | | | 002Ch | High-Speed On-Chip Oscillator Control Register 7 | FRA7 | When Shipping | | | | _ | • | | 0030h | | | | | 0031h | Voltage Detection Register 1 (2) | VCA1 | 00001000b | | 0032h | Voltage Detection Register 2 (2) | VCA2 | 00100000b | | 0033h | | | | | 0034h | | | | | 0035h | | | | | 0036h | Voltage Monitor 1 Circuit Control Register(3) | VW1C | 00001000b | | 0037h | Voltage Monitor 2 Circuit Control Register ⁽³⁾ | VW2C | 00h | | 0038h | | | | | 0039h | | | | | 003Ah | | | | | 003Bh | | | | | 003Ch | | 1 | | | 003Dh | | + | + | | 003Eh | | - | + | | 003EH | | + | | ### 003Fh X: Undefined - 1. The blank regions are reserved. Do not access locations in these regions. - 2. Software reset, watchdog timer reset, and voltage monitor 1 reset or voltage monitor 2 reset do not affect this register. - Software reset, watchdog timer reset, and voltage monitor 1 reset or voltage monitor 2 reset do not affect b2 and b3. - 4. The CSPROINI bit in the OFS register is set to 0. SFR Information (2)⁽¹⁾ Table 4.2 | Address | Register | Symbol | After reset | |-----------------|---|--------|--| | 0040h | Register | Symbol | Alter reset | | 0040H | | | | | 0042h | | | | | 0042h | | | | | 0043H | | | | | 0044H | | | | | 0046h | | | | | 004011
0047h | Timer RC Interrupt Control Register | TRCIC | XXXXX000b | | 004711
0048h | Timer RC interrupt Control Register | TRUIC | ************************************** | | 0049h | | | | | 004911
004Ah | Timer RE Interrupt Control Register | TREIC | XXXXX000b | | 004An | Timer KE interrupt Control Register | TREIC | ************************************** | | 004Bh | | | | | 004CH | Voy Innut Intervent Control Devictor | KUPIC | XXXXX000b | | | Key Input Interrupt Control Register A/D Conversion Interrupt Control Register | ADIC | | | 004Eh | A/D Conversion Interrupt Control Register | ADIC | XXXXX000b | | 004Fh | | | | | 0050h | LIADTO T | COTIO | V//////2001 | | 0051h | UARTO Transmit Interrupt Control Register | SOTIC | XXXXX000b | | 0052h | UART0 Receive Interrupt Control Register | S0RIC | XXXXX000b | | 0053h | | | | | 0054h | | | | | 0055h | | | | | 0056h | Timer RA Interrupt Control Register | TRAIC | XXXXX000b | | 0057h | | | | | 0058h | Timer RB Interrupt Control Register | TRBIC | XXXXX000b | | 0059h | INT1 Interrupt Control Register | INT1IC | XX00X000b | | 005Ah | INT3 Interrupt Control Register | INT3IC | XX00X000b | | 005Bh | Comparator 0 Interrupt Control Register | CM0IC | XXXXX000b | | 005Ch | Comparator 1 Interrupt Control Register | CM1IC | XXXXX000b | | 005Dh | INTO Interrupt Control Register | INT0IC | XX00X000b | | 005Eh | | | | | 005Fh | | | | | 0060h | | | | | 0061h | | | | | 0062h | | | | | 0063h | | | | | 0064h | | | | | 0065h | | | | | 0066h | | | | | 0067h | | | | | 0068h | | | | | 0069h | | | | | 006Ah | | | | | 006Bh | | | | | 006Ch | | | | | 006Ch | | | | | 006Dh | | | | | 006En | | | | | | | | | | 0070h | | | | | 0071h | | | | | 0072h | | | | | 0073h | | | | | 0074h | | | | | 0075h | | | | | 0076h | | | | | 0077h | | | | | 0078h | | | | | 0079h | | | | | 007Ah | | | | | 007Bh | | | | | 007Ch | | | | | 007Dh | | | | | 007Eh | | | | | 007Fh | | | | | V: Undofined | | • | | X: Undefined NOTE: 1. The The blank regions are reserved. Do not access locations in these regions. SFR Information (4)⁽¹⁾ Table 4.4 | Address | Register | Symbol | After reset | |-------------------------|---|--------------|-------------| | 00C0h | A/D Register | AD | XXh | | 00C1h | | | XXh | | 00C2h | | | | | 00C3h | | | | | 00C4h | | | | | 00C5h | | | | | 00C6h | | | | | 00C7h | | | | | 00C8h | | | | | 00C9h | | | | | 00CAh | | | | | 00CAII | | | | | 00CCh | | | | | 00CDh | | | | | | | | | | 00CEh | | | | | 00CFh | | | | | 00D0h | | | | | 00D1h | | | | | 00D2h | | | | | 00D3h | | | | | 00D4h | A/D Control Register 2 | ADCON2 | 00h | | 00D5h | | | | | 00D6h | A/D Control Register 0 | ADCON0 | 00h | | 00D7h | A/D Control Register 1 | ADCON1 | 00h | | 00D8h | D/A Register 0 | DA0 | 00h | | 00D9h | | | | | 00DAh | D/A Register 1 | DA1 | 00h | | 00DBh | | -: ;; | | | 00DCh | D/A Control Register | DACON | 00h | | 00DDh | Diff Control (Cogleto) | Briceri | 0011 | | 00DEh | | | | | 00DFh | | | | | 00E0h | Port P0 Register | P0 | 00h | | 00E0H | | | | | | Port P1 Register | P1 | 00h | | 00E2h | Port P0 Direction Register | PD0 | 00h | | 00E3h | Port P1 Direction Register | PD1 | 00h | | 00E4h | | | | | 00E5h | Port P3 Register | P3 | 00h | | 00E6h | | | | | 00E7h | Port P3 Direction Register | PD3 | 00h | | 00E8h | Port P4 Register | P4 | 00h | | 00E9h | Port P5 Register | P5 | 00h | | 00EAh | Port P4 Direction Register | PD4 | 00h | | 00EBh | Port P5 Direction Register | PD5 | 00h | | 00ECh | | | | | 00EDh | | | | | 00EEh | | | | | 00EFh | | | | | 00F0h | | | | | 00F1h | | | | | 00F2h | | | | | 00F3h | | | | | 00F3f1 | | | | | | | | | | 00F5h | L Din Colort Progietor 2 | PINSR2 | 00h | | 00F6h | Pin Select Register 2 | | | | 00F7h | Pin Select Register 3 | PINSR3 | 00h | | 00F8h | Port Mode Register | PMR | 00h | | 00F9h | External Input Enable Register | INTEN | 00h | | 00FAh | INT Input Filter Select Register | INTF | 00h | | | Key Input Enable Register | KIEN | 00h | | 00FBh | | | | | 00FBh
00FCh | Pull-Up Control Register 0 | PUR0 | 00h | | 00FBh
00FCh
00FDh | Pull-Up Control Register 0 Pull-Up Control Register 1 | PUR0
PUR1 | | | 00FBh
00FCh | Pull-Up Control Register 0 | PUR0 | 00h | X: Undefined NOTE: 1. The blank regions are reserved. Do not access locations in these regions. SFR Information (6)⁽¹⁾ Table 4.6 | Address | Register | Symbol | After reset | |----------------|--|----------------|-------------| | 0140h | • | | | | 0141h | | | | | 0142h | | | | | 0143h | | | | | 0144h | | | | | 0145h | | | | | 0146h | | | | | 0147h | | | | | 0148h | | | | | 0149h | | | | | 014Ah | | | | | 014Bh | | | | | 014Ch | | | | | 014Dh | | | | | 014Eh | | | | | 014Fh | | | | | 0150h | | | | | 0151h | | | | | 0152h | | | | | 0153h | | | | | 0154h
0155h | | | | | 0156h | | | | | 0157h | | | | | 0157H | | | | | 0159h | | | | | 015Ah | | | | | 015Bh | | | | | 015Ch | | | | | 015Dh | | | | | 015Eh | | | | | 015Fh | | | | | 0160h | | | | | 0161h | | | | | 0162h | | | | | 0163h | | | | | 0164h | | | | | 0165h | | | | | 0166h | | | | | 0167h | | | | | 0168h | | | | | 0169h | | | | | 016Ah | | | | | 016Bh | | | | | 016Ch | | | | | 016Dh | | | | | 016Eh | | | | | 016Fh | | | | | 0170h | | | | | 0171h | | | | | 0172h | | | | | 0173h
0174h | Comparator 0 Control Register | ACCR0 | 00001000b | | 0174h
0175h | Comparator 1 Control Register Comparator 1 Control Register | ACCR0
ACCR1 | 00001000b | | 0175h | Comparator / Control negister | AUUN I | 000010000 | | 0176H | Comparator Mode Register | ACMR | 00h | | 0177h | Comparator mode register | , COIVII C | 00.1 | | 0178h | | | | | 0179H
017Ah | | | | | 017An | | | | | 017Ch | | | | | 017Dh | | | | | 017Eh | | | | | 017Fh | | | | | X: Undefined | | | | X: Undefined NOTE: 1. The blank regions are reserved. Do not access locations in these regions. Figure 5.1 Ports P0, P1, and P3 to P5 Timing Measurement Circuit Table 5.3 A/D Converter Characteristics | Symbol | Parameter | Conditions | Standard | | | Unit | | |---------|-------------------------|-------------------------|-----------------------------------|------|------|------|------| | Symbol | Parameter | | Conditions | Min. | Тур. | Max. | Unit | | _ | Resolution | | Vref = AVCC | = | - | 10 | Bits | | _ | Absolute | 10-bit mode | φAD = 10 MHz, Vref = AVCC = 5.0 V | = | - | ±3 | LSB | | | accuracy | 8-bit mode | φAD = 10 MHz, Vref = AVCC = 5.0 V | = | - | ±2 | LSB | | | | 10-bit mode | φAD = 10 MHz, Vref = AVCC = 3.3 V | = | - | ±5 | LSB | | | | 8-bit mode | φAD = 10 MHz, Vref = AVCC = 3.3 V | - | - | ±2 | LSB | | Rladder | Resistor ladder | | Vref = AVCC | 10 | - | 40 | kΩ | | tconv | Conversion time | 10-bit mode | φAD = 10 MHz, Vref = AVCC = 5.0 V | 3.3 | - | _ | μS | | | | 8-bit mode | φAD = 10 MHz, Vref = AVCC = 5.0 V | 2.8 | - | _ | μS | | Vref | Reference voltag | e | | 2.7 | - | AVcc | V | | VIA | Analog input voltage(2) | | | 0 | - | AVcc | V | | - | A/D operating | Without sample and hold | Vref = AVCC = 2.7 to 5.5 V | 0.25 | - | 10 | MHz | | | clock frequency | With sample and hold | Vref = AVCC = 2.7 to 5.5 V | 1 | - | 10 | MHz | ### NOTES: - 1. AVcc = 2.7 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified. - 2. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode. Table 5.4 D/A Converter Characteristics | Symbol | Symbol Parameter Conditions | Conditions | Standard | | | Unit | |--------|-------------------------------|------------|----------|------|-------|------| | Symbol | | Min. | Тур. | Max. | Offic | | | - | Resolution | | - | - | 8 | Bit | | - | Absolute accuracy | | _ | - | 1.0 | % | | tsu | Setup time | | _ | - | 3 | μS | | Ro | Output resistor | | 4 | 10 | 20 | kΩ | | IVref | Reference power input current | (NOTE 2) | - | = | 1.5 | mA | - 1. AVcc = 2.7 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified. - 2. This applies when one D/A converter is used and the value of the DAi register (i = 0 or 1) for the unused D/A converter is 00h. The resistor ladder of the A/D converter is not included. Also, even if the VCUT bit in the ADCON1 register is set to 0 (VREF not connected), Ivref flows into the D/A converters. Table 5.5 Comparator Characteristics⁽¹⁾ | Symbol | Parameter | Conditions - | | Unit | | | |--------|------------------------------|--------------|------|------|---------|-------| | | | | Min. | Тур. | Max. | Offic | | Vcref | Comparator reference voltage | | 0 | - | Vcc-1.2 | V | | Vcin | Comparator input voltage | | -0.3 | - | Vcc+0.3 | V | | Vofs | Input offset voltage | | = | - | ±100 | mV | | Tcrsp | Response time | | = | - | 200 | ns | #### NOTE: 1. Vcc = 2.7 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified. Table 5.6 Flash Memory (Program ROM) Electrical Characteristics | Symbol | Parameter | Conditions | | Unit | | | | |------------|---|----------------------------|----------------------|------|----------------------------|-------|--| | Symbol | Farameter | Conditions | Min. | Тур. | Max. | Offic | | | = | Program/erase endurance ⁽²⁾ | R8C/2E Group | 100(3) | = | - | times | | | | | R8C/2F Group | 1,000 ⁽³⁾ | = | - | times | | | = | Byte program time | | - | 50 | 400 | μS | | | = | Block erase time | | - | 0.4 | 9 | s | | | td(SR-SUS) | Time delay from suspend request until suspend | | _ | _ | 97+CPU clock
× 6 cycles | μS | | | _ | Interval from erase start/restart until following suspend request | | 650 | _ | _ | μS | | | _ | Interval from program start/restart until following suspend request | | 0 | _ | _ | ns | | | = | Time from suspend until program/erase restart | | = | = | 3+CPU clock
× 4 cycles | μS | | | = | Program, erase voltage | | 2.7 | - | 5.5 | V | | | = | Read voltage | | 2.7 | - | 5.5 | V | | | = | Program, erase temperature | | 0 | - | 60 | °C | | | = | Data hold time ⁽⁷⁾ | Ambient temperature = 55°C | 20 | = | - | year | | - 1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60°C, unless otherwise specified. - 2. Definition of programming/erasure endurance - The programming and erasure endurance is defined on a per-block basis. - If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. - However, the same address must not be programmed more than once per erase operation (overwriting prohibited). - 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed). - 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number. - 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur. - 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative. - 7. The data hold time includes time that the power supply is off or the clock is not supplied. Table 5.15 Electrical Characteristics (2) [Vcc = 5 V] (Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.) | | | | | | Standar | d | 11.22 | |--------|---|--|---|------|---------|------|-------| | Symbol | Parameter | | Condition | Min. | Тур. | Max. | Unit | | CC | Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode, | High-speed clock mode | XIN = 20 MHz (square wave)
High-speed on-chip oscillator off
Low-speed on-chip oscillator on = 125 kHz
No division | - | 10 | 17 | mA | | | output pins are open, other pins are Vss | | XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division | - | 9 | 15 | mA | | | | | XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division | - | 6 | _ | mA | | | | | XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 | _ | 5 | - | mA | | | | | XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 | - | 4 | _ | mA | | | | | XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 | _ | 2.5 | _ | mA | | | | High-speed
on-chip
oscillator mode | XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division | - | 10 | 15 | mA | | | | | XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8 | - | 4 | - | mA | | | | | XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division | - | 5.5 | 10 | mA | | | | | XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8 | - | 2.5 | _ | mA | | | | Low-speed
on-chip
oscillator mode | XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1 | _ | 130 | 300 | μА | | | | Wait mode | XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = 0 VCA20 = 1 | - | 25 | 75 | μА | | | | | XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = 0 VCA20 = 1 | - | 23 | 60 | μА | | | | Stop mode | XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = 0 | - | 0.8 | 3.0 | μА | | | | | XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off | - | 1.2 | _ | μА | ## **Timing Requirements** (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C) [Vcc = 5 V] Table 5.16 XIN Input | Symbol | Parameter | Stan | Unit | | | | |----------|--------------------------|------|------|-------|--|--| | Symbol | Falameter | Min. | Max. | Offic | | | | tc(XIN) | XIN input cycle time | - | ns | | | | | twh(xin) | XIN input "H" width 25 – | | | | | | | twl(XIN) | XIN input "L" width | 25 | - | ns | | | Figure 5.4 XIN Input Timing Diagram when Vcc = 5 V Table 5.17 TRAIO Input | Symbol | Parameter | | Standard | | | |------------|----------------------------|-----|----------|------|--| | Symbol | | | Max. | Unit | | | tc(TRAIO) | TRAIO input cycle time | 100 | = | ns | | | tWH(TRAIO) | TRAIO input "H" width 40 – | | | | | | tWL(TRAIO) | TRAIO input "L" width | 40 | - | ns | | Figure 5.5 TRAIO Input Timing Diagram when Vcc = 5 V | Table 5.18 Serial Interfa | Table | 5.18 | Serial | Interfac | |---------------------------|-------|------|--------|----------| |---------------------------|-------|------|--------|----------| | Symbol | Parameter | | Standard | | | |----------|-----------------------------|------|----------|------|--| | | Farameter | Min. | Max. | Unit | | | tc(CK) | CLK0 input cycle time | 200 | - | ns | | | tW(CKH) | CLK0 input "H" width | - | ns | | | | tW(CKL) | CLK0 input "L" width | 100 | - | ns | | | td(C-Q) | TXD0 output delay time – 50 | | | | | | th(C-Q) | TXD0 hold time 0 - | | | | | | tsu(D-C) | RXD0 input setup time 50 - | | | | | | th(C-D) | RXD0 input hold time 90 - | | | | | Figure 5.6 Serial Interface Timing Diagram when Vcc = 5 V Table 5.19 External Interrupt INTi (i = 0, 1, 3) Input | Symbol | Parameter | | Standard | | | | |---------|---|--------------------|----------|------|--|--| | Symbol | Falanielei | Min. | Max. | Unit | | | | tW(INH) | ĪNTi input "H" width | 250 ⁽¹⁾ | - | ns | | | | tW(INL) | INTi input "L" width 250 ⁽²⁾ – | | | | | | - 1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater. - 2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater. Figure 5.7 External Interrupt INTi Input Timing Diagram when Vcc = 5 V Table 5.21 Electrical Characteristics (4) [Vcc = 3 V] (Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.) | Symbol | Parameter | Condition | Standard | | | Unit | | |--------|--|---|---|------|------|------|------| | Symbol | Parameter | | Condition | Min. | Тур. | Max. | Unit | | Icc | Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are open, | High-speed clock mode | XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division | = | 6 | _ | mA | | | other pins are Vss | | XIN = 10 MHz (square wave)
High-speed on-chip oscillator off
Low-speed on-chip oscillator on = 125 kHz
Divide-by-8 | | 2 | _ | mA | | | | High-speed
on-chip
oscillator
mode | XIN clock off
High-speed on-chip oscillator on fOCO = 10 MHz
Low-speed on-chip oscillator on = 125 kHz
No division | = | 5 | 9 | mA | | | | mode | XIN clock off
High-speed on-chip oscillator on fOCO = 10 MHz
Low-speed on-chip oscillator on = 125 kHz
Divide-by-8 | = | 2 | - | mA | | | | Low-speed
on-chip
oscillator
mode | XIN clock off
High-speed on-chip oscillator off
Low-speed on-chip oscillator on = 125 kHz
Divide-by-8, FMR47 = 1 | - | 130 | 300 | μА | | | Wait mode XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = 0 VCA20 = 1 | - | 25 | 70 | μА | | | | | | | XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = 0 VCA20 = 1 | - | 23 | 55 | μА | | | | Stop mode | XIN clock off, Topr = 25°C
High-speed on-chip oscillator off
Low-speed on-chip oscillator off
CM10 = 1
Peripheral clock off
VCA27 = VCA26 = 0 | - | 0.7 | 3.0 | μА | | | | | XIN clock off, Topr = 85°C
High-speed on-chip oscillator off
Low-speed on-chip oscillator off
CM10 = 1
Peripheral clock off
VCA27 = VCA26 = 0 | _ | 1.1 | = | μА | ## **Timing requirements** (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C) [Vcc = 3 V] Table 5.22 XIN Input | Symbol | Parameter | Standard | | Unit | | |----------|--------------------------|----------|------|------|--| | Symbol | Falanetei | | Max. | | | | tc(XIN) | XIN input cycle time | 100 | - | ns | | | twh(xin) | XIN input "H" width 40 – | | | | | | twl(XIN) | XIN input "L" width | 40 | - | ns | | Figure 5.8 XIN Input Timing Diagram when Vcc = 3 V Table 5.23 TRAIO Input | Symbol | Parameter | | Standard | | | |------------|-----------------------------|-----|----------|------|--| | Symbol | | | Max. | Unit | | | tc(TRAIO) | TRAIO input cycle time | 300 | = | ns | | | tWH(TRAIO) | TRAIO input "H" width 120 – | | | | | | tWL(TRAIO) | TRAIO input "L" width | 120 | - | ns | | Figure 5.9 TRAIO Input Timing Diagram when Vcc = 3 V | REVISION HISTORY R8C/2E Group, R8C/2F Group Datasheet | | |---|--| |---|--| | Rev. | Date | | Description | |-------|--------------|-----------|---| | ixev. | Date | Page | Summary | | 0.10 | Aug 01, 2007 | _ | First Edition issued | | 1.00 | Dec 14, 2007 | All pages | "Under development" deleted | | | | 2, 4 | Table 1.1, Table 1.3: "Interrupts" revised | | | | 6, 7 | Table 1.5, Table 1.6: "(D)" deleted | | | | 15, 16 | Figure 3.1, Figure 3.2: "Expanded area" deleted | | | | 17 | Table 4.1: "002Ch" added | | | | 24 | Table 5.2: IOH(sum), NOTE2 revised | | | | 30 | Table 5.11: Symbol "fOCO40M"; Parameter added | | | | | | All trademarks and registered trademarks are the property of their respective owners.