

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

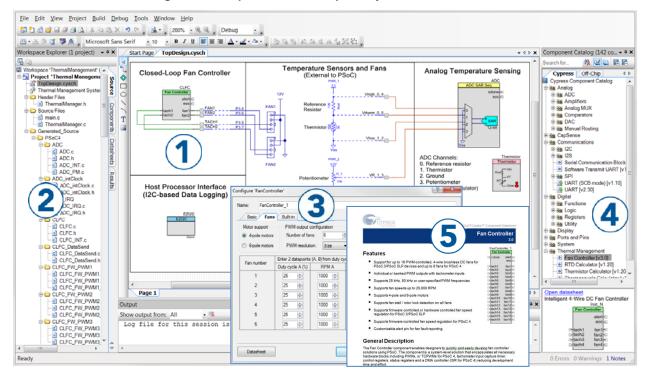
Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, Cap Sense, LCD, LVD, POR, PWM, SmartSense, WDT
Number of I/O	51
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4246azi-m445

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. Following is an abbreviated list for PSoC 4:

- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP In addition, PSoC Creator includes a device selection tool.
- Application notes: Cypress offers a large number of PSoC application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 4 are:
 - □ AN79953: Getting Started With PSoC 4
 - □ AN88619: PSoC 4 Hardware Design Considerations
 - □ AN86439: Using PSoC 4 GPIO Pins
 - □ AN57821: Mixed Signal Circuit Board Layout
 - □ AN81623: Digital Design Best Practices
 - □ AN73854: Introduction To Bootloaders
 - □ AN89610: ARM Cortex Code Optimization

- Technical Reference Manual (TRM) is in two documents:
 - □ Architecture TRM details each PSoC 4 functional block.
 - □ Registers TRM describes each of the PSoC 4 registers.
- Development Kits:
 - □ CY8CKIT-042, PSoC 4 Pioneer Kit, is an easy-to-use and inexpensive development platform. This kit includes connectors for Arduino™ compatible shields and Digilent® Pmod™ daughter cards.
 - □ CY8CKIT-049 is a very low-cost prototyping platform. It is a low-cost alternative to sampling PSoC 4 devices.
 - CY8CKIT-001 is a common development platform for any one of the PSoC 1, PSoC 3, PSoC 4, or PSoC 5LP families of devices.

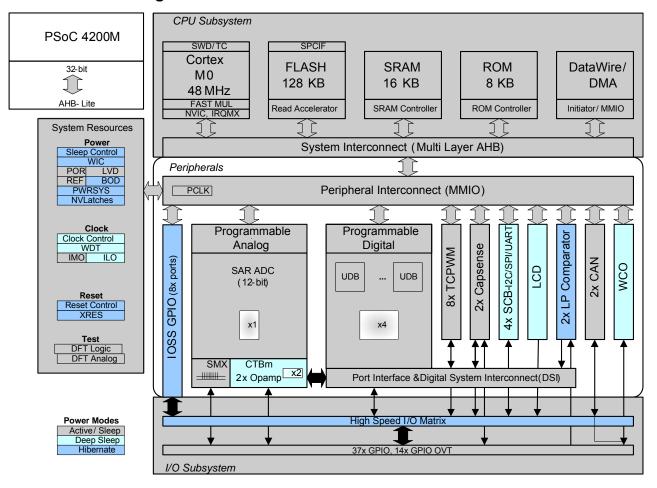

The MiniProg3 device provides an interface for flash programming and debug.

PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:

- Drag and drop component icons to build your hardware system design in the main design workspace
- Codesign your application firmware with the PSoC hardware, using the PSoC Creator IDE C compiler
- 3. Configure components using the configuration tools
- 4. Explore the library of 100+ components
- 5. Review component datasheets

Figure 1. Multiple-Sensor Example Project in PSoC Creator


Contents

PSoC 4200M Block Diagram	4
Functional Definition	5
CPU and Memory Subsystem	5
System Resources	5
Analog Blocks	6
Programmable Digital	7
Fixed Function Digital	8
GPIO	9
Special Function Peripherals	9
Pinouts	10
Power	14
Unregulated External Supply	14
Regulated External Supply	14
Development Support	
Documentation	15
Online	15
Tools	15
Electrical Specifications	16
Absolute Maximum Ratings	16
Device Level Specifications	16

Analog Peripherals2	20
Digital Peripherals 2	
Memory 2	
System Resources	
Ordering Information 3	
Part Numbering Conventions	
Packaging 3	
Acronyms 3	
Document Conventions 4	
Units of Measure4	
Revision History 4	11
Sales, Solutions, and Legal Information 4	
Worldwide Sales and Design Support 4	
Products 4	
PSoC® Solutions	
Cypress Developer Community 4	
Technical Support	

PSoC 4200M Block Diagram

The PSoC 4200-M devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The ARM Serial_Wire Debug (SWD) interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC Creator Integrated Development Environment (IDE) provides fully integrated programming and debug support for PSoC 4200-M devices. The SWD interface is fully compatible with industry-standard third-party tools. The PSoC 4200-M family provides a level of security not possible with multi-chip application solutions or with microcontrollers. This is due to its ability to disable debug features, robust flash protection, and because it allows customer-proprietary functionality to be implemented in on-chip programmable blocks.

The debug circuits are enabled by default and can only be disabled in firmware. If not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. Because all programming, debug, and test interfaces are disabled when maximum device security is enabled, PSoC 4200-M with device security enabled may not be returned for failure analysis. This is a trade-off the PSoC 4200-M allows the customer to make.

PSoC® 4: PSoC 4200M Family Datasheet

GPIO

The PSoC 4200M has 55 GPIOs in the 68-pin QFN package. The GPIO block implements the following:

- Eight drive strength modes including strong push-pull, resistive pull-up and pull-down, weak (resistive) pull-up and pull-down, open drain and open source, input only, and disabled
- Input threshold select (CMOS or LVTTL)
- Individual control of input and output disables
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode and Hibernate modes)
- Selectable slew rates for dV/dt related noise control to improve EMI

The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals are also fixed to reduce internal multiplexing complexity (these signals do not go through the DSI network). DSI signals are not affected by this and any pin on Ports 0, 1, 2, and 3 may be routed to any UDB through the DSI network. Only pins on Ports 0, 1, 2, and 3 may be routed through DSI signals.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.

Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (8 for PSoC 4200M).

The Pins of Port 6 (up to 6 depending on the package) are overvoltage tolerant (V $_{IN}$ can exceed V $_{DD}$). The overvoltage cells will not sink more than 10 μ A when their inputs exceed V $_{DDIO}$ in compliance with I 2 C specifications.

Special Function Peripherals

LCD Segment Drive

The PSoC 4200M has an LCD controller, which can drive up to four commons and up to 51 segments. Any pin can be either a common or a segment pin. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages.

The two methods used are referred to as digital correlation and PWM.

Digital correlation pertains to modulating the frequency and levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays.

PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; 1 32-bit register per port).

CapSense

CapSense is supported on all pins in the PSoC 4200M through a CapSense Sigma-Delta (CSD) block that can be connected to any pin through an analog mux bus that any GPIO pin can be connected to via an Analog switch. CapSense functionality can thus be provided on any pin or group of pins in a system under software control. A component is provided for the CapSense block, which provides automatic hardware tuning (Cypress SmartSense™), to make it easy for the user.

Shield voltage can be driven on another Mux Bus to provide water tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input.

Each CSD block has two IDACs which can be used for general purposes if CapSense is not being used.(both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available). The PSoC 4200M has two CSD blocks which can be used independently; one for CapSense and one providing two IDACs.

The two CapSense blocks are referred to as CSD0 and CSD1. Capacitance sensing inputs on Ports 0, 1, 2, 3, 4, 6, and 7 are sensed by CSD0. Capacitance sensing inputs on Port 5 are sensed by CSD1.

Pinouts

The following is the pin list for the PSoC 4200M. This shows the power supply and port pins (for example, P0.0 is Pin 0 of Port 0).

	68-QFN		64-TQFP		48-TQFP		44-TQFP
Pin	Name	Pin	Name	Pin	Name	Pin	Name
42	P0.0	39	P0.0	28	P0.0	24	P0.0
43	P0.1	40	P0.1	29	P0.1	25	P0.1
44	P0.2	41	P0.2	30	P0.2	26	P0.2
45	P0.3	42	P0.3	31	P0.3	27	P0.3
46	P0.4	43	P0.4	32	P0.4	28	P0.4
47	P0.5	44	P0.5	33	P0.5	29	P0.5
48	P0.6	45	P0.6	34	P0.6	30	P0.6
49	P0.7	46	P0.7	35	P0.7	31	P0.7
50	XRES	47	XRES	36	XRES	32	XRES
51	VCCD	48	VCCD	37	VCCD	33	VCCD
52	VSSD	49	VSSD	38	VSSD	DN	VSSD
53	VDDD	50	VDDD	39	VDDD	34	VDDD
				40	VDDA	35	VDDA
54	P5.0	51	P5.0				
55	P5.1	52	P5.1				
56	P5.2	53	P5.2				
57	P5.3	54	P5.3				
58	P5.4						
59	P5.5	55	P5.5				
60	VDDA	56	VDDA	40	VDDA	35	VDDA
61	VSSA	57	VSSA	41	VSSA	36	VSSA
62	P1.0	58	P1.0	42	P1.0	37	P1.0
63	P1.1	59	P1.1	43	P1.1	38	P1.1
64	P1.2	60	P1.2	44	P1.2	39	P1.2
65	P1.3	61	P1.3	45	P1.3	40	P1.3
66	P1.4	62	P1.4	46	P1.4	41	P1.4
67	P1.5	63	P1.5	47	P1.5	42	P1.5
68	P1.6	64	P1.6	48	P1.6	43	P1.6
1	P1.7/VREF	1	P1.7/VREF	1	P1.7/VREF	44	P1.7/VREF
						1	VSSD
2	P2.0	2	P2.0	2	P2.0	2	P2.0
3	P2.1	3	P2.1	3	P2.1	3	P2.1
4	P2.2	4	P2.2	4	P2.2	4	P2.2
5	P2.3	5	P2.3	5	P2.3	5	P2.3
6	P2.4	6	P2.4	6	P2.4	6	P2.4
7	P2.5	7	P2.5	7	P2.5	7	P2.5

Document Number: 001-93963 Rev. *G

Port/Pin	Analog	Alt. Function 1	Alt. Function 2	Alt. Function 3	Alt. Function 4	Alt. Function 5
P2.7	sarmux.7	tcpwm.line_compl[1]:1				scb[3].spi_select0:1
P6.0		tcpwm.line[4]:0	scb[3].uart_rx:0	can[0].can_tx_enb_n:0	scb[3].i2c_scl:0	scb[3].spi_mosi:0
P6.1		tcpwm.line_compl[4]:0	scb[3].uart_tx:0	can[0].can_rx:0	scb[3].i2c_sda:0	scb[3].spi_miso:0
P6.2		tcpwm.line[5]:0	scb[3].uart_cts:0	can[0].can_tx:0		scb[3].spi_clk:0
P6.3		tcpwm.line_compl[5]:0	scb[3].uart_rts:0			scb[3].spi_select0:0
P6.4		tcpwm.line[6]:0				scb[3].spi_select1:0
P6.5		tcpwm.line_compl[6]:0				scb[3].spi_select2:0
P3.0		tcpwm.line[0]:0	scb[1].uart_rx:1		scb[1].i2c_scl:2	scb[1].spi_mosi:0
P3.1		tcpwm.line_compl[0]:0	scb[1].uart_tx:1		scb[1].i2c_sda:2	scb[1].spi_miso:0
P3.2		tcpwm.line[1]:0	scb[1].uart_cts:1		swd_data	scb[1].spi_clk:0
P3.3		tcpwm.line_compl[1]:0	scb[1].uart_rts:1		swd_clk	scb[1].spi_select0:0
P3.4		tcpwm.line[2]:0				scb[1].spi_select1:0
P3.5		tcpwm.line_compl[2]:0				scb[1].spi_select2:0
P3.6		tcpwm.line[3]:0				scb[1].spi_select3:0
P3.7		tcpwm.line_compl[3]:0				
P4.0			scb[0].uart_rx:0	can[0].can_rx:1	scb[0].i2c_scl:1	scb[0].spi_mosi:0
P4.1			scb[0].uart_tx:0	can[0].can_tx:1	scb[0].i2c_sda:1	scb[0].spi_miso:0
P4.2	csd[0].c_mod		scb[0].uart_cts:0	can[0].can_tx_enb_n:1	lpcomp.comp[0]:0	scb[0].spi_clk:0
P4.3	csd[0].c_sh_tank		scb[0].uart_rts:0		lpcomp.comp[1]:0	scb[0].spi_select0:0
P4.4				can[1].can_tx_enb_n:1		scb[0].spi_select1:2
P4.5				can[1].can_rx:1		scb[0].spi_select2:2
P4.6				can[1].can_tx:1		scb[0].spi_select3:2
P4.7						
P7.0		tcpwm.line[0]:2	scb[3].uart_rx:1		scb[3].i2c_scl:1	scb[3].spi_mosi:1
P7.1		tcpwm.line_compl[0]:2	scb[3].uart_tx:1		scb[3].i2c_sda:1	scb[3].spi_miso:1
P7.2		tcpwm.line[1]:2	scb[3].uart_cts:1			scb[3].spi_clk:1

Descriptions of the power pin functions are as follows:

VDDD: Power supply for both analog and digital sections (where there is no V_{DDA} pin).

 $\textbf{VDDA}\!:$ Analog V_{DD} pin where package pins allow; shorted to V_{DDD} otherwise.

VDDIO: I/O pin power domain.

VSSA: Analog ground pin where package pins allow; shorted to VSS otherwise

VSS: Ground pin.

VCCD: Regulated Digital supply (1.8 V ±5%).

Port Pins can all be used as LCD Commons, LCD Segment drivers, or CSD sense and shield pins can be connected to AMUXBUS A or B or can all be used as GPIO pins that can be driven by firmware or DSI signals.

Power

The supply voltage range is 1.71 to 5.5 V with all functions and circuits operating over that range.

The PSoC 4200M family allows two distinct modes of power supply operation: Unregulated External Supply and Regulated External Supply modes.

Unregulated External Supply

In this mode, the PSoC 4200M is powered by an External Power Supply that can be anywhere in the range of 1.8 to 5.5 V. This range is also designed for battery-powered operation, for instance, the chip can be powered from a battery system that starts at 3.5V and works down to 1.8 V. In this mode, the internal regulator of the PSoC 4200M supplies the internal logic and the VCCD output of the PSoC 4200M must be bypassed to ground via an external Capacitor (in the range of 1 to 1.6 $\mu F;\, X5R$ ceramic or better).

The grounds, VSSA and VSS, must be shorted together. Bypass capacitors must be used from VDDD and VDDA to ground, typical practice for systems in this frequency range is to use a capacitor in the 1 μF range in parallel with a smaller capacitor (0.1 μF , for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the Bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

Power Supply	Bypass Capacitors
VDDD-VSS and VDDIO-VSS	0.1 μF ceramic at each pin plus bulk capacitor 1 to 10 μF.
VDDA-VSSA	0.1 μF ceramic at pin. Additional 1 μF to 10 μF bulk capacitor
VCCD-VSS	1 μF ceramic capacitor at the VCCD pin
VREF-VSSA (optional)	The internal bandgap may be bypassed with a 1 μ F to 10 μ F capacitor for better ADC performance.

Regulated External Supply

In this mode, the PSoC 4200M is powered by an external power supply that must be within the range of 1.71 to 1.89 V (1.8 $\pm 5\%$); note that this range needs to include power supply ripple. VCCD and VDDD pins are shorted together and bypassed. The internal regulator is disabled in firmware.

PSoC® 4: PSoC 4200M Family Datasheet

Development Support

The PSoC 4200M family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4 to find out more.

Documentation

A suite of documentation supports the PSoC 4200M family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers.

Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4200M family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

Table 2. DC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions		
Deep Sleep	Deep Sleep Mode, −40 °C to + 60 °C								
SID30	I _{DD25}	I ² C wakeup and WDT on. Regulator Off.	-	1.55	20	μA	V _{DD} = 1.71 to 1.89		
SID31	I _{DD26}	I ² C wakeup and WDT on.	-	1.35	15	μΑ	$V_{DD} = 1.8 \text{ to } 3.6$		
SID32	I _{DD27}	I ² C wakeup and WDT on.	_	1.5	15	μΑ	V _{DD} = 3.6 to 5.5		
Deep Sleep	Mode, +85 °C			·	•	·	1		
SID33	I _{DD28}	I ² C wakeup and WDT on. Regulator Off.	-	_	60	μA	V _{DD} = 1.71 to 1.89		
SID34	I _{DD29}	I ² C wakeup and WDT on.	_	_	45	μΑ	$V_{DD} = 1.8 \text{ to } 3.6$		
SID35	I _{DD30}	I ² C wakeup and WDT on.	-	-	30	μΑ	V _{DD} = 3.6 to 5.5		
Deep Sleep	Mode, +105 °C			·	•	·	1		
SID33Q	I _{DD28Q}	I ² C wakeup and WDT on. Regulator Off.	-	_	135	μA	V _{DD} = 1.71 to 1.89		
SID34Q	I _{DD29Q}	I ² C wakeup and WDT on.	-	-	180	μA	V_{DD} = 1.8 to 3.6		
SID35Q	I _{DD30Q}	I ² C wakeup and WDT on.	-	-	140	μΑ	V _{DD} = 3.6 to 5.5		
Hibernate	Mode, –40 °C to +	- 60 °C		I.		I.	1		
SID39	I _{DD34}	Regulator Off.	-	150	3000	nA	V _{DD} = 1.71 to 1.89		
SID40	I _{DD35}		_	150	1000	nA	$V_{DD} = 1.8 \text{ to } 3.6$		
SID41	I _{DD36}		_	150	1100	nA	V _{DD} = 3.6 to 5.5		
Hibernate	Mode, +85 °C				•				
SID42	I _{DD37}	Regulator Off.	_	_	4500	nA	V _{DD} = 1.71 to 1.89		
SID43	I _{DD38}		-	-	3500	nA	V_{DD} = 1.8 to 3.6		
SID44	I _{DD39}		-	-	3500	nA	V_{DD} = 3.6 to 5.5		
Hibernate	Mode, +105 °C				•				
SID42Q	I _{DD37Q}	Regulator Off.	-	_	19.4	μA	V _{DD} = 1.71 to 1.89		
SID43Q	I _{DD38Q}		_	_	17	μΑ	V _{DD} = 1.8 to 3.6		
SID44Q	I _{DD39Q}		_	_	16	μΑ	V _{DD} = 3.6 to 5.5		
Stop Mode									
SID304	I _{DD43A}	Stop Mode current; V _{DD} = 3.6 V	_	35	85	nA	T = -40 °C to +60 °C		
SID304A	I _{DD43B}	Stop Mode current; V _{DD} = 3.6 V	_	_	1450	nA	T = +85 °C		
Stop Mode	, +105 °C				-				
SID304Q	I _{DD43AQ}	Stop Mode current; V _{DD} = 3.6 V	-	_	5645	nA			
XRES curr	ent				-				
SID307	I _{DD_XR}	Supply current while XRES asserted	-	2	5	mA			
							•		

Document Number: 001-93963 Rev. *G Page 17 of 42

Table 3. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID48	F _{CPU}	CPU frequency	DC	_	48	MHz	$1.71 \le V_{DD} \le 5.5$
SID49	T _{SLEEP}	Wakeup from sleep mode	_	0	_	μs	Guaranteed by characterization
SID50	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	-	_	25	μs	24 MHz IMO. Guaranteed by characterization
SID51	T _{HIBERNATE}	Wakeup from Hibernate mode	_	_	0.7	ms	Guaranteed by characterization
SID51A	T _{STOP}	Wakeup from Stop mode	-	_	2	ms	Guaranteed by characterization
SID52	T _{RESETWIDTH}	External reset pulse width	1	_	_	μs	Guaranteed by characterization

GPIO

Table 4. GPIO DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID57	V _{IH} ^[2]	Input voltage high threshold	0.7 × V _{DDD}	_	-	V	CMOS Input
SID57A	IIHS	Input current when Pad > V _{DDIO} for OVT inputs	_	_	10	μA	Per I ² C Spec
SID58	V _{IL}	Input voltage low threshold	_	_	0.3 × V _{DDD}	V	CMOS Input
SID241	V _{IH} ^[2]	LVTTL input, V _{DDD} < 2.7 V	0.7× V _{DDD}	_	-	V	
SID242	V _{IL}	LVTTL input, V _{DDD} < 2.7 V	_	_	0.3 × V _{DDD}	V	
SID243	V _{IH} ^[2]	LVTTL input, V _{DDD} ≥ 2.7 V	2.0	_	_	V	
SID244	V _{IL}	LVTTL input, V _{DDD} ≥ 2.7 V	-	_	0.8	V	
SID59	V _{OH}	Output voltage high level	V _{DDD} -0.6	_	-	V	I _{OH} = 4 mA at 3-V V _{DDD}
SID60	V _{OH}	Output voltage high level	V _{DDD} -0.5	_	-	V	I _{OH} = 1 mA at 1.8-V V _{DDD}
SID61	V _{OL}	Output voltage low level	_	_	0.6	V	I _{OL} = 4 mA at 1.8-V V _{DDD}
SID62	V _{OL}	Output voltage low level	_	_	0.6	V	I _{OL} = 8 mA at 3-V V _{DDD}
SID62A	V _{OL}	Output voltage low level	_	_	0.4	V	I _{OL} = 3 mA at 3-V V _{DDD}
SID63	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID64	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	kΩ	
SID65	I _{IL}	Input leakage current (absolute value)	-	-	2	nA	25 °C, V _{DDD} = 3.0 V. Guaranteed by Characterization
SID65A	I _{IL_CTBM}	Input leakage current (absolute value) for CTBM pins	-	_	4	nA	Guaranteed by Characterization
SID66	C _{IN}	Input capacitance	-	_	7	pF	
SID67	V _{HYSTTL}	Input hysteresis LVTTL	25	40	-	mV	$V_{DDD} \ge 2.7 \text{ V}$

Note 2. V_{IH} must not exceed V_{DDD} + 0.2 V.

Analog Peripherals

Opamp

Table 8. Opamp Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
	I _{DD}	Opamp block current. No load.	_	-	_	_	
SID269	I _{DD_HI}	Power = high	_	1100	1850	μΑ	
SID270	I _{DD_MED}	Power = medium	_	550	950	μΑ	
SID271	I _{DD_LOW}	Power = low	_	150	350	μΑ	
	GBW	Load = 20 pF, 0.1 mA. V _{DDA} = 2.7 V	_	-	_	_	
SID272	GBW_HI	Power = high	6	_	_	MHz	
SID273	GBW_MED	Power = medium	4	_	_	MHz	
SID274	GBW_LO	Power = low	-	1	_	MHz	
	I _{OUT_MAX}	V _{DDA} ≥ 2.7 V, 500 mV from rail	-	_	_	-	
SID275	I _{OUT_MAX_HI}	Power = high	10	_	_	mA	
SID276	I _{OUT_MAX_MID}	Power = medium	10	_	_	mA	
SID277	I _{OUT_MAX_LO}	Power = low	_	5	_	mA	
	I _{OUT}	V _{DDA} = 1.71 V, 500 mV from rail	_	-	_	-	
SID278	I _{OUT_MAX_HI}	Power = high	4	_	_	mA	
SID279	I _{OUT_MAX_MID}	Power = medium	4	_	_	mA	
SID280	I _{OUT_MAX_LO}	Power = low	_	2	_	mA	
SID281	V _{IN}	Input voltage range	-0.05	_	VDDA - 0.2	V	Charge-pump on, $V_{DDA} \ge 2.7 \text{ V}$
SID282	V _{CM}	Input common mode voltage	-0.05	_	VDDA - 0.2	V	$\begin{array}{c} \text{Charge-pump on,} \\ \text{V}_{DDA} \geq 2.7 \text{ V} \end{array}$
	V _{OUT}	$V_{DDA} \ge 2.7 \text{ V}$	_	_	_		
SID283	V _{OUT_1}	Power = high, Iload=10 mA	0.5	-	VDDA - 0.5	V	
SID284	V _{OUT_2}	Power = high, Iload=1 mA	0.2	_	VDDA - 0.2	V	
SID285	V _{OUT_3}	Power = medium, Iload=1 mA	0.2	_	VDDA - 0.2	V	
SID286	V _{OUT_4}	Power = low, Iload=0.1mA	0.2	-	VDDA - 0.2	V	
SID288	V _{OS_TR}	Offset voltage, trimmed	1	±0.5	1	mV	High mode
SID288A	V _{OS_TR}	Offset voltage, trimmed	_	±1	_	mV	Medium mode
SID288B	V _{OS TR}	Offset voltage, trimmed	_	±2	_	mV	Low mode
SID290	V _{OS_DR_TR}	Offset voltage drift, trimmed	-10	±3	10	μV/°C	High mode. T _A ≤ 85 °C.
SID290Q	V _{OS_DR_TR}	Offset voltage drift, trimmed	15	±3	15	μV/°C	High mode. T _A ≤ 105 °C
SID290A	V _{OS_DR_TR}	Offset voltage drift, trimmed	-	±10	_	μV/°C	Medium mode
SID290B	V _{OS_DR_TR}	Offset voltage drift, trimmed	-	±10	_	μV/°C	Low mode
SID291	CMRR	DC Common mode rejection ratio. High-power mode. Common Model voltage range from 0.5 V to V _{DDA} - 0.5 V.	60	70	-	dB	V _{DDD} = 3.6 V

Document Number: 001-93963 Rev. *G

Table 8. Opamp Specifications

(Guaranteed by Characterization) (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID292	PSRR	At 1 kHz, 100-mV ripple	70	85	_	dB	V _{DDD} = 3.6 V
	Noise		_	_	_	_	
SID293	V _{N1}	Input referred, 1 Hz - 1 GHz, power = high	-	94	_	μVrms	
SID294	V_{N2}	Input referred, 1 kHz, power = high	_	72	_	nV/rtHz	
SID295	V_{N3}	Input referred, 10kHz, power = high	_	28	_	nV/rtHz	
SID296	V_{N4}	Input referred, 100kHz, power = high	_	15	_	nV/rtHz	
SID297	Cload	Stable up to maximum load. Performance specs at 50 pF.	_	-	125	pF	
SID298	Slew_rate	Cload = 50 pF, Power = High, V _{DDA} ≥ 2.7 V	6	-	_	V/µs	
SID299	T_op_wake	From disable to enable, no external RC dominating	_	25	_	μs	
SID299A	OL_GAIN	Open Loop Gain	_	90	_	dB	
	Comp_mode	Comparator mode; 50 mV drive, Trise = Tfall (approx.)	-	-	_		
SID300	T _{PD1}	Response time; power = high	_	150	_	ns	
SID301	T _{PD2}	Response time; power = medium	_	400	_	ns	
SID302	T _{PD3}	Response time; power = low	_	2000	_	ns	
SID303	Vhyst_op	Hysteresis	_	10	_	mV	
Deep Sleep	Mode	Mode 2 is lowest current range. Mode 1 has higher GBW.					Deep Sleep mode. $V_{DDA} \ge 2.7 \text{ V.}$
SID_DS_1	IDD_HI_M1	Mode 1, High current	_	1400	_	uA	25 °C
SID_DS_2	IDD_MED_M1	Mode 1, Medium current	_	700	_	uA	25 °C
SID_DS_3	IDD_LOW_M1	Mode 1, Low current	_	200	_	uA	25 °C
SID_DS_4	IDD_HI_M2	Mode 2, High current	_	120	_	uA	25 °C
SID_DS_5	IDD_MED_M2	Mode 2, Medium current	_	60	_	uA	25 °C
SID_DS_6	IDD_LOW_M2	Mode 2, Low current	_	15	_	uA	25 °C
SID_DS_7	GBW_HI_M1	Mode 1, High current	_	4	_	MHz	25 °C
SID_DS_8	GBW_MED_M1	Mode 1, Medium current	_	2	_	MHz	25 °C
SID_DS_9	GBW_LOW_M1	Mode 1, Low current	_	0.5	_	MHz	25 °C
SID_DS_10	GBW_HI_M2	Mode 2, High current	-	0.5	-	MHz	20-pF load, no DC load 0.2 V to V _{DDA} -1.5 V
SID_DS_11	GBW_MED_M2	Mode 2, Medium current	-	0.2	_	MHz	20-pF load, no DC load 0.2 V to V _{DDA} -1.5 V
SID_DS_12	GBW_LOW_M2	Mode 2, Low current	_	0.1	_	MHz	20-pF load, no DC load 0.2 V to V _{DDA} -1.5 V
SID_DS_13	VOS_HI_M1	Mode 1, High current	-	5	_	mV	With trim 25 °C, 0.2 V to V _{DDA} -1.5 V
SID_DS_14	VOS_MED_M1	Mode 1, Medium current	-	5	_	mV	With trim 25 °C, 0.2 V to V _{DDA} -1.5 V

Document Number: 001-93963 Rev. *G

Table 8. Opamp Specifications

(Guaranteed by Characterization) (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID_DS_15	VOS_LOW_M1	Mode 1, Low current	_	5	_	mV	With trim 25 °C, 0.2 V to V _{DDA} -1.5 V
SID_DS_16	VOS_HI_M2	Mode 2, High current	_	5	_	mV	With trim 25 °C, 0.2 V to V _{DDA} -1.5 V
SID_DS_17	VOS_MED_M2	Mode 2, Medium current	_	5	_	mV	With trim 25 °C, 0.2 V to V _{DDA} -1.5 V
SID_DS_18	VOS_LOW_M2	Mode 2, Low current	_	5	_	mV	With trim 25 °C, 0.2 V to V _{DDA} -1.5 V
SID_DS_19	IOUT_HI_M1	Mode 1, High current	_	10	_	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_20	IOUT_MED_M1	Mode 1, Medium current	_	10	_	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_21	IOUT_LOW_M1	Mode 1, Low current	_	4	_	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_22	IOUT_HI_M2	Mode 2, High current	_	1	_	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_23	IOUT_MED_M2	Mode 2, Medium current	_	1	_	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_24	IOUT_LOW_M2	Mode 2, Low current	_	0.5	_	mA	Output is 0.5 V to V _{DDA} -0.5 V

Comparator

Table 9. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID85	V _{OFFSET2}	Input offset voltage, Common Mode voltage range from 0 to V _{DD} -1	-	_	±4	mV	
SID85A	V _{OFFSET3}	Input offset voltage. Ultra low-power mode ($V_{DDD} \ge 2.2 \text{ V for Temp} < 0 ^{\circ}\text{C}$, $V_{DDD} \ge 1.8 \text{ V for Temp} > 0 ^{\circ}\text{C}$)	-	±12	_	mV	
SID86	V _{HYST}	Hysteresis when enabled, Common Mode voltage range from 0 to V _{DD} -1.	-	10	35	mV	Guaranteed by characterization
SID87	V _{ICM1}	Input common mode voltage in normal mode	0	_	V _{DDD} – 0.1	V	Modes 1 and 2.
SID247	V _{ICM2}	Input common mode voltage in low power mode ($V_{DDD} \ge 2.2 \text{ V for Temp} < 0 \text{ °C}$, $V_{DDD} \ge 1.8 \text{ V for Temp} > 0 \text{ °C}$)	0	-	V _{DDD}	V	
SID247A	V _{ICM3}	Input common mode voltage in ultra low power mode	0	_	V _{DDD} – 1.15	V	
SID88	CMRR	Common mode rejection ratio	50	-	_	dB	V _{DDD} ≥ 2.7 V. Guaranteed by characterization
SID88A	CMRR	Common mode rejection ratio	42	-	_	dB	V _{DDD} < 2.7 V. Guaranteed by characterization
SID89	I _{CMP1}	Block current, normal mode	-	_	400	μA	Guaranteed by characterization

Document Number: 001-93963 Rev. *G Page 22 of 42

Digital Peripherals

The following specifications apply to the Timer/Counter/PWM peripheral in timer mode.

Timer/Counter/PWM

Table 15. TCPWM Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.1	ITCPWM1	Block current consumption at 3 MHz	_	_	45	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.2	ITCPWM2	Block current consumption at 12 MHz	_	_	155	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.2A	ITCPWM3	Block current consumption at 48 MHz	-	_	650	μΑ	All modes (Timer/Counter/PWM)
SID.TCPWM.3	TCPWMFREQ	Operating frequency	-	-	Fc	MHz	Fc max = Fcpu. Maximum = 24 MHz
SID.TCPWM.4	TPWMENEXT	Input Trigger Pulse Width for all Trigger Events	2/Fc	-	-	ns	Trigger Events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is selected.
SID.TCPWM.5	TPWMEXT	Output Trigger Pulse widths	2/Fc	-	-	ns	Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) trigger outputs
SID.TCPWM.5A	TCRES	Resolution of Counter	1/Fc	-	_	ns	Minimum time between successive counts
SID.TCPWM.5B	PWMRES	PWM Resolution	1/Fc	_	_	ns	Minimum pulse width of PWM Output
SID.TCPWM.5C	QRES	Quadrature inputs resolution	1/Fc	_	_	ns	Minimum pulse width between Quadrature phase inputs.

РC

Table 16. Fixed I²C DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	_	_	50	μA	
SID150	I _{I2C2}	Block current consumption at 400 kHz	_	_	135	μA	
SID151	I _{I2C3}	Block current consumption at 1 Mbps	_	_	310	μA	
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	_	-	1.4	μA	

Table 17. Fixed I²C AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	-	I	1	Mbps	

Document Number: 001-93963 Rev. *G Page 25 of 42

LCD Direct Drive

Table 18. LCD Direct Drive DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID154	I _{LCDLOW}	Operating current in low power mode	_	5	_	μA	16 × 4 small segment disp. at 50 Hz
SID155	C _{LCDCAP}	LCD capacitance per segment/common driver	_	500	5000	pF	Guaranteed by Design
SID156	LCD _{OFFSET}	Long-term segment offset	_	20	_	mV	
SID157	I _{LCDOP1}	PWM Mode current. 5-V bias. 24-MHz IMO	_	0.6	-	mA	32 × 4 segments. 50 Hz, 25 °C
SID158	I _{LCDOP2}	PWM Mode current. 3.3-V bias. 24-MHz IMO.	_	0.5	-	mA	32 × 4 segments. 50 Hz, 25 °C

Table 19. LCD Direct Drive AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID159	F _{LCD}	LCD frame rate	10	50	150	Hz	

Table 20. Fixed UART DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID160	I _{UART1}	Block current consumption at 100 Kbps	-	-	55	μΑ	
SID161	I _{UART2}	Block current consumption at 1000 Kbps	-	ı	312	μA	

Table 21. Fixed UART AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID162	F _{UART}	Bit rate	_	_	1	Mbps	

SPI Specifications

Table 22. Fixed SPI DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID163	I _{SPI1}	Block current consumption at 1 Mbps	_	-	360	μΑ	
SID164	I _{SPI2}	Block current consumption at 4 Mbps	_	_	560	μΑ	
SID165	I _{SPI3}	Block current consumption at 8 Mbps	_	-	600	μΑ	

Table 23. Fixed SPI AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID166		SPI operating frequency (master; 6X oversampling)	-	ı	8	MHz	

Document Number: 001-93963 Rev. *G Page 26 of 42

SWD Interface

Table 32. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID213	F_SWDCLK1	$3.3~V \leq V_{DD} \leq 5.5~V$	_	_	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID214	F_SWDCLK2	$1.71 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V}$	_	_	7	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID215	T_SWDI_SETUP	T = 1/f SWDCLK	0.25*T	_	_	ns	Guaranteed by characterization
SID216	T_SWDI_HOLD	T = 1/f SWDCLK	0.25*T	_	_	ns	Guaranteed by characterization
SID217	T_SWDO_VALID	T = 1/f SWDCLK	_	_	0.5*T	ns	Guaranteed by characterization
SID217A	T_SWDO_HOLD	T = 1/f SWDCLK	1	_	_	ns	Guaranteed by characterization

Internal Main Oscillator

Table 33. IMO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID218	I _{IMO1}	IMO operating current at 48 MHz	_	_	1000	μΑ	
SID219	I _{IMO2}	IMO operating current at 24 MHz	_	_	325	μΑ	
SID220	I _{IMO3}	IMO operating current at 12 MHz	_	_	225	μΑ	
SID221	I _{IMO4}	IMO operating current at 6 MHz	_	_	180	μΑ	
SID222	I _{IMO5}	IMO operating current at 3 MHz	_	_	150	μΑ	

Table 34. IMO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions		
SID223	F _{IMOTOL1}	Frequency variation from 3 to 48 MHz	-		±2	%	±3% if T _A > 85 °C and IMO frequency < 24 MHz		
SID226	T _{STARTIMO}	IMO startup time	_	_	12	μs			
SID227	T _{JITRMSIMO1}	RMS Jitter at 3 MHz	_	156	_	ps			
SID228	T _{JITRMSIMO2}	RMS Jitter at 24 MHz	_	145	-	ps			
SID229	T _{JITRMSIMO3}	RMS Jitter at 48 MHz	_	139	_	ps			

Internal Low-Speed Oscillator

Table 35. ILO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions	
SID231	I _{ILO1}	ILO operating current at 32 kHz	_	0.3	1.05	•	Guaranteed by Characterization	
SID233	I _{ILOLEAK}	ILO leakage current	_	2	15	nA	Guaranteed by Design	

Document Number: 001-93963 Rev. *G Page 29 of 42

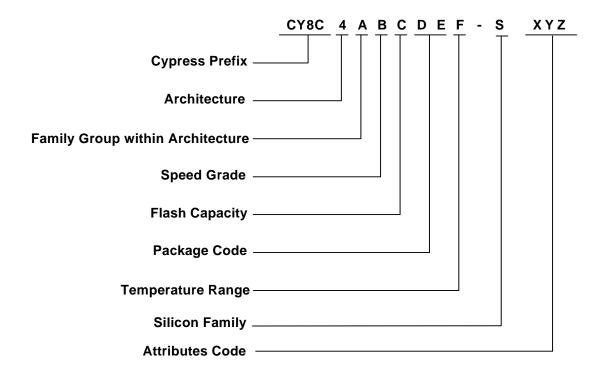
Ordering Information

The PSoC 4200M family part numbers and features are listed in the following table.

								F	eatu	res						Packages			
Category	MPN	Max CPU Speed (MHz)	Flash (KB)	SRAM (KB)	NDB	Opamp (CTBm)	CSD	IDAC (1X7-Bit, 1-8-Bit)	Direct LCD Drive	12-bit SAR ADC	LP Comparators	TCPWM Blocks	SCB Blocks	CAN	GPIO	48-TQFP	64-TQFP (0.5-mm pitch)	64-TQFP (0.8-mm pitch)	68-QFN
	CY8C4245AZI-M433	48	32	4	4	2	-	-	-	1000 ksps	2	8	4	-	38	~	-	-	-
	CY8C4245AZI-M443	48	32	4	4	2	~	-	>	1000 ksps	2	8	4	_	38	~	_	_	_
4245	CY8C4245AZI-M445	48	32	4	4	2	~	_	/	1000 ksps	2	8	4	_	51	_	~	_	_
	CY8C4245LTI-M445	48	32	4	4	2	~	_	~	1000 ksps	2	8	4	_	55	_	_	_	~
	CY8C4245AXI-M445	48	32	4	4	2	~	-	~	1000 ksps	2	8	4	_	51	_	_	~	_
	CY8C4246AZI-M443	48	64	8	4	2	~	_	/	1000 ksps	2	8	4	_	38	~	_	_	-
	CY8C4246AZI-M445	48	64	8	4	2	~	_	'	1000 ksps	2	8	4	_	51	_	~	_	-
4246	CY8C4246AZI-M475	48	64	8	4	4	_	~	_	1000 ksps	2	8	4	_	51	_	~	_	_
4240	CY8C4246LTI-M445	48	64	8	4	2	~	_	/	1000 ksps	2	8	4	_	55	_	_	_	~
	CY8C4246LTI-M475	48	64	8	4	4	_	~	-	1000 ksps	2	8	4	-	55	_	_	-	~
	CY8C4246AXI-M445	48	64	8	4	2	~	_	/	1000 ksps	2	8	4	_	51	_	_	~	_
4247	CY8C4247LTI-M475	48	128	16	4	4	~	~	-	1000 ksps	2	8	4	-	55	_	_	-	~
	CY8C4247AZI-M475	48	128	16	4	4	-	~	ı	1000 ksps	2	8	4	_	51	_	~	_	_
	CY8C4247AZI-M485	48	128	16	4	4	'	~	>	1000 ksps	2	8	4	~	51	_	/	-	_
	CY8C4247AXI-M485	48	128	16	4	4	'	~	>	1000 ksps	2	8	4	~	51	-	-	~	_
	CY8C4247LTQ-M475	48	128	16	4	4	~	~	/	1000 ksps	2	8	4	-	55	_	_	_	~

The nomenclature used in the preceding table is based on the following part numbering convention:

Field	Description	Values	Meaning
CY8C	Cypress Prefix		
4	Architecture	4	PSoC 4
Α	Family	2	4200 Family
В	CPU Speed	4	48 MHz
		4	16 KB
С	Flash Capacity	5	32 KB
		6	64 KB
		7	128 KB
		AX, AZ	TQFP
DE	Daakaga Cada	LT	QFN
	Package Code	BU	BGA
		FD	CSP


Document Number: 001-93963 Rev. *G Page 32 of 42

Field	Description	Values	Meaning
F Tempera	Temperature Range	I	Industrial
	remperature range	Q	Extended Industrial
		N/A	PSoC 4 Base Series
s	Silicon Family	L	PSoC 4 L-Series
3	Silicon Family	BL	PSoC 4 BLE
		M	PSoC 4 M-Series
XYZ	Attributes Code	000-999	Code of feature set in the specific family

Part Numbering Conventions

The part number fields are defined as follows.

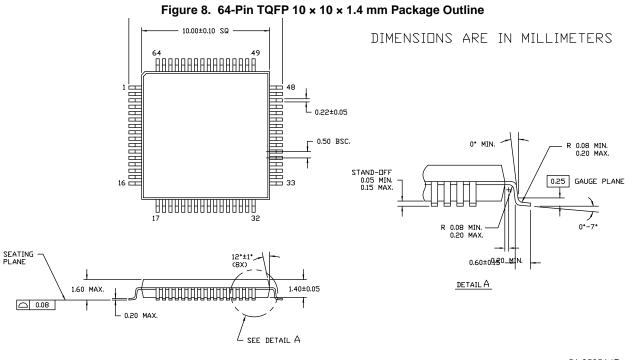

TOP VIEW SIDE VIEW BOTTOM VIEW 8.00±0.10 52 68 0.40±0.05 0.20±0.05 17 35 μφοοοροσιστίσ 18 0.05 MAX 1.00 MAX 0.08

Figure 7. 68-Pin QFN 8 × 8 × 1.0 mm Package Outline

NOTES:

- 1. MATCH AREA IS SOLDERABLE EXPOSED METAL.
- 2. REFERENCE JEDEC#: MO-220
- 3. PACKAGE WEIGHT: 17 \pm 2mg
- 4. ALL DIMENSIONS ARE IN MILLIMETERS

001-09618 *E

51-85051 *D

PSoC® 4: PSoC 4200M Family Datasheet

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/usb

cypress.com/wireless

Products

USB Controllers

Wireless/RF

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypess.com/clocks Interface cypress.com/interface Lighting & Power Control cypress.com/powerpsoc Memory cypress.com/memory **PSoC** cypress.com/psoc Touch Sensing cypress.com/touch

PSoC® Solutions

cypress.com/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation 2014-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-93963 Rev. *G Revised August 19, 2016 Page 42 of 42