Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, Cap Sense, LCD, LVD, POR, PWM, SmartSense, WDT
Number of I/O	51
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4245axi-m445

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Functional Definition

CPU and Memory Subsystem

CPU

The Cortex-M0 CPU in the PSoC 4200-M is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. Most instructions are 16 bits in length and execute a subset of the Thumb-2 instruction set. The Cypress implementation includes a hardware multiplier that provides a 32-bit result in one cycle. It includes a nested vectored interrupt controller (NVIC) block with 32 interrupt inputs and also includes a Wakeup Interrupt Controller (WIC), which can wake the processor up from the Deep Sleep mode allowing power to be switched off to the main processor when the chip is in the Deep Sleep mode. The Cortex-M0 CPU provides a Non-Maskable Interrupt (NMI) input, which is made available to the user when it is not in use for system functions requested by the user.

The CPU also includes a debug interface, the serial wire debug (SWD) interface, which is a 2-wire form of JTAG; the debug configuration used for PSoC 4200-M has four break-point (address) comparators and two watchpoint (data) comparators.

Flash

The PSoC 4200-M has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The flash accelerator delivers 85% of single-cycle SRAM access performance on average. Part of the flash module can be used to emulate EEPROM operation if required.

SRAM

SRAM memory is retained during Hibernate.

SROM

A supervisory ROM that contains boot and configuration routines is provided.

DMA

A DMA engine, with eight channels, is provided that can do 32-bit transfers and has chainable ping-pong descriptors.

System Resources

Power System

The power system is described in detail in the section Power on page 14. It provides assurance that voltage levels are as required for each respective mode and either delay mode entry (on power-on reset (POR), for example) until voltage levels are as required for proper function or generate resets (brown-out detect (BOD)) or interrupts (low voltage detect (LVD)). The PSoC 4200M operates with a single external supply over the range of 1.71 to 5.5 V and has five different power modes, transitions between which are managed by the power system. The PSoC 4200M provides Sleep, Deep Sleep, Hibernate, and Stop low-power modes.

Clock System

The PSoC 4200-M clock system is responsible for providing clocks to all subsystems that require clocks and for switching between different clock sources without glitching. In addition, the clock system ensures that no meta-stable conditions occur.

The clock system for the PSoC 4200-M consists of a Watch Crystal Oscillator (WCO) running at 32 kHz, the IMO (3 to 48 MHz) and the ILO (32-kHz nominal) internal oscillators, and provision for an external clock.

Figure 2. PSoC 4200M MCU Clocking Architecture

The clk_hf signal can be divided down to generate synchronous clocks for the UDBs, and the analog and digital peripherals. There are a total of 16 clock dividers for the PSoC 4200-M, each with 16-bit divide capability; this allows 12 to be used for the fixed-function blocks and four for the UDBs. The analog clock leads the digital clocks to allow analog events to occur before digital clock-related noise is generated. The 16-bit capability allows a lot of flexibility in generating fine-grained frequency values and is fully supported in PSoC Creator.

IMO Clock Source

The IMO is the primary source of internal clocking in the PSoC 4200M. It is trimmed during testing to achieve the specified accuracy. Trim values are stored in nonvolatile memory. Trimming can also be done on the fly to allow in-field calibration. The IMO default frequency is 24 MHz and it can be adjusted between 3 to 48 MHz in steps of 1 MHz. IMO tolerance with Cypress-provided calibration settings is ±2%.

ILO Clock Source

The ILO is a very low power oscillator, nominally 32 kHz, which is primarily used to generate clocks for peripheral operation in Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy. Cypress provides a software component, which does the calibration.

Crystal Oscillator

The PSoC 4200M clock subsystem also includes a low-frequency crystal oscillator (32-kHz WCO) that is available during the Deep Sleep mode and can be used for Real-Time Clock (RTC) and Watchdog Timer applications.

Watchdog Timer

A watchdog timer is implemented in the clock block running from the low-frequency clock; this allows watchdog operation during Deep Sleep and generates a watchdog reset or an interrupt if not serviced before the timeout occurs. The watchdog reset is recorded in the Reset Cause register.

Reset

The PSoC 4200M can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset and allows software to determine the cause of the reset. An XRES pin is reserved for external reset to avoid complications with configuration and multiple pin functions during power-on or reconfiguration.

Voltage Reference

The PSoC 4200M reference system generates all internally required references. A 1% voltage reference spec is provided for the 12-bit ADC. To allow better signal-to-noise ratios (SNR) and better absolute accuracy, it is possible to add an external bypass capacitor to the internal reference using a GPIO pin or to use an external reference for the SAR.

Analog Blocks

12-bit SAR ADC

The 12-bit 1 MSample/second SAR ADC can operate at a maximum clock rate of 18 MHz and requires a minimum of 18 clocks at that frequency to do a 12-bit conversion.

The block functionality is augmented for the user by adding a reference buffer to it (trimmable to \pm 1%) and by providing the choice of three internal voltage references: V_{DD}, V_{DD}/2, and

V_{REF} (nominally 1.024 V) as well as an external reference through a GPIO pin. The Sample-and-Hold (S/H) aperture is programmable allowing the gain bandwidth requirements of the amplifier driving the SAR inputs, which determine its settling time, to be relaxed if required. The system performance will be 65 dB for true 12-bit precision if appropriate references are used and system noise levels permit. To improve performance in noisy conditions, it is possible to provide an external bypass (through a fixed pin location) for the internal reference amplifier.

The SAR is connected to a fixed set of pins through an 8-input sequencer (expandable to 16 inputs). The sequencer cycles through selected channels autonomously (sequencer scan) and does so with zero switching overhead (that is, the aggregate sampling bandwidth is equal to 1 Msps, whether it is for a single channel or distributed over several channels). The sequencer switching is effected through a state machine or through firmware-driven switching. A feature provided by the sequencer is buffering of each channel to reduce CPU interrupt service requirements. To accommodate signals with varying source impedance and frequency, it is possible to have different sample times programmable for each channel. In addition, the signal range specification through a pair of range registers (low and high range values) is implemented with a corresponding out-of-range interrupt if the digitized value exceeds the programmed range; this allows fast detection of out-of-range values without the necessity of having to wait for a sequencer scan to be completed and the CPU to read the values and check for out-of-range values in software.

The SAR is able to digitize the output of the on-board temperature sensor for calibration and other temperature-dependent functions. The SAR is not available in Deep Sleep and Hibernate modes as it requires a high-speed clock (up to 18 MHz). The SAR operating range is 1.71 to 5.5 V.

Figure 3. SAR ADC System Diagram

UDBs can be clocked from a clock divider block, from a port interface (required for peripherals such as SPI), and from the DSI network directly or after synchronization.

A port interface is defined, which acts as a register that can be clocked with the same source as the PLDs inside the UDB array. This allows faster operation because the inputs and outputs can be registered at the port interface close to the I/O pins and at the edge of the array. The port interface registers can be clocked by one of the I/Os from the same port. This allows interfaces such as SPI to operate at higher clock speeds by eliminating the delay for the port input to be routed over DSI and used to register other inputs. The port interface is shown in Figure 6.

The UDBs can generate interrupts (one UDB at a time) to the interrupt controller. The UDBs can connect to any pin on Ports 0, 1, 2, and 3 (each port interconnect requires one UDB) through the DSI.

Figure 6. Port Interface

Fixed Function Digital

Timer/Counter/PWM (TCPWM) Block

The TCPWM block uses a16-bit counter with user-programmable period length. There is a Capture register to record the count value at the time of an event (which may be an I/O event), a period register which is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals, which are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as deadband programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an overcurrent state is indicated and the PWMs driving the FETs need to be shut off immediately with no time for software intervention. The PSoC 4200M has eight TCPWM blocks.

Serial Communication Blocks (SCB)

The PSoC 4200M has four SCBs, which can each implement an I^2 C, UART, or SPI interface.

I²C Mode: The hardware I²C block implements a full multi-master and slave interface (it is capable of multimaster arbitration). This block is capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. It also supports EzI²C that creates a mailbox address range in the memory of the PSoC 4200M and effectively reduces I²C communication to reading from and writing to an array in memory. In

addition, the block supports an 8-deep FIFO for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduces the need for clock stretching caused by the CPU not having read data on time. The FIFO mode is available in all channels and is very useful in the absence of DMA.

The I²C peripheral is compatible with the I²C Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIO in open-drain modes.

UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.

SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (essentially adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO and also supports an EzSPI mode in which data interchange is reduced to reading and writing an array in memory.

CAN Blocks

There are two independent CAN 2.0B blocks, which are certified CAN conformant.

GPIO

The PSoC 4200M has 55 GPIOs in the 68-pin QFN package. The GPIO block implements the following:

- Eight drive strength modes including strong push-pull, resistive pull-up and pull-down, weak (resistive) pull-up and pull-down, open drain and open source, input only, and disabled
- Input threshold select (CMOS or LVTTL)
- Individual control of input and output disables
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode and Hibernate modes)
- Selectable slew rates for dV/dt related noise control to improve EMI

The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals are also fixed to reduce internal multiplexing complexity (these signals do not go through the DSI network). DSI signals are not affected by this and any pin on Ports 0, 1, 2, and 3 may be routed to any UDB through the DSI network. Only pins on Ports 0, 1, 2, and 3 may be routed through DSI signals.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.

Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (8 for PSoC 4200M).

The Pins of Port 6 (up to 6 depending on the package) are overvoltage tolerant (V_{IN} can exceed V_{DD}). The overvoltage cells will not sink more than 10 μ A when their inputs exceed V_{DDIO} in compliance with I²C specifications.

Special Function Peripherals

LCD Segment Drive

The PSoC 4200M has an LCD controller, which can drive up to four commons and up to 51 segments. Any pin can be either a common or a segment pin. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages.

The two methods used are referred to as digital correlation and PWM.

Digital correlation pertains to modulating the frequency and levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays.

PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; 1 32-bit register per port).

CapSense

CapSense is supported on all pins in the PSoC 4200M through a CapSense Sigma-Delta (CSD) block that can be connected to any pin through an analog mux bus that any GPIO pin can be connected to via an Analog switch. CapSense functionality can thus be provided on any pin or group of pins in a system under software control. A component is provided for the CapSense block, which provides automatic hardware tuning (Cypress SmartSense[™]), to make it easy for the user.

Shield voltage can be driven on another Mux Bus to provide water tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input.

Each CSD block has two IDACs which can be used for general purposes if CapSense is not being used.(both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available). The PSoC 4200M has two CSD blocks which can be used independently; one for CapSense and one providing two IDACs.

The two CapSense blocks are referred to as CSD0 and CSD1. Capacitance sensing inputs on Ports 0, 1, 2, 3, 4, 6, and 7 are sensed by CSD0. Capacitance sensing inputs on Port 5 are sensed by CSD1.

Pinouts

The following is the pin list for the PSoC 4200M. This shows the power supply and port pins (for example, P0.0 is Pin 0 of Port 0).

	68-QFN		64-TQFP	48-TQFP			44-TQFP
Pin	Name	Pin	Name	Pin	Name	Pin	Name
42	P0.0	39	P0.0	28	P0.0	24	P0.0
43	P0.1	40	P0.1	29	P0.1	25	P0.1
44	P0.2	41	P0.2	30	P0.2	26	P0.2
45	P0.3	42	P0.3	31	P0.3	27	P0.3
46	P0.4	43	P0.4	32	P0.4	28	P0.4
47	P0.5	44	P0.5	33	P0.5	29	P0.5
48	P0.6	45	P0.6	34	P0.6	30	P0.6
49	P0.7	46	P0.7	35	35 P0.7		P0.7
50	XRES	47	XRES	36	XRES	32	XRES
51	VCCD	48	VCCD	37	VCCD		VCCD
52	VSSD	49	VSSD	38	VSSD	DN	VSSD
53	VDDD	50	VDDD	39	VDDD	34	VDDD
				40	VDDA	35	VDDA
54	P5.0	51	P5.0				
55	P5.1	52	P5.1				
56	P5.2	53	P5.2				
57	P5.3	54	P5.3				
58	P5.4						
59	P5.5	55	P5.5				
60	VDDA	56	VDDA	40	VDDA	35	VDDA
61	VSSA	57	VSSA	41	VSSA	36	VSSA
62	P1.0	58	P1.0	42	P1.0	37	P1.0
63	P1.1	59	P1.1	43	P1.1	38	P1.1
64	P1.2	60	P1.2	44	P1.2	39	P1.2
65	P1.3	61	P1.3	45	P1.3	40	P1.3
66	P1.4	62	P1.4	46	P1.4	41	P1.4
67	P1.5	63	P1.5	47	P1.5	42	P1.5
68	P1.6	64	P1.6	48	P1.6	43	P1.6
1	P1.7/VREF	1	P1.7/VREF	1	P1.7/VREF	44	P1.7/VREF
						1	VSSD
2	P2.0	2	P2.0	2	P2.0	2	P2.0
3	P2.1	3	P2.1	3	P2.1	3	P2.1
4	P2.2	4	P2.2	4	P2.2	4	P2.2
5	P2.3	5	P2.3	5	P2.3	5	P2.3
6	P2.4	6	P2.4	6	P2.4	6	P2.4
7	P2.5	7	P2.5	7	P2.5	7	P2.5

	68-QFN		64-TQFP	48-TQFP			44-TQFP		
Pin	Name	Pin	Name	Pin	Name	Pin	Name		
8	P2.6	8	P2.6	8	P2.6	8	P2.6		
9	P2.7	9	P2.7	9	P2.7	9	P2.7		
10	VSSA	10	VSSA	10	VSSD	10	VSSD		
11	VDDA	11	VDDA						
12	P6.0	12	P6.0						
13	P6.1	13	P6.1						
14	P6.2	14	P6.2						
15	P6.3								
16	P6.4	15	P6.4						
17	P6.5	16	P6.5						
18	VSSIO	17	VSSIO	10	VSSD	10	VSSD		
19	P3.0	18	P3.0	12	P3.0	11	P3.0		
20	P3.1	19	P3.1	13	P3.1	12	P3.1		
21	P3.2	20	P3.2	14	P3.2	13	P3.2		
22	P3.3	21	P3.3	16	P3.3	14	P3.3		
23	P3.4	22	P3.4	17	P3.4	15	P3.4		
24	P3.5	23	P3.5	18	P3.5	16	P3.5		
25	P3.6	24	P3.6	19	P3.6	17	P3.6		
26	P3.7	25	P3.7	20	P3.7	18	P3.7		
27	VDDIO	26	VDDIO	21	VDDIO	19	VDDD		
28	P4.0	27	P4.0	22	P4.0	20	P4.0		
29	P4.1	28	P4.1	23	P4.1	21	P4.1		
30	P4.2	29	P4.2	24	P4.2	22	P4.2		
31	P4.3	30	P4.3	25	P4.3	23	P4.3		
32	P4.4	31	P4.4						
33	P4.5	32	P4.5						
34	P4.6	33	P4.6						
35	P4.7								
39	P7.0	37	P7.0	26	P7.0				
40	P7.1	38	P7.1	27	P7.1				
41	P7.2								

The pins of Port 6 are overvoltage-tolerant. Pins 36, 37, and 38 are No-Connects on the 68-pin QFN. Pins 34, 35, and 36 are No-Connects on the 64-pin TQFP. Pins 11 and 15 are No-connects in the 48-pin TQFP. All VSS pins must be tied together.

The output drivers of I/O Ports P0 and P7 are connected to VDDD. Output drivers of I/O Ports 1, 2, and 5 are connected to VDDA. Output drivers of I/O Ports 3, 4, and 6 are connected to VDDIO.

Development Support

The PSoC 4200M family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4 to find out more.

Documentation

A suite of documentation supports the PSoC 4200M family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers.

Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4200M family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

Table 2. DC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
Deep Sleep	Mode, –40 °C to	+ 60 °C					
SID30	I _{DD25}	I ² C wakeup and WDT on. Regulator Off.	-	1.55	20	μA	V _{DD} = 1.71 to 1.89
SID31	I _{DD26}	I ² C wakeup and WDT on.	-	1.35	15	μA	V _{DD} = 1.8 to 3.6
SID32	I _{DD27}	I ² C wakeup and WDT on.	-	1.5	15	μA	V _{DD} = 3.6 to 5.5
Deep Sleep	Mode, +85 °C	· · · · · · · · · · · · · · · · · · ·					
SID33	I _{DD28}	I ² C wakeup and WDT on. Regulator Off.	-	-	60	μA	V _{DD} = 1.71 to 1.89
SID34	I _{DD29}	I ² C wakeup and WDT on.	_	-	45	μA	V _{DD} = 1.8 to 3.6
SID35	I _{DD30}	I ² C wakeup and WDT on.	-	-	30	μA	V _{DD} = 3.6 to 5.5
Deep Sleep	o Mode, +105 °C	· · · · · · · · · · · · · · · · · · ·					
SID33Q	I _{DD28Q}	I ² C wakeup and WDT on. Regulator Off.	_	-	135	μA	V _{DD} = 1.71 to 1.89
SID34Q	I _{DD29Q}	I ² C wakeup and WDT on.	-	-	180	μA	V _{DD} = 1.8 to 3.6
SID35Q	I _{DD30Q}	I ² C wakeup and WDT on.	-	-	140	μA	V _{DD} = 3.6 to 5.5
Hibernate	Mode, -40 °C to +	- 60 °C			•		
SID39	I _{DD34}	Regulator Off.	-	150	3000	nA	V _{DD} = 1.71 to 1.89
SID40	I _{DD35}		_	150	1000	nA	V _{DD} = 1.8 to 3.6
SID41	I _{DD36}		_	150	1100	nA	V _{DD} = 3.6 to 5.5
Hibernate	Mode, +85 °C						
SID42	I _{DD37}	Regulator Off.	-	_	4500	nA	V _{DD} = 1.71 to 1.89
SID43	I _{DD38}		-	-	3500	nA	V _{DD} = 1.8 to 3.6
SID44	I _{DD39}		-	-	3500	nA	V _{DD} = 3.6 to 5.5
Hibernate	Mode, +105 °C						
SID42Q	I _{DD37Q}	Regulator Off.	-	1	19.4	μA	V _{DD} = 1.71 to 1.89
SID43Q	I _{DD38Q}		-	-	17	μA	V _{DD} = 1.8 to 3.6
SID44Q	I _{DD39Q}		-	-	16	μA	V _{DD} = 3.6 to 5.5
Stop Mode							
SID304	I _{DD43A}	Stop Mode current; V_{DD} = 3.6 V	-	35	85	nA	T = -40 °C to +60 °C
SID304A	I _{DD43B}	Stop Mode current; V_{DD} = 3.6 V	_	-	1450	nA	T = +85 °C
Stop Mode	, +105 °C						
SID304Q	I _{DD43AQ}	Stop Mode current; V _{DD} = 3.6 V	-	-	5645	nA	
XRES curr	ent						
SID307	I _{DD_XR}	Supply current while XRES asserted	_	2	5	mA	

Table 3. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID48	F _{CPU}	CPU frequency	DC	-	48	MHz	$1.71 \leq V_{DD} \leq 5.5$
SID49	T _{SLEEP}	Wakeup from sleep mode	-	0	_	μs	Guaranteed by characterization
SID50	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	-	_	25	μs	24 MHz IMO. Guaranteed by characterization
SID51	T _{HIBERNATE}	Wakeup from Hibernate mode	-	-	0.7	ms	Guaranteed by characterization
SID51A	T _{STOP}	Wakeup from Stop mode	-	-	2	ms	Guaranteed by characterization
SID52	T _{RESETWIDTH}	External reset pulse width	1	_	_	μs	Guaranteed by characterization

GPIO

Table 4. GPIO DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID57	V _{IH} ^[2]	Input voltage high threshold	0.7 × V _{DDD}	-	-	V	CMOS Input
SID57A	IIHS	Input current when Pad > V _{DDIO} for OVT inputs	-	-	10	μA	Per I ² C Spec
SID58	V _{IL}	Input voltage low threshold	-	-	0.3 × V _{DDD}	V	CMOS Input
SID241	V _{IH} ^[2]	LVTTL input, V _{DDD} < 2.7 V	0.7× V _{DDD}	-	_	V	
SID242	V _{IL}	LVTTL input, V _{DDD} < 2.7 V	_	_	0.3 × V _{DDD}	V	
SID243	V _{IH} ^[2]	LVTTL input, $V_{DDD} \ge 2.7 \text{ V}$	2.0	-	-	V	
SID244	V _{IL}	LVTTL input, $V_{DDD} \ge 2.7 \text{ V}$	-	-	0.8	V	
SID59	V _{OH}	Output voltage high level	V _{DDD} -0.6	-	-	V	I _{OH} = 4 mA at 3-V V _{DDD}
SID60	V _{OH}	Output voltage high level	V _{DDD} -0.5	-	-	V	I _{OH} = 1 mA at 1.8-V V _{DDD}
SID61	V _{OL}	Output voltage low level	-	-	0.6	V	I _{OL} = 4 mA at 1.8-V V _{DDD}
SID62	V _{OL}	Output voltage low level	_	-	0.6	V	I _{OL} = 8 mA at 3-V V _{DDD}
SID62A	V _{OL}	Output voltage low level	-	-	0.4	V	I _{OL} = 3 mA at 3-V V _{DDD}
SID63	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID64	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	kΩ	
SID65	IIL	Input leakage current (absolute value)	-	-	2	nA	25 °C, V _{DDD} = 3.0 V. Guaranteed by Characterization
SID65A	I _{IL_CTBM}	Input leakage current (absolute value) for CTBM pins	-	-	4	nA	Guaranteed by Characterization
SID66	C _{IN}	Input capacitance	-	-	7	pF	
SID67	V _{HYSTTL}	Input hysteresis LVTTL	25	40	_	mV	$V_{DDD} \ge 2.7 V$

Note 2. V_{IH} must not exceed V_{DDD} + 0.2 V.

Table 8. Opamp Specifications

(Guaranteed by Characterization) (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID_DS_15	VOS_LOW_M1	Mode 1, Low current	_	5	-	mV	With trim 25 °C, 0.2 V to V _{DDA} -1.5 V
SID_DS_16	VOS_HI_M2	Mode 2, High current	_	5	-	mV	With trim 25 °C, 0.2 V to V _{DDA} -1.5 V
SID_DS_17	VOS_MED_M2	Mode 2, Medium current	-	5	-	mV	With trim 25 °C, 0.2 V to V _{DDA} -1.5 V
SID_DS_18	VOS_LOW_M2	Mode 2, Low current	-	5	-	mV	With trim 25 °C, 0.2 V to V _{DDA} -1.5 V
SID_DS_19	IOUT_HI_M1	Mode 1, High current	-	10	-	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_20	IOUT_MED_M1	Mode 1, Medium current	_	10	-	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_21	IOUT_LOW_M1	Mode 1, Low current	-	4	-	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_22	IOUT_HI_M2	Mode 2, High current	_	1	_	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_23	IOUT_MED_M2	Mode 2, Medium current	-	1	-	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_24	IOUT_LOW_M2	Mode 2, Low current	_	0.5	_	mA	Output is 0.5 V to V _{DDA} -0.5 V

Comparator

Table 9. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID85	V _{OFFSET2}	Input offset voltage, Common Mode voltage range from 0 to V _{DD} -1	_	-	±4	mV	
SID85A	V _{OFFSET3}	Input offset voltage. Ultra low-power mode ($V_{DDD} \ge 2.2$ V for Temp < 0 °C, $V_{DDD} \ge 1.8$ V for Temp > 0 °C)	_	±12	-	mV	
SID86	V _{HYST}	Hysteresis when enabled, Common Mode voltage range from 0 to V _{DD} -1.	-	10	35	mV	Guaranteed by characterization
SID87	V _{ICM1}	Input common mode voltage in normal mode	0	-	V _{DDD} – 0.1	V	Modes 1 and 2.
SID247	V _{ICM2}	Input common mode voltage in low power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge 1.8 \text{ V}$ for Temp > 0 °C)	0	-	V _{DDD}	V	
SID247A	V _{ICM3}	Input common mode voltage in ultra low power mode	0	-	V _{DDD} – 1.15	V	
SID88	CMRR	Common mode rejection ratio	50	_	-	dB	$V_{DDD} \ge 2.7 V.$ Guaranteed by characterization
SID88A	CMRR	Common mode rejection ratio	42	_	-	dB	V _{DDD} < 2.7 V. Guaranteed by characterization
SID89	I _{CMP1}	Block current, normal mode	_	-	400	μA	Guaranteed by characterization

System Resources

Power-on-Reset (POR) with Brown Out

Table 28. Imprecise Power On Reset (PRES)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID185	V _{RISEIPOR}	Rising trip voltage	0.80	-	1.45	V	Guaranteed by charac- terization
SID186	V _{FALLIPOR}	Falling trip voltage	0.75	-	1.4	V	Guaranteed by charac- terization
SID187	V _{IPORHYST}	Hysteresis	15	-	200	mV	Guaranteed by charac- terization

Table 29. Precise Power On Reset (POR)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID190	V _{FALLPPOR}	BOD trip voltage in active and sleep modes	1.64	_	_	V	Guaranteed by charac- terization
SID192	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.4	-	-	V	Guaranteed by charac- terization

Voltage Monitors

Table 30. Voltage Monitors DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID195	V _{LVI1}	LVI_A/D_SEL[3:0] = 0000b	1.71	1.75	1.79	V	
SID196	V _{LVI2}	LVI_A/D_SEL[3:0] = 0001b	1.76	1.80	1.85	V	
SID197	V _{LVI3}	LVI_A/D_SEL[3:0] = 0010b	1.85	1.90	1.95	V	
SID198	V _{LVI4}	LVI_A/D_SEL[3:0] = 0011b	1.95	2.00	2.05	V	
SID199	V _{LVI5}	LVI_A/D_SEL[3:0] = 0100b	2.05	2.10	2.15	V	
SID200	V _{LVI6}	LVI_A/D_SEL[3:0] = 0101b	2.15	2.20	2.26	V	
SID201	V _{LVI7}	LVI_A/D_SEL[3:0] = 0110b	2.24	2.30	2.36	V	
SID202	V _{LVI8}	LVI_A/D_SEL[3:0] = 0111b	2.34	2.40	2.46	V	
SID203	V _{LVI9}	LVI_A/D_SEL[3:0] = 1000b	2.44	2.50	2.56	V	
SID204	V _{LVI10}	LVI_A/D_SEL[3:0] = 1001b	2.54	2.60	2.67	V	
SID205	V _{LVI11}	LVI_A/D_SEL[3:0] = 1010b	2.63	2.70	2.77	V	
SID206	V _{LVI12}	LVI_A/D_SEL[3:0] = 1011b	2.73	2.80	2.87	V	
SID207	V _{LVI13}	LVI_A/D_SEL[3:0] = 1100b	2.83	2.90	2.97	V	
SID208	V _{LVI14}	LVI_A/D_SEL[3:0] = 1101b	2.93	3.00	3.08	V	
SID209	V _{LVI15}	LVI_A/D_SEL[3:0] = 1110b	3.12	3.20	3.28	V	
SID210	V _{LVI16}	LVI_A/D_SEL[3:0] = 1111b	4.39	4.50	4.61	V	
SID211	LVI_IDD	Block current	_	_	100	μA	Guaranteed by charac- terization

Table 31. Voltage Monitors AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID212	T _{MONTRIP}	Voltage monitor trip time	1	-	1	μs	Guaranteed by charac- terization

Table 36. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID234	T _{STARTILO1}	ILO startup time	-	-	2	ms	Guaranteed by charac- terization
SID236	T _{ILODUTY}	ILO duty cycle	40	50	60	%	Guaranteed by charac- terization
SID237	F _{ILOTRIM1}	32 kHz trimmed frequency	15	32	50	kHz	Max ILO frequency is 70 kHz if T _A > 85 °C

Table 37. External Clock Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID305	ExtClkFreq	External Clock input Frequency	0	-	48	MHz	Guaranteed by characterization
SID306	ExtClkDuty	Duty cycle; Measured at V _{DD/2}	45	-	55	%	Guaranteed by characterization

Table 38. Watch Crystal Oscillator (WCO) Specifications

Spec Id#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
IMO WCO-PLI	calibrated mo	de					
SID330	IMO _{WCO1}	Frequency variation with IMO set to 3 MHz	-0.6	-	0.6	%	Does not include WCO tolerance
SID331	IMO _{WCO2}	Frequency variation with IMO set to 5 MHz	-0.4	_	0.4	%	Does not include WCO tolerance
SID332	IMO _{WCO3}	Frequency variation with IMO set to 7 MHz or 9 MHz	-0.3	_	0.3	%	Does not include WCO tolerance
SID333	IMO _{WCO4}	-0.2	_	0.2	%	Does not include WCO tolerance	
WCO Specific	ations						
SID398	F _{WCO}	Crystal frequency	_	32.768	_	kHz	
SID399	F _{TOL}	Frequency tolerance	-	50	250	ppm	With 20-ppm crystal.
SID400	ESR	Equivalent series resistance	-	50	-	kΩ	
SID401	PD	Drive level	-	-	1	μW	
SID402	T _{START}	Startup time	_	-	500	ms	
SID403	CL	Crystal load capacitance	6	-	12.5	pF	
SID404	C ₀	Crystal shunt capacitance	_	1.35	-	pF	
SID405	D405 I _{WCO1} Operating current (high power mode)		_	-	8	uA	

Table 39. UDB AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
Datapath p	erformance						
SID249	F _{MAX-TIMER}	Max frequency of 16-bit timer in a UDB pair	-	-	48	MHz	
SID250	F _{MAX-ADDER}	Max frequency of 16-bit adder in a UDB pair	_	-	48	MHz	

Table 39. UDB AC Specifications

(Guaranteed by Characterization) (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID251	F _{MAX_CRC}	Max frequency of 16-bit CRC/PRS in a UDB pair					
PLD Perfor	mance in UDB						
SID252	F _{MAX_PLD}	<i>A</i> ax frequency of 2-pass PLD – – 48 MHz unction in a UDB pair – – 48 MHz					
Clock to O	utput Performance						
SID253	T _{CLK_OUT_UDB1}	Prop. delay for clock in to data out at 25 °C, Typ.	_	15	-	ns	
SID254	T _{CLK_OUT_UDB2}	rop. delay for clock in to data out, – 25 – ns Vorst case.					

Table 40. Block Specs

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions	
SID256*	T _{WS48} *	Number of wait states at 48 MHz	2	-	-		CPU execution from Flash	
SID257	T _{WS24} *	Number of wait states at 24 MHz	1	-	-		CPU execution from Flash	
SID260	V _{REFSAR}	Trimmed internal reference to SAR	-1	_	+1	%	Percentage of Vbg (1.024 V). Guaranteed by characterization	
SID261	F _{SARINTREF}	SAR operating speed without external reference bypass	-	-	100	ksps	12-bit resolution. Guaranteed by characterization	
SID262	T _{CLKSWITCH}	Clock switching from clk1 to clk2 in clk1 periods	3	-	4	Periods	. Guaranteed by design	
* Tws48 and Tws24 are guaranteed by Design								

Table 41. UDB Port Adaptor Specifications

(Based on LPC Component Specs, Guaranteed by Characterization -10-pF load, 3-V V_{DDIO} and V_{DDD})

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID263	T _{LCLKDO}	LCLK to output delay	-	-	18	ns	
SID264	T _{DINLCLK}	Input setup time to LCLCK rising edge	-	Ι	7	ns	
SID265	T _{DINLCLKHLD}	Input hold time from LCLK rising edge	0	-	-	ns	
SID266	T _{LCLKHIZ}	LCLK to output tristated	-	-	28	ns	
SID267	T _{FLCLK}	LCLK frequency	-	-	33	MHz	
SID268	T _{LCLKDUTY}	LCLK duty cycle (percentage high)	40	-	60	%	

Table 42. CAN Specifications

SPEC ID#	Parameter	Description	Min	Тур	Max	Units	Details /Conditions
SID420	IDD_CAN	Block current consumption	-	-	200	uA	
SID421	CAN_bits	CAN Bit rate (Min 8-MHZ clock)	-	-	1	Mbps	

Ordering Information

The PSoC 4200M family part numbers and features are listed in the following table.

								F	eatu	res						F	Packa	ages	
Category	NGM	Max CPU Speed (MHz)	Flash (KB)	SRAM (KB)	UDB	Opamp (CTBm)	CSD	IDAC (1X7-Bit, 1-8-Bit)	Direct LCD Drive	12-bit SAR ADC	LP Comparators	TCPWM Blocks	SCB Blocks	CAN	GPIO	48-TQFP	64-TQFP (0.5-mm pitch)	64-TQFP (0.8-mm pitch)	68-QFN
	CY8C4245AZI-M433	48	32	4	4	2	-	-	-	1000 ksps	2	8	4	-	38	~	-	-	-
	CY8C4245AZI-M443	48	32	4	4	2	~	-	~	1000 ksps	2	8	4	-	38	~	-	-	-
4245	CY8C4245AZI-M445	48	32	4	4	2	~	-	~	1000 ksps	2	8	4	-	51	-	~	-	-
	CY8C4245LTI-M445	48	32	4	4	2	~	-	~	1000 ksps	2	8	4	-	55	-	_	-	~
	CY8C4245AXI-M445	48	32	4	4	2	~	-	~	1000 ksps	2	8	4	-	51	-	-	~	-
	CY8C4246AZI-M443	48	64	8	4	2	~	-	~	1000 ksps	2	8	4	-	38	~	-	-	-
	CY8C4246AZI-M445	48	64	8	4	2	~	-	~	1000 ksps	2	8	4	-	51	-	~	-	-
1216	CY8C4246AZI-M475	48	64	8	4	4	-	~	-	1000 ksps	2	8	4	-	51	Ι	~	-	-
4240	CY8C4246LTI-M445	48	64	8	4	2	~	-	~	1000 ksps	2	8	4	-	55	Ι	-	-	~
	CY8C4246LTI-M475	48	64	8	4	4	-	~	_	1000 ksps	2	8	4	-	55	-	-	-	~
	CY8C4246AXI-M445	48	64	8	4	2	~	-	~	1000 ksps	2	8	4	-	51	Ι	-	~	-
	CY8C4247LTI-M475	48	128	16	4	4	~	~	_	1000 ksps	2	8	4	-	55	-	-	-	~
	CY8C4247AZI-M475	48	128	16	4	4	-	~	_	1000 ksps	2	8	4	-	51	-	~	-	-
4247 ((CY8C4247AZI-M485	48	128	16	4	4	~	~	~	1000 ksps	2	8	4	~	51	-	~	-	-
	CY8C4247AXI-M485	48	128	16	4	4	~	~	~	1000 ksps	2	8	4	~	51	-	-	~	-
	CY8C4247LTQ-M475	48	128	16	4	4	~	~	~	1000 ksps	2	8	4	-	55	-	-	-	~

The nomenclature used in the preceding table is based on the following part numbering convention:

Field	Description	Values	Meaning		
CY8C	Cypress Prefix				
4	Architecture	4	PSoC 4		
А	Family	2	4200 Family		
В	CPU Speed	4	48 MHz		
		4	16 KB		
C	Elech Consoity	5	32 KB		
C	Flash Capacity	6	MeaningPSoC 44200 Family48 MHz16 KB32 KB64 KB128 KBQFNQFNBGACSP		
		7	128 KB		
		AX, AZ	TQFP		
DE	Baakaga Cada	LT	4 PSoC 4 2 4200 Family 4 48 MHz 4 16 KB 5 32 KB 6 64 KB 7 128 KB AX, AZ TQFP LT QFN BU BGA FD CSP		
	Fachage Coue	BU	BGA		
		FD	CSP		

Field	Description	Values	Meaning						
F	Temperature Range	I	Industrial						
	Temperature Mange	Q E	Extended Industrial						
		N/A PSoC 4 Base Series							
S	Silicon Family	L	PSoC 4 L-Series						
3	Shicon Farmiy	BL	PSoC 4 BLE						
		М	PSoC 4 M-Series						
XYZ	Attributes Code	000-999	Code of feature set in the specific family						

Part Numbering Conventions

The part number fields are defined as follows.

	CY8C	4	Α	В	<u>C</u>	D	E	F ·	· <u>s</u>	XYZ
Cypress Prefix –									T	
Architecture –										
Family Group within Architecture –										
Speed Grade –										
Flash Capacity –										
Package Code –										
Silicon Family								-		
Attributes Code										

Packaging

The description of the PSoC4200M package dimensions follows.

Spec ID#	Package	Description	Package Dwg #
PKG_1	68-pin QFN	68-pin QFN, 8 mm x 8 mm x 1.0 mm height with 0.4 mm pitch	001-09618
PKG_2	64-pin TQFP	64-pin TQFP, 10 mm x10 mm x 1.4 mm height with 0.5 mm pitch	51-85051
PKG_4	64-pin TQFP	64-pin TQFP, 14 mm x14 mm x 1.4 mm height with 0.8 mm pitch	51-85046
PKG_5	48-pin TQFP	48-pin TQFP, 7 mm x 7 mm x 1.4 mm height with 0.5 mm pitch	51-85135
PKG_6	44-pin TQFP	44-pin TQFP, 10 mm x 10 mm x 1.4 mm height with 0.8 mm pitch	51-85064

Table 43. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature		-40	25	85	°C
TJ	Operating junction temperature		-40		100	°C
T _{JA}	Package θ _{JA} (68-pin QFN)		-	16.8	-	°C/Watt
T _{JC}	Package θ_{JC} (68-pin QFN)		-	2.9	-	°C/Watt
T _{JA}	Package θ _{JA} (64-pin TQFP, 0.5-mm pitch)		-	56	-	°C/Watt
T _{JC}	Package θ _{JC} (64-pin TQFP, 0.5-mm pitch)		-	19.5	-	°C/Watt
T _{JA}	Package θ _{JA} (64-pin TQFP, 0.8-mm pitch)		-	66.4	-	°C/Watt
T _{JC}	Package θ_{JC} (64-pin TQFP, 0.8-mm pitch)		-	18.2	-	°C/Watt
T _{JA}	Package θ _{JA} (48-pin TQFP, 0.5-mm pitch)		-	67.3	-	°C/Watt
T _{JC}	Package θ _{JC} (48-pin TQFP, 0.5-mm pitch)		-	30.4	-	°C/Watt
T _{JA}	Package θ _{JA} (44-pin TQFP, 0.8-mm pitch)		-	57	-	°C/Watt
T _{JC}	Package θ_{JC} (44-pin TQFP, 0.8-mm pitch)		-	25.9	-	°C/Watt

Table 44. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature		
All packages	260 °C	30 seconds		

Table 45. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
All packages	MSL 3

51-85051 *D

Table 46. Acronyms Used in this Document (continued)

Acronym	Description	
PGA	programmable gain amplifier	
PHUB	peripheral hub	
PHY	physical layer	
PICU	port interrupt control unit	
PLA	programmable logic array	
PLD	programmable logic device, see also PAL	
PLL	phase-locked loop	
PMDD	package material declaration data sheet	
POR	power-on reset	
PRES	precise power-on reset	
PRS	pseudo random sequence	
PS	port read data register	
PSoC [®]	Programmable System-on-Chip™	
PSRR	power supply rejection ratio	
PWM	pulse-width modulator	
RAM	random-access memory	
RISC	reduced-instruction-set computing	
RMS	root-mean-square	
RTC	real-time clock	
RTL	register transfer language	
RTR	remote transmission request	
RX	receive	
SAR	successive approximation register	
SC/CT	switched capacitor/continuous time	
SCL	I ² C serial clock	
SDA	I ² C serial data	
S/H	sample and hold	
SINAD	signal to noise and distortion ratio	
SIO	special input/output, GPIO with advanced features. See GPIO.	
SOC	start of conversion	
SOF	start of frame	
SPI	Serial Peripheral Interface, a communications protocol	
SR	slew rate	
SRAM	static random access memory	
SRES	software reset	
SWD	serial wire debug, a test protocol	
SWV	single-wire viewer	
TD	transaction descriptor, see also DMA	

Table 46. Acronyms Used in this Document (continued)

Acronym	Description
THD	total harmonic distortion
TIA	transimpedance amplifier
TRM	technical reference manual
TTL	transistor-transistor logic
ТΧ	transmit
UART	Universal Asynchronous Transmitter Receiver, a communications protocol
UDB	universal digital block
USB	Universal Serial Bus
USBIO	USB input/output, PSoC pins used to connect to a USB port
VDAC	voltage DAC, see also DAC, IDAC
WDT	watchdog timer
WOL	write once latch, see also NVL
WRES	watchdog timer reset
XRES	external reset I/O pin
XTAL	crystal

Revision History

Description Title: PSoC [®] 4: PSoC 4200M Family Datasheet Programmable System-on-Chip (PSoC [®]) Document Number: 001-93963				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
*В	4765455	WKA	06/03/2015	Release to web.
*C	4815539	WKA	06/29/2015	Removed note regarding hardware handshaking in the UART Mode section. Changed max value of SID51A to 2 ms. Added "Guaranteed by characterization" note for SID65 and SID65A Updated Ordering Information. Removed the Errata section.
*D	4828234	WKA	07/08/2015	Corrected Block Diagram
*E	4941619	WKA	09/30/2015	Updated CapSense section. Updated the note at the end of the Pinout table. Removed Conditions for spec SID237. Updated Ordering Information.
*F	5026805	WKA	11/25/2015	Added Comparator ULP mode range restrictions and corrected typos.
*G	5408936	WKA	08/19/2016	Added extended industrial temperature range. Added specs SID290Q, SID182A, and SID299A. Updated conditions for SID290, SID223, and SID237. Added 44-pin TQFP package details. Updated Ordering Information.