

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	M16C/60
Core Size	16-Bit
Speed	32MHz
Connectivity	EBI/EMI, I ² C, SIO, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f36506cdfb-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Specifications

The M16C/65C Group includes 128-pin and 100-pin packages. Table 1.1 to Table 1.4 list specifications.

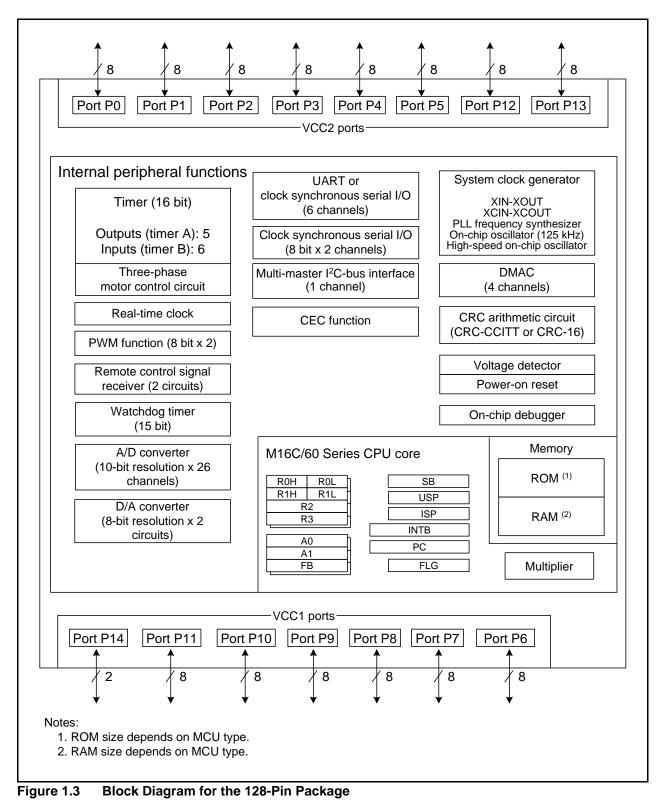
Table 1.1	Specifications for the	128-Pin Package (1/2)
ltem	Function	Description
CPU	Central processing unit	 M16C/60 Series core (multiplier: 16 bit × 16 bit → 32 bit, multiply and accumulate instruction: 16 bit × 16 bit + 32 bit → 32 bit) Number of basic instructions: 91 Minimum instruction execution time: 31.25 ns (f(BCLK) = 32 MHz, VCC1 = VCC2 = 2.7 to 5.5 V) Operating modes: Single-chip, memory expansion, and microprocessor
Memory	ROM, RAM, data flash	See Table 1.5 "Product List (N-Version)" to Table 1.6 "Product List (D-Version)".
Voltage Detection	Voltage detector	 Power-on reset 3 voltage detection points (detection level of voltage detection 0 and 1 selectable)
Clock	Clock generator	 5 circuits: Main clock, sub clock, low-speed on-chip oscillator (125 kHz), high-speed on-chip oscillator (40 MHz ±5%), PLL frequency synthesizer Oscillation stop detection: Main clock oscillation stop/restart detection function Frequency divider circuit: Divide ratio selectable from 1, 2, 4, 8, and 16 Power saving features: Wait mode, stop mode Real-time clock
External Bus Expansion	Bus memory expansion	 Address space: 1 MB External bus interface: 0 to 8 waits inserted, 4 chip select outputs, memory area expansion function (expandable to 4 MB), 3 V and 5 V interfaces Bus format: Separate bus or multiplexed bus selectable, data bus width selectable (8 or 16 bits), number of address buses selectable (12, 16, or 20)
I/O Ports	Programmable I/O ports	 CMOS I/O ports: 111 (selectable pull-up resistors) N-channel open drain ports: 3
Interrupts	·	 Interrupt vectors: 70 External interrupt inputs: 13 (NMI, INT × 8, key input × 4) Interrupt priority levels: 7
Watchdog Tir	ner	15-bit timer × 1 (with prescaler) Automatic reset start function selectable
DMA	DMAC	 4 channels, cycle steal mode Trigger sources: 43 Transfer modes: 2 (single transfer, repeat transfer)

Table 1.1Specifications for the 128-Pin Package (1/2)

Item	Function	Description			
	Timer A	16-bit timer x 5 Timer mode, event counter mode, one-shot timer mode, pulse width modulation (PWM) mode Event counter two-phase pulse signal processing (two-phase encoder input) x 3 Programmable output mode x 3			
	Timer B	16-bit timer × 6 Timer mode, event counter mode, pulse period measurement mode, pulse width measurement mode			
Timers	Three-phase motor control timer functions	 Three-phase inverter control (timer A1, timer A2, timer A4, timer B2) On-chip dead time timer 			
	Real-time clock	Count: seconds, minutes, hours, days of the week			
	PWM function	8 bits × 2			
Serial Interface Multi-master CEC Functior	Remote control signal receiver	 2 circuits 4 wave pattern matchings (differentiate wave pattern for headers, data 0, data 1, and special data) 6-byte receive buffer (1 circuit only) Operating frequency of 32 kHz 			
	UART0 to UART2, UART5 to UART7	Clock synchronous/asynchronous × 6 channels I ² C-bus, IEBus, special mode 2 SIM (UART2)			
	SI/O3, SI/O4	Clock synchronization only x 2 channels			
Multi-master	I ² C-bus Interface	1 channel			
CEC Functio	ns ⁽²⁾	CEC transmit/receive, arbitration lost detection, ACK automatic output, operation frequency of 32 kHz			
A/D Converte	er	10-bit resolution \times 26 channels, including sample and hold function Conversion time: 1.72 μs			
D/A Converte	er	8-bit resolution x 2 circuits			
CRC Calcula	itor	CRC-CCITT (X ¹⁶ + X ¹² + X ⁵ + 1), CRC-16 (X ¹⁶ + X ¹⁵ + X ² + 1) compliant			
Flash Memo	ry	 Program and erase power supply voltage: 2.7 to 5.5 V Program and erase cycles: 1,000 times (program ROM 1, program ROM 2), 10,000 times (data flash) Program security: ROM code protect, ID code check 			
Debug Funct	tions	On-chip debug, on-board flash rewrite, address match interrupt × 4			
-	equency/Supply Voltage	32 MHz/VCC1 = 2.7 to 5.5 V, VCC2 = 2.7 V to VCC1			
Current Cons		Refer to the Electrical Characteristics chapter			
Operating Te	mperature	-20°C to 85°C, -40°C to 85°C ⁽¹⁾			
Package		128-pin LQFP: PLQP0128KB-A (Previous package code: 128P6Q-A)			

Table 1.2 Specifications for the 128-Pin Package (2/2)

Notes:


1. See Table 1.5 "Product List (N-Version)" to Table 1.6 "Product List (D-Version)" for the operating temperature.

2. The CEC function indicates circuitry which supports the transmission and reception of CEC signals standardized by the High-Definition Multimedia Interface (HDMI). HDMI and High-Definition Multimedia Interface are registered trademarks of HDMI Licensing, LLC.

1.4 Block Diagram

Figure 1.3 to Figure 1.4 show block diagrams.

R01DS0015EJ0110 Rev.1.10 Jul 31, 2012

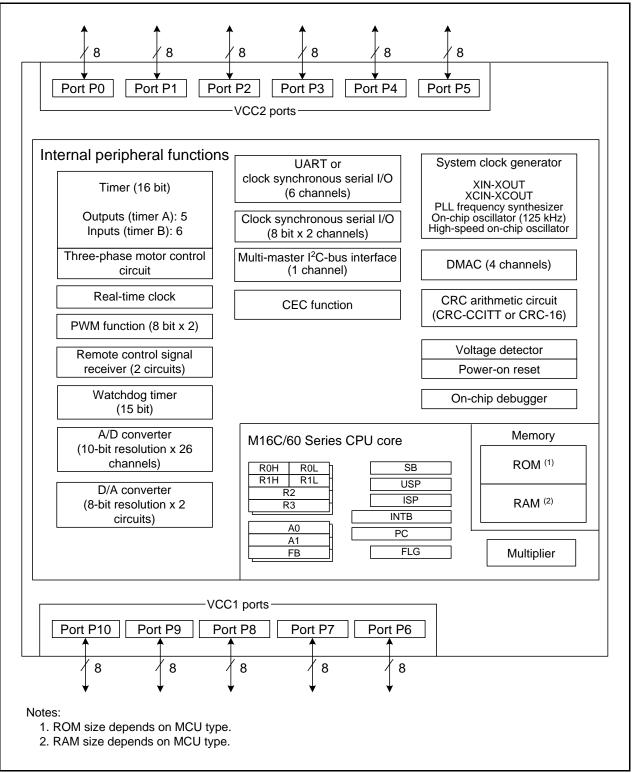
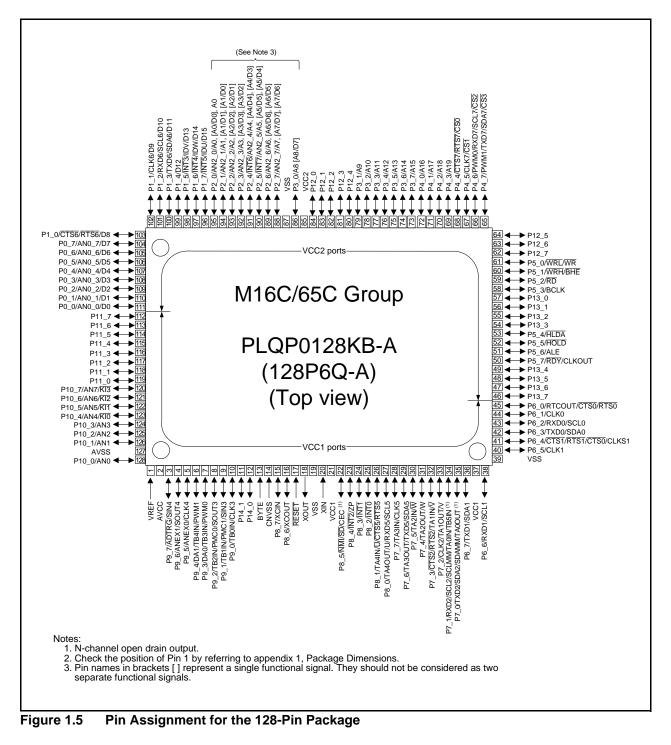



Figure 1.4 Block Diagram for the 100-Pin Package

1.5 Pin Assignments

Figure 1.5 to Figure 1.7 show pin assignments. Table 1.7 to Table 1.11 list pin names.

Pin	No.		D (I/O Pin	for Peripheral Function		Bus Control
FA	FB	Control Pin		Interrupt	Timer	Serial interface	A/D converter, D/A converter	Pin
	99		P9_6			SOUT4	ANEX1	
2	100		P9_5			CLK4	ANEX0	
3	1		P9_4		TB4IN/PWM1		DA1	
ļ	2		P9_3		TB3IN/PWM0		DA0	
5	3		P9_2		TB2IN/PMC0	SOUT3		
3	4		P9_1		TB1IN/PMC1	SIN3		
7	5		P9_0		TB0IN	CLK3		
3	6	BYTE						
)	7	CNVSS						
0	8	XCIN	P8_7					
1	9	XCOUT	P8_6					
2	10	RESET						
3	11	XOUT						
4	12	VSS						
5	13	XIN						
6	14	VCC1						
17	15		P8_5	NMI	SD	CEC		
8	16		P8_4	INT2	ZP	010		
9	17		P8_3	INT1				
20	18		P8_2	INTO				
21	19		P8_1		TA4IN/U	CTS5/RTS5		
22	20		P8_0		TA40UT/U	RXD5/SCL5		
23	20		P7_7		TA3IN	CLK5		
23 24	21				TASIN	TXD5/SDA5		
24 25			P7_6		TA3001 TA2IN/W	TAD5/SDA5		
	23		P7_5					
26	24		P7_4		TA2OUT/W	0700/0700		
27	25		P7_3		TA1IN/V	CTS2/RTS2		
28	26		P7_2		TA1OUT/V	CLK2		
29	27		P7_1		TA0IN/TB5IN	RXD2/SCL2/SCLMM		
30	28		P7_0		TA0OUT	TXD2/SDA2/SDAMM		
31	29		P6_7			TXD1/SDA1		
32	30		P6_6			RXD1/SCL1		
33	31		P6_5			CLK1		
34	32		P6_4			CTS1/RTS1/CTS0/ CLKS1		
35	33		P6_3			TXD0/SDA0		
36	34		P6_2			RXD0/SCL0		
37	35		P6_1			CLK0		
38	36		P6_0	<u> </u>	RTCOUT	CTS0/RTS0		
39	37	CLKOUT	P5_7					RDY
10	38		P5_6	+	<u> </u>			ALE
11	39		P5_5	+	<u> </u>			HOLD
2	40		P5_4					HLDA
3	41		P5_3					BCLK
4	42		P5_2					RD
15	42		P5_1					WRH/BHE
+5 16	43 44		P5_1 P5_0					WRL/WR
				+				
7	45		P4_7		PWM1	TXD7/SDA7		CS3
8	46		P4_6		PWM0	RXD7/SCL7		CS2
19	47		P4_5			CLK7		CS1
50	48		P4_4			CTS7/RTS7		CS0

 Table 1.10
 Pin Names for the 100-Pin Package (1/2)

1. Overview

	No.					in for Peripheral Fund	ction	
		Control	Port				A/D converter,	Bus Control Pin
FA	FB	Pin	1 OIL	Interrupt	Timer	Serial interface	D/A converter	Dus Control 1 III
51	49		P4_3					A19
52	50		 P4_2					A18
53	51		 P4_1					A17
54	52		 P4_0					A16
55	53		P3_7					A15
56	54		P3_6					A14
57	55		P3_5					A13
58	56		P3_4					A12
59	57		P3_3					A11
60	58		P3_2					A10
61	59		P3_1					A9
62	60	VCC2						
63	61	1002	P3_0					A8, [A8/D7]
64	62	VSS	10_0					
65	63		P2_7				AN2_7	A7, [A7/D7], [A7/D6]
66	64		P2_6				AN2_6	A6, [A6/D6], [A6/D5]
67	65	-	P2_5	INT7			AN2_5	A5, [A5/D5], [A5/D4]
68	66		P2_4	INT6			AN2_4	A4, [A4/D4], [A4/D3]
69	67		P2_3				AN2_3	A3, [A3/D3], [A3/D2]
70	68		P2_2				AN2_2	A2, [A2/D2], [A2/D1]
70	69		P2_1				AN2_1	A1, [A1/D1], [A1/D0]
72	70		P2_0				AN2_0	A0, [A0/D0], A0
73	70		P2_0 P1_7	INT5	IDU		ANZ_U	D15
73 74	71		P1_7	INT3 INT4	IDU			D13
74	72		P1_0	INT3	IDV			D14
76	73 74		P1_3	11113	IDV			D13
76	74 75		P1_4 P1_3			TXD6/SDA6		D12 D11
78	75 76		P1_3			RXD6/SCL6		D10
78 79	76 77		P1_2 P1_1	-		CLK6		D10
79 80	77 78					CTS6/RTS6		D9 D8
			P1_0			C150/R150	ANIO 7	
81	79 80		P0_7				AN0_7	D7
82	80		P0_6				AN0_6	D6
83	81		P0_5				AN0_5	D5
84	82		P0_4				AN0_4	D4
85	83		P0_3				AN0_3	D3
86	84		P0_2				AN0_2	D2
87	85		P0_1				AN0_1	D1
88	86		P0_0	1/10			AN0_0	D0
89	87		P10_7				AN7	
90	88		P10_6				AN6	
91	89		P10_5				AN5	
92	90		P10_4	KI0			AN4	
93	91		P10_3				AN3	
94	92		P10_2				AN2	
95	93		P10_1				AN1	
96	94	AVSS						
97	95		P10_0				AN0	
98	96	VREF						
99	97	AVCC						
100	98		P9_7			SIN4	ADTRG	

 Table 1.11
 Pin Names for the 100-Pin Package (2/2)

Signal Name	Pin Name	I/O	Power Supply	Description
Power supply input	VCC1, VCC2, VSS	I	-	Apply 2.7 to 5.5 V to pins VCC1 and VCC2 (VCC1 \ge VCC2) and 0 V to the VSS pin.
Analog power supply input	AVCC, AVSS	I	VCC1	This is the power supply for the A/D and D/A converters. Connect the AVCC pin to VCC1, and connect the AVSS pin to VSS.
Reset input	Driving this pin low resets the MCU.			
CNVSS	CNVSS	I	VCC1	Input pin to switch processor modes. After a reset, to start operating in single-chip mode, connect the CNVSS pin to VSS via a resistor. To start operating in microprocessor mode, connect the pin to VCC1.
External data bus width select input	BYTE	I	VCC1	Input pin to select the data bus of the external area. The data bus is 16 bits when it is low, and 8 bits when it is high. This pin must be fixed either high or low. Connect the BYTE pin to VSS in single-chip mode.
	D0 to D7	I/O	VCC2	Inputs or outputs data (D0 to D7) while accessing an external area with a separate bus.
	D8 to D15	I/O	VCC2	Inputs or outputs data (D8 to D15) while accessing an external area with a 16-bit separate bus.
	A0 to A19	0	VCC2	Outputs address bits A0 to A19.
	A0/D0 to A7/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A0 to A7) by timesharing, while accessing an external area with an 8-bit multiplexed bus.
	A1/D0 to A8/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A1 to A8) by timesharing, while accessing an external area with a 16-bit multiplexed bus.
	$\overline{\text{CS0}}$ to $\overline{\text{CS3}}$	0	VCC2	Outputs chip-select signals $\overline{CS0}$ to $\overline{CS3}$ to specify an external area.
Bus control pins	WRL/WR WRH/BHE RD	0	VCC2	 Outputs WRL, WRH, (WR, BHE), and RD signals. WRL and WRH can be switched with BHE and WR. WRL, WRH, and RD selected If the external data bus is 16 bits, data is written to an even address in an external area when WRL is driven low. Data is written to an odd address when WRH is driven low. Data is read when RD is driven low. WR, BHE, and RD selected Data is written to an external area when WRH is driven low. Data is written to an external area when WRH is driven low. An odd address is accessed when RD is driven low. Select WR, BHE, and RD when using an 8-bit external data bus.
	ALE	0	VCC2	Outputs an ALE signal to latch the address.
	HOLD	I	VCC2	HOLD input is unavailable. Connect the HOLD pin to VCC2 via a resistor (pull-up).
	HLDA	0	VCC2	In a hold state, HLDA outputs a low-level signal.
	RDY	Ι	VCC2	The MCU bus is placed in a wait state while the $\overline{\text{RDY}}$ pin is driven low.

Table 1.15 Pin Functions for the 100-Pin Package (1/3)

Power supply: VCC2 is used to supply power to the external bus associated pins. The dual power supply configuration allows VCC2 to interface at a different voltage than VCC1.

2.1 Data Registers (R0, R1, R2, and R3)

R0, R1, R2, and R3 are 16-bit registers used for transfer, arithmetic, and logic operations. R0 and R1 can be split into upper (R0H/R1H) and lower (R0L/R1L) bits to be used separately as 8-bit data registers. R0 can be combined with R2, and R3 can be combined with R1 and be used as 32-bit data registers R2R0 and R3R1, respectively.

2.2 Address Registers (A0 and A1)

A0 and A1 are 16-bit registers used for indirect addressing, relative addressing, transfer, arithmetic, and logic operations. A0 can be combined with A1 and used as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register that is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of a relocatable interrupt vector table.

2.5 Program Counter (PC)

The PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The USP and ISP stack pointers (SP) are each comprised of 16 bits. The U flag is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register used for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register that indicates the CPU state.

2.8.1 Carry Flag (C Flag)

The C flag retains a carry, borrow, or shift-out bit generated by the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z Flag)

The Z flag becomes 1 when an arithmetic operation results in 0. Otherwise, it becomes 0.

2.8.4 Sign Flag (S Flag)

The S flag becomes 1 when an arithmetic operation results in a negative value. Otherwise, it becomes 0.

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is 1.

2.8.6 Overflow Flag (O Flag)

The O flag becomes 1 when an arithmetic operation results in an overflow. Otherwise, it becomes 0.

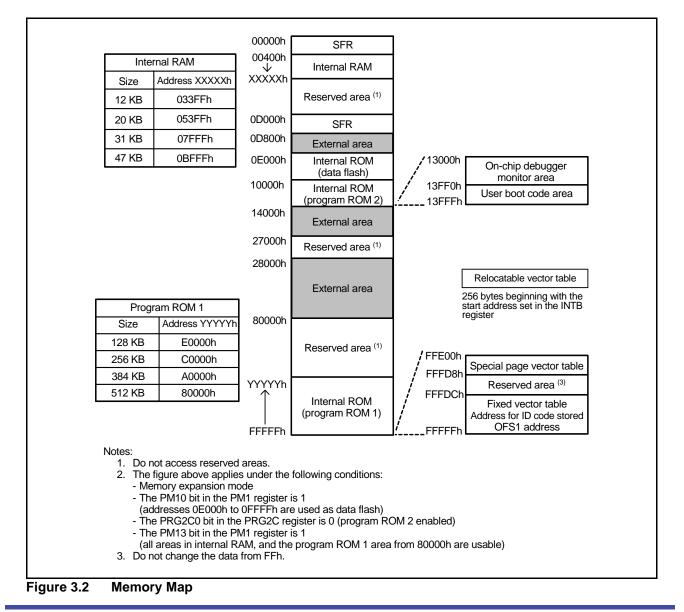
3.2 Memory Map

Special function registers (SFRs) are allocated from address 00000h to 003FFh and from 0D000h to 0D7FFh. Peripheral function control registers are located here. All blank areas within SFRs are reserved. Do not access these areas.

Internal RAM is allocated from address 00400h and higher, with 10 KB of internal RAM allocated from 00400h to 02BFFh. Internal RAM is used not only for data storage, but also for the stack area when subroutines are called or when an interrupt request is accepted.

The internal ROM is flash memory. Three internal ROM areas are available: data flash, program ROM 1, and program ROM 2.

The data flash is allocated from 0E000h to 0FFFFh. This data flash area is mostly used for data storage, but can also store programs.


Program ROM 2 is allocated from 10000h to 13FFFh. Program ROM 1 is allocated from FFFFFh and lower, with the 64 KB program ROM 1 area allocated from address F0000h to FFFFFh.

The special page vectors are allocated from FFE00h to FFFD7h. They are used for the JMPS and JSRS instructions. Refer to the M16C/60, M16C/20, M16C/Tiny Series Software Manual for details.

The fixed vector table for interrupts is allocated from FFFDCh to FFFFFh.

The 256 bytes beginning with the start address set in the INTB register compose the relocatable vector table for interrupts.

Figure 3.2 shows the Memory Map.

Table 4.0	SFR Information (6) (7)		
Address	Register	Symbol	Reset Value
01B0h			XXh
01B1h	DMA3 Source Pointer	SAR3	XXh
01B2h			0Xh
01B3h			
01B4h			XXh
01B5h	DMA3 Destination Pointer	DAR3	XXh
01B6h			0Xh
01B7h			
01B8h			XXh
01B9h	DMA3 Transfer Counter	TCR3	XXh
01BAh			
01BBh			
01BCh	DMA3 Control Register	DM3CON	0000 0X00b
01BDh		Dinocort	
01BEh		+ +	
01BEh			
01C0h			XXh
01C01	Timer B0-1 Register	TB01	XXh
01C1h			XXh
01C2h	Timer B1-1 Register	TB11	
			XXh
01C4h	Timer B2-1 Register	TB21	XXh
01C5h			XXh
01C6h	Pulse Period/Pulse Width Measurement Mode Function Select Register 1	PPWFS1	XXXX X000b
01C7h			
01C8h	Timer B Count Source Select Register 0	TBCS0	00h
01C9h	Timer B Count Source Select Register 1	TBCS1	X0h
01CAh			
01CBh	Timer AB Division Control Register 0	TCKDIVC0	0000 X000b
01CCh			
01CDh			
01CEh			
01CFh			
01D0h	Timer A Count Source Select Register 0	TACS0	00h
01D1h	Timer A Count Source Select Register 1	TACS1	00h
01D2h	Timer A Count Source Select Register 2	TACS2	X0h
01D3h			
	16-bit Pulse Width Modulation Mode Function Select Register	PWMFS	0XX0 X00Xb
01D5h	Timer A Waveform Output Function Select Register	TAPOFS	XXX0 0000b
01D6h		1/1 0/0	77770 00000
01D0h		+	
01D7h 01D8h	Timer A Output Waveform Change Enable Register	TAOW	XXX0 X00Xb
01D8n 01D9h	Timer A Output Wavelorni Onarige Ellable Register	IAUW	
	Three Dhase Drotect Control Decision	TPRC	004
01DAh	Three-Phase Protect Control Register	IPKU	00h
01DBh			
01DCh			
01DDh			
01DEh			
01DFh			

Table 4.6SFR Information (6) (1)

Note:

1. The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
03F0h	Port P8 Register	P8	XXh
03F1h	Port P9 Register	P9	XXh
03F2h	Port P8 Direction Register	PD8	00h
03F3h	Port P9 Direction Register	PD9	00h
03F4h	Port P10 Register	P10	XXh
03F5h	Port P11 Register	P11	XXh
03F6h	Port P10 Direction Register	PD10	00h
03F7h	Port P11 Direction Register	PD11	00h
03F8h	Port P12 Register	P12	XXh
03F9h	Port P13 Register	P13	XXh
03FAh	Port P12 Direction Register	PD12	00h
03FBh	Port P13 Direction Register	PD13	00h
03FCh	Port P14 Register	P14	XXh
03FDh			
03FEh	Port P14 Direction Register	PD14	XXXX XX00b
03FFh			

Table 4.17SFR Information (17) (1)

Note:

1. The blank areas are reserved. No access is allowed.

Table 5.3

able 5.3 Recommended Operating Conditions (2/3) $V_{CC1} = V_{CC2} = 2.7$ to 5.5 V at $T_{opr} = -20^{\circ}$ C to 85°C/-40°C to 85°C unless otherwise specified.

Symbol	Parameter				Standard		Unit
Symbol			Parameter	Min.	Тур.	Max.	Unit
I _{OL(sum)}	Low peak output current	P2_0 to P2_	_{Deak)} at P0_0 to P0_7, P1_0 to P1_7, _7, P8_6, P8_7, P9_0 to P9_7, I0_7, P11_0 to P11_7, P14_0 to P14_1			80.0	mA
		P5_0 to P5_	_{Deak)} at P3_0 to P3_7, P4_0 to P4_7, _7, P6_0 to P6_7, P7_0 to P7_7, _5, P12_0 to P12_7, P13_0 to P13_7			80.0	mA
I _{OL(peak)}	Low peak output current	P3_0 to P3_ P6_0 to P6_ P9_0 to P9_	7, P1_0 to P1_7, P2_0 to P2_7, 7, P4_0 to P4_7, P5_0 to P5_7, 7, P7_0 to P7_7, P8_0 to P8_7, 7, P10_0 to P10_7, P11_0 to P11_7, 12_7, P13_0 to P13_7, P14_0, P14_1			10.0	mA
I _{OL(avg)}	Low average output current ⁽¹⁾	P3_0 to P3_ P6_0 to P6_ P9_0 to P9_	7, P1_0 to P1_7, P2_0 to P2_7, 7, P4_0 to P4_7, P5_0 to P5_7, 7, P7_0 to P7_7, P8_0 to P8_7, 7, P10_0 to P10_7, P11_0 to P11_7, [2_7, P13_0 to P13_7, P14_0, P14_1			5.0	mA
f _(XIN)	Main clock oscillation	-	V _{CC1} = 2.7 V to 5.5 V	2		20	MHz
f _(XCIN)	Sub clock	oscillation fre	quency		32.768	50	kHz
f _(PLL)	PLL clock of frequency	oscillation	V _{CC1} = 2.7 V to 5.5 V	10		32	MHz
f _(BCLK)	CPU opera	ation clock		2		32	MHz
t _{SU(PLL)}	PLL freque	•	V _{CC1} = 5.0 V			2	ms
	synthesize stabilizatio		V _{CC1} = 3.0 V			3	ms

Note:

The average output current is the mean value within 100 ms. 1.

Table 5.13 Voltage Detector 2 Electrical Characteristics

The measurement condition is V_{CC1} = 2.7 to 5.5 V, T_{opr} = -20°C to 85°C/-40°C to 85°C, unless otherwise specified.

Symbol	Parameter	Condition		Unit		
Symbol	Falanetei	Condition	Min.	Тур.	Max.	Unit
V _{det2}	Voltage detection level Vdet2_0	When V _{CC1} is falling	3.70	4.00	4.30	V
-	Hysteresis width at the rising of V _{CC1} in voltage detector 2			0.15		V
-	Voltage detector 2 response time ⁽²⁾	When V _{CC1} falls from 5 V to (Vdet2_0 - 0.1) V			200	μS
-	Voltage detector self power consumption	VC27 = 1, V _{CC1} = 5.0 V		1.7		μΑ
t _{d(E-A)}	Waiting time until voltage detector operation starts ⁽¹⁾				100	μs

Notes:

1. Necessary time until the voltage detector operates after setting to 1 again after setting the VC27 bit in the VCR2 register to 0.

2. Time from when passing the V_{det2} until when a voltage monitor 2 reset is generated.

Table 5.14Power-On Reset Circuit

The measurement condition is V_{CC1} = 2.0 to 5.5 V, T_{opr} = -20°C to 85°C/ -40°C to 85°C, unless otherwise specified.

Symbol	Parameter	Condition		Unit		
	i diameter	Condition	Min.	Тур.	Max.	Unit
V _{por1}	Voltage at which power-on reset enabled ⁽¹⁾				0.5	V
t _{rth}	External power V _{CC1} rise gradient		2.0		50000	mV/ms
t _{w(por)}	Time necessary to enable power-on reset		300			ms

Note: 1.

To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS1 address to 0. Also, set the VDSEL1 bit to 0 (Vdet0_2).

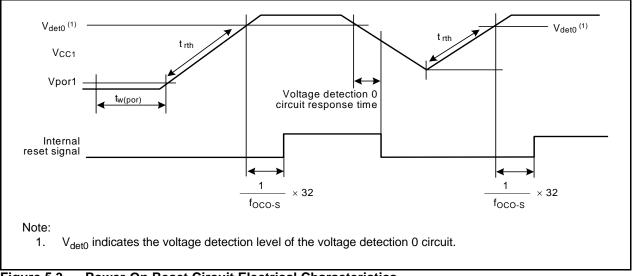


Figure 5.3 Power-On Reset Circuit Electrical Characteristics

5.2 Electrical Characteristics ($V_{CC1} = V_{CC2} = 5 V$)

5.2.1 Electrical Characteristics

$V_{CC1} = V_{CC2} = 5 V$

Table 5.18 Electrical Characteristics (1) ⁽¹⁾

 $V_{CC1} = V_{CC2} = 4.2$ to 5.5 V, $V_{SS} = 0$ V at $T_{opr} = -20^{\circ}$ C to 85°C/-40°C to 85°C, $f_{(BCLK)} = 32$ MHz unless otherwise specified.

Symbol			Paramotor		Measuring	Star	ndard		Unit
•		Parameter High output P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4,			Condition	Min.	Тур.	Max.	
V _{OH}	High output voltage		7, P9_0 to P	9_7, P10_0 to P10_7,	I _{OH} = -5 mA	V _{CC1} – 2.0		V _{CC1}	V
			_7, P4_0 to	P1_7, P2_0 to P2_7, P4_7, P5_0 to P5_7, 0 to P13_7	I _{OH} = -5 mA	V _{CC2} -2.0		V _{CC2}	
V _{OH}	High output voltage	P8_6, P8_7 P11_0 to P	7, P9_0 to P 11_7, P14_0		I _{OH} = -200 μA	V _{CC1} – 0.3		V _{CC1}	V
			_7, P4_0 to	P1_7, P2_0 to P2_7, P4_7, P5_0 to P5_7, 0 to P13_7	I _{OH} = -200 μA	V _{CC2} – 0.3		V _{CC2}	
V _{OH}	High output	voltage X	OUT	HIGH POWER	I _{OH} = -1 mA	$V_{CC1} - 2.0$		V_{CC1}	V
				LOW POWER	I _{OH} = -0.5 mA	$V_{CC1} - 2.0$		V _{CC1}	
	High output	voltage X	COUT	HIGH POWER	With no load applied		2.6		V
				LOW POWER	With no load applied		2.2		
V _{OL}	Low output voltage	P6_0 to P6 P9_0 to P9 P11_0 to P	_7, P10_0 t		I _{OL} = 5 mA			2.0	V
			_7, P4_0 to	P1_7, P2_0 to P2_7, P4_7, P5_0 to P5_7, 0 to P13_7	I _{OL} = 5 mA			2.0	
V _{OL}	Low output voltage	P6_0 to P6 P9_0 to P9 P11_0 to P	_7, P10_0 t		I _{OL} = 200 μA			0.45	V
			_7, P4_0 to	P1_7, P2_0 to P2_7, P4_7, P5_0 to P5_7, 0 to P13_7	I _{OL} = 200 μA			0.45	
V _{OL}	Low output	voltage X	JUT	HIGH POWER	I _{OL} = 1 mA			2.0	V
				LOW POWER	I _{OL} = 0.5 mA			2.0	
	Low output	voltage X	COUT	HIGH POWER	With no load applied		0		V
				LOW POWER	With no load applied		0		

Note:

1. When $V_{CC1} \neq V_{CC2}$, refer to 5 V or 3 V standard depending on the voltage.

$V_{CC1} = V_{CC2} = 5 V$

Switching Characteristics

 $(V_{CC1} = V_{CC2} = 5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

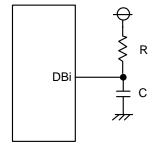
5.2.4.2 In 1 to 3 Waits Setting and When Accessing External Area

Table 5.37 Memory Expansion Mode and Microprocessor Mode (in 1 to 3 Waits Setting and When Accessing External Area)

Symbol	Deremeter	Measuring	Standard		L lus it	
Symbol	Parameter	Condition	Min.	Max.	Unit	
t _{d(BCLK-AD)}	Address output delay time			25	ns	
t _{h(BCLK-AD})	Address output hold time (in relation to BCLK)		0		ns	
t _{h(RD-AD})	Address output hold time (in relation to RD)		0		ns	
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns	
t _{d(BCLK-CS)}	Chip select output delay time			25	ns	
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns	
t _{d(BCLK-ALE)}	ALE signal output delay time			15	ns	
t _{h(BCLK-ALE})	ALE signal output hold time	See	-4		ns	
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.14		25	ns	
t _{h(BCLK-RD)}	RD signal output hold time		0		ns	
t _{d(BCLK-WR)}	WR signal output delay time			25	ns	
t _{h(BCLK-WR)}	WR signal output hold time		0		ns	
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns	
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns	
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 4)		ns	

Notes:

1. Calculated according to the BCLK frequency as follows:


 $\frac{(n-0.5) \times 10^9}{f_{(BCLK)}} - 40[ns]$ n is 1 for 1 wait setting, 2 for 2 waits setting and 3 for 3 waits setting. When n = 1, f_(BCLK) is 12.5 MHz or less.

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f} - 10[ns]$$

 $f_{(BCLK)}$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times ln(1 - V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF x 1 k $\Omega \times ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

4. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{6} - 20[ns]$$

 $f_{(BCLK)} = 20$

Hold time is equal to or less than 0 ns when the BCLK frequency exceeds 25 MHz.

 $V_{CC1} = V_{CC2} = 5 V$

Switching Characteristics

 $(V_{CC1} = V_{CC2} = 5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

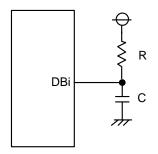
5.2.4.4 In Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$, $3\phi + 4\phi$, and $4\phi + 5\phi$, and When Accessing External Area

Table 5.39Memory Expansion Mode and Microprocessor Mode (in Wait State Setting 2 ϕ + 3 ϕ , 2 ϕ + 4 ϕ , 3 ϕ + 4 ϕ , and 4 ϕ + 5 ϕ , and When Accessing External Area)

Sympol	Determeter	Measuring	Standard		1.1	
Symbol	Parameter	Condition	Min.	Max.	- Unit	
t _{d(BCLK-AD)}	Address output delay time			25	ns	
t _{h(BCLK-AD})	Address output hold time (in relation to BCLK)		0		ns	
t _{h(RD-AD})	Address output hold time (in relation to RD)		0		ns	
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns	
t _{d(BCLK-CS)}	Chip select output delay time			25	ns	
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns	
t _{d(BCLK-ALE)}	ALE signal output delay time			15	ns	
t _{h(BCLK-ALE})	ALE signal output hold time	See	-4		ns	
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.14		25	ns	
t _{h(BCLK-RD)}	RD signal output hold time		0		ns	
t _{d(BCLK-WR)}	WR signal output delay time			25	ns	
t _{h(BCLK} -WR)	WR signal output hold time		0		ns	
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns	
t _{d(DB-WR)}	Data output delay time (in relation to WR)	1	(Note 1)		ns	
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾	1	(Note 4)		ns	

Notes:

1. Calculated according to the BCLK frequency as follows:


$$\frac{(n-0.5)\times10^9}{f_{(BCLK)}} - 40[ns] \qquad \text{n is 3 for } 2\phi + 3\phi, 4 \text{ for } 2\phi + 4\phi, 4 \text{ for } 3\phi + 4\phi, \text{ and 5 for } 4\phi + 5\phi.$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{6} - 10[ns]$$

$$f_{(BCLK)}$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times ln(1 - V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF $\times 1$ k $\Omega \times ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

4. Calculated according to the BCLK frequency as follows: $\frac{0.5 \times 10^9}{f_{(BCLK)}} - 20[ns]$

Hold time is equal to or less than 0 ns when the BCLK frequency exceeds 25 MHz.

$V_{CC1} = V_{CC2} = 3 V$

Table 5.44Electrical Characteristics (3) (2/2)

R5F3651ECNFC, R5F3651KCNFC, R5F3650KCNFA, R5F3650KCNFB, R5F3651MCNFC, R5F3650MCNFA, R5F3650MCNFB, R5F3651NCNFC, R5F3650NCNFA, R5F3650NCNFB, R5F3650NCNFB, R5F3650NCNFA, R5F3650NCNFB, R5F3650NCNFA, R5F3650NCNFB, R5F3650NCNFA, R5F3650NCNFB, R5F3650NCNFB, R5F3650NCNFA, R5F3650NCNFB, R5F3650NCNFB, R5F3650NCNFA, R5F3650NCNFB, R5F3650NCNFB, R5F3650NCNFB, R5F3650NCNFA, R5F3650NCNFB, R5F360NCNFB, R5F360NCNFB,

R5F3651ECDFC, R5F3651KCDFC, R5F3650KCDFA, R5F3650KCDFB, R5F3651MCDFC, R5F3650MCDFA, R5F3650MCDFB, R5F3651NCDFC, R5F3650NCDFA, R5F3650NCDFB

 $V_{CC1} = V_{CC2} = 2.7 \text{ to } 3.3 \text{ V}, V_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C} / -40^{\circ}\text{C to } 85^{\circ}\text{C}, f_{(BCLK)} = 32 \text{ MHz unless otherwise specified.}$

Symbol	Parameter	Measuring Condition		Standard			Unit
Cymbol	T drameter		Measuring Condition		Тур.	Max.	Onit
	Power supply current In single-chip, mode, the output pin are open and other pins are V _{SS}	Stop mode	Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped Peripheral clock stopped $T_{opr} = 25^{\circ}C$		1.6		μΑ
		During flash memory program	f _(BCLK) = 10 MHz, PM17 = 1 (one wait) V _{CC1} = 3.0 V		20.0		mA
		During flash memory erase	$f_{(BCLK)} = 10 \text{ MHz}, \text{PM17} = 1 \text{ (one wait)}$ V _{CC1} = 3.0 V		30.0		mA

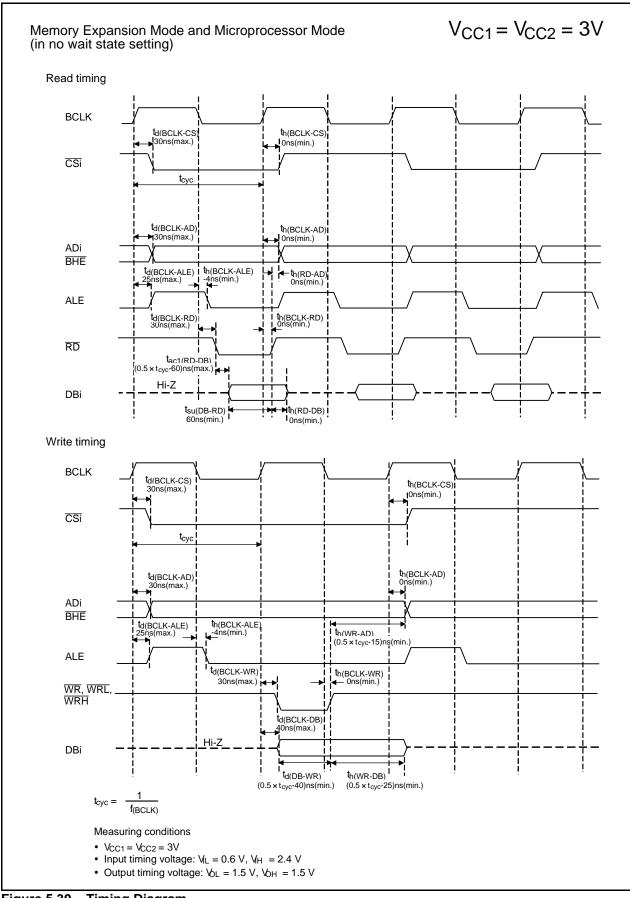


Figure 5.30 Timing Diagram

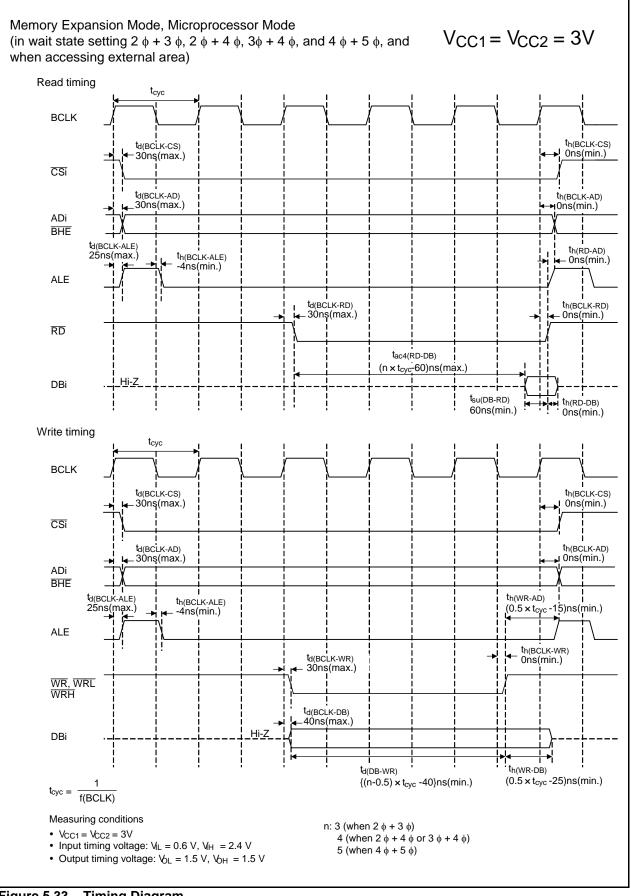


Figure 5.33 Timing Diagram

