

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	M16C/60
Core Size	16-Bit
Speed	32MHz
Connectivity	EBI/EMI, I ² C, SIO, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f36506cnfb-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Item	Function	Description		
	Timer A	16-bit timer × 5 Timer mode, event counter mode, one-shot timer mode, pulse width modulation (PWM) mode Event counter two-phase pulse signal processing (two-phase encoder input) × 3 Programmable output mode × 3		
	Timer B	16-bit timer × 6 Timer mode, event counter mode, pulse period measurement mode, pulse width measurement mode		
Timers	Three-phase motor control timer functions	 Three-phase inverter control (timer A1, timer A2, timer A4, timer B2) On-chip dead time timer 		
	Real-time clock	Count: seconds, minutes, hours, days of the week		
	PWM function	8 bits × 2		
	Remote control signal receiver	 2 circuits 4 wave pattern matchings (differentiate wave pattern for headers, data 0, data 1, and special data) 6-byte receive buffer (1 circuit only) Operating frequency of 32 kHz 		
Serial Interface	UART0 to UART2, UART5 to UART7	Clock synchronous/asynchronous × 6 channels I ² C-bus, IEBus, special mode 2 SIM (UART2)		
	SI/O3, SI/O4	Clock synchronization only x 2 channels		
Multi-master	² C-bus Interface	1 channel		
CEC Functior	ns (2)	CEC transmit/receive, arbitration lost detection, ACK automatic output, operation frequency of 32 kHz		
A/D Converte	r	10-bit resolution \times 26 channels, including sample and hold function Conversion time: 1.72 μs		
D/A Converte	r	8-bit resolution × 2 circuits		
CRC Calculat	tor	CRC-CCITT (X ¹⁶ + X ¹² + X ⁵ + 1), CRC-16 (X ¹⁶ + X ¹⁵ + X ² + 1) compliant		
Flash Memory		 Program and erase power supply voltage: 2.7 to 5.5 V Program and erase cycles: 1,000 times (program ROM 1, program ROM 2), 10,000 times (data flash) Program security: ROM code protect, ID code check 		
Debug Functi	ons	On-chip debug, on-board flash rewrite, address match interrupt × 4		
Operation Fre	equency/Supply Voltage	32 MHz/VCC1 = 2.7 to 5.5 V, VCC2 = 2.7 V to VCC1		
Current Cons	umption	Refer to the Electrical Characteristics chapter		
Operating Ter	mperature	-20°C to 85°C, -40°C to 85°C ⁽¹⁾		
Package		128-pin LQFP: PLQP0128KB-A (Previous package code: 128P6Q-A)		

Table 1.2 Specifications for the 128-Pin Package (2/2)

Notes:

1. See Table 1.5 "Product List (N-Version)" to Table 1.6 "Product List (D-Version)" for the operating temperature.

2. The CEC function indicates circuitry which supports the transmission and reception of CEC signals standardized by the High-Definition Multimedia Interface (HDMI). HDMI and High-Definition Multimedia Interface are registered trademarks of HDMI Licensing, LLC.

Figure 1.4 Block Diagram for the 100-Pin Package

1.6 Pin Functions

Signal Name	Pin Name	I/O	Power Supply	Description
Power supply input	VCC1, VCC2, VSS	I	-	Apply 2.7 to 5.5 V to pins VCC1 and VCC2 (VCC1 \ge VCC2), and 0 V to the VSS pin.
Analog power supply input	AVCC, AVSS	I	VCC1	This is the power supply for the A/D and D/A converters. Connect the AVCC pin to VCC1, and connect the AVSS pin to VSS.
Reset input	RESET	I	VCC1	Driving this pin low resets the MCU.
CNVSS	CNVSS	I	VCC1	Input pin to switch processor modes. After a reset, to start operating in single-chip mode, connect the CNVSS pin to VSS via a resistor. To start operating in microprocessor mode, connect the pin to VCC1.
External data bus width select input	BYTE	I	VCC1	Input pin to select the data bus of the external area. The data bus is 16 bits when it is low and 8 bits when it is high. This pin must be fixed either high or low. Connect the BYTE pin to VSS in single-chip mode.
	D0 to D7	I/O	VCC2	Inputs or outputs data (D0 to D7) while accessing an external area with a separate bus.
	D8 to D15	I/O	VCC2	Inputs or outputs data (D8 to D15) while accessing an external area with a 16-bit separate bus.
	A0 to A19	0	VCC2	Outputs address bits A0 to A19.
	A0/D0 to A7/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A0 to A7) by timesharing, while accessing an external area with an 8-bit multiplexed bus.
	A1/D0 to A8/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A1 to A8) by timesharing, while accessing an external area with a 16-bit multiplexed bus.
	$\overline{\text{CS0}}$ to $\overline{\text{CS3}}$	0	VCC2	Outputs chip-select signals $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ to specify an external area.
Bus control pins	WRL/WR WRH/BHE RD	0	VCC2	 Outputs WRL, WRH, (WR, BHE), and RD signals. WRL and WRH can be switched with BHE and WR. WRL, WRH, and RD selected If the external data bus is 16 bits, data is written to an even address in an external area when WRL is driven low. Data is written to an odd address when WRH is driven low. Data is read when RD is driven low. WR, BHE, and RD selected Data is written to an external area when WRH is driven low. Data is written to an external area when WRH is driven low. Data is read when RD is driven low. WR, BHE, and RD selected Data is written to an external area when RD is driven low. An odd address is accessed when BHE is driven low. Select WR, BHE, and RD when using an 8-bit external data bus.
	ALE	0	VCC2	Outputs an ALE signal to latch the address.
	HOLD	I	VCC2	$\overline{\text{HOLD}}$ input is unavailable. Connect the $\overline{\text{HOLD}}$ pin to VCC2 via a resistor (pull-up).
	HLDA	0	VCC2	In a hold state, HLDA outputs a low-level signal.
	RDY	Ι	VCC2	The MCU bus is placed in wait state while the $\overline{\text{RDY}}$ pin is driven low.

Table 1.12Pin Functions for the 128-Pin Package (1/3)

Power supply: VCC2 is used to supply power to the external bus associated pins. The dual power supply configuration allows VCC2 to interface at a different voltage than VCC1.

1. Overview

Signal Name	Pin Name	I/O	Power Supply	Description
Main clock input	XIN	Ι	VCC1	I/O for the main clock oscillator. Connect a ceramic resonator or crystal between pins XIN and XOUT. ⁽¹⁾
Main clock output	XOUT	0	VCC1	Input an external clock to XIN pin and leave XOUT pin open.
Sub clock input	XCIN	I	VCC1	I/O for a sub clock oscillator. Connect a crystal
Sub clock output	XCOUT	0	VCC1	clock to XCIN pin and leave XCOUT pin open.
BCLK output	BCLK	0	VCC2	Outputs the BCLK signal.
Clock output	CLKOUT	0	VCC2	Outputs a clock with the same frequency as fC, f1, f8, or f32.
INT interrupt input	INTO to INT2	I	VCC1	Input for the INT interrupt
	INT3 to INT7	I	VCC2	
NMI interrupt input	NMI	I	VCC1	Input for the MII interrupt.
Key input interrupt input	KI0 to KI3	Ι	VCC1	Input for the key input interrupt.
	TA0OUT to TA4OUT	I/O VCC1 I/O for timers A0 to A4 (TA0OUT is N drain output).		I/O for timers A0 to A4 (TA0OUT is N-channel open drain output).
Timer A	TA0IN to TA4IN	Ι	VCC1	Input for timers A0 to A4.
	ZP	I	VCC1	Input for Z-phase.
Timer B	TB0IN to TB5IN	Ι	VCC1	Input for timers B0 to B5.
	$U,\overline{U},V,\overline{V},W,\overline{W}$	0	VCC1	Output for the three-phase motor control timer.
Three-phase motor control timer	SD		VCC1	Forced cutoff input.
	IDU, IDV, IDW	I	VCC2	Input for the position data.
Real-time clock output	RTCOUT	0	VCC1	Output for the real-time clock.
PWM output	PWM0, PWM1	0	VCC1, VCC2	PWM output.
Remote control signal receiver input	PMC0, PMC1	Ι	VCC1	Input for the remote control signal receiver.
	CTS0 to CTS2, CTS5	Ι	VCC1	Input pins to control data transmission.
	CTS6, CTS7	I	VCC2	
	RTS0 to RTS2, RTS5	0	VCC1	Output pins to control data reception.
	RTS6, RTS7	0	VCC2	
Serial interface	CLK0 to CLK2, CLK5	I/O	VCC1	Transmit/receive clock I/O.
UART0 to UART2,	CLK6, CLK7	I/O	VCC2	
	RXD0 to RXD2, RXD5	I	VCC1	Serial data input.
	RXD6, RXD7	I	VCC2	
	TXD0 to TXD2, TXD5	0	VCC1	Serial data output. ⁽²⁾
	TXD6, TXD7	0	VCC2	
	CLKS1	0	VCC1	Output for the transmit/receive clock multiple-pin output function.

Table 1.13 Pin Functions for the 128-Pin Package (2/3)

Notes:

1. Contact the manufacturer of crystal/ceramic resonator regarding the oscillation characteristics.

 TXD2, SDA2, and SCL2 are N-channel open drain output pins. TXDi (i = 0, 1, 5 to 7), SDAi, and SCLi can be selected as CMOS output pins or N-channel open drain output pins.

4. Special Function Registers (SFRs)

4.1 SFRs

An SFR is a control register for a peripheral function.

Address	Register	Symbol	Reset Value
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	0000 0000b (CNVSS pin is low) 0000 0011b (CNVSS pin is high) ⁽²⁾
0005h	Processor Mode Register 1	PM1	0000 1000b
0006h	System Clock Control Register 0	CM0	0100 1000b
0007h	System Clock Control Register 1	CM1	0010 0000b
0008h	Chip Select Control Register	CSR	01h
0009h	External Area Recovery Cycle Control Register	EWR	XXXX XX00b
000Ah	Protect Register	PRCR	00h
000Bh	Data Bank Register	DBR	00h
000Ch	Oscillation Stop Detection Register	CM2	0X00 0010b ⁽³⁾
000Dh			
000Eh			
000Fh			
0010h	Program 2 Area Control Register	PRG2C	XXXX XX00b
0011h	External Area Wait Control Expansion Register	EWC	00h
0012h	Peripheral Clock Select Register	PCLKR	0000 0011b
0013h			
0014h			
0015h	Clock Prescaler Reset Flag	CPSRF	0XXX XXXXb
0016h	Peripheral Clock Stop Register 1	PCLKSTP1	0XXX XX00b
0017h			
0018h	Reset Source Determine Register	RSTFR	XX00 001Xb (hardware reset) ⁽⁴⁾
0019h	Voltage Detector 2 Flag Register	VCR1	0000 1000b ⁽⁵⁾
001Ah	Voltage Detector Operation Enable Register	VCR2	00h (5)
001Bh	Chip Select Expansion Control Register	CSE	00h
001Ch	PLL Control Register 0	PLC0	0X01 X010b
001Dh			
001Eh	Processor Mode Register 2	PM2	XX00 0X01b
001Fh			
•	•	· · · · ·	X: Undefined

Table 4.1SFR Information (1) (1)

Notes:

- 1. The blank areas are reserved. No access is allowed.
- 2. Software reset, watchdog timer reset, oscillator stop detect reset, voltage monitor 1 reset, and voltage monitor 2 reset do not affect the following bits: bits PM01 and PM00 in the PM0 register.
- 3. Oscillator stop detect reset does not affect bits CM20, CM21, and CM27.
- 4. The state of bits in the RSTFR register depends on the reset type.
- 5. This is the reset value after hardware reset. Refer to the explanation of each register for details.

Address	Register	Symbol	Reset Value
0300h	Timer B3/B4/B5 Count Start Flag	TBSR	000X XXXXb
0301h	-		
0302h			XXh
0303h	limer A1-1 Register	IA11	XXh
0304h			XXh
0305h	Timer A2-1 Register	TA21 -	XXh
0306h			XXh
0307h	Timer A4-1 Register	TA41 –	XXh
0308h	Three-Phase PWM Control Register 0	INVC0	00h
0309h	Three-Phase PWM Control Register 1	INVC1	00h
030Ab	Three-Phase Output Buffer Register 0	IDB0	XX11 1111b
030Rh	Three-Phase Output Buffer Register 1	IDB0	XX11 1111b
030Ch			XXh XXh
0200h	Timer P2 Interrupt Concration Frequency Set Counter		××h
03000	Providence Determined Control Desister		
030EN	Position-Data-Retain Function Control Register	PDRF	
030FI			VVb
03100	Timer B3 Register	TB3	XXN
0311h			XXh
0312h	Timer B4 Register	TB4	XXn
0313h			XXh
0314h	Timer B5 Register	TB5	XXh
0315h			XXh
0316h			
0317h			
0318h	Port Function Control Register	PFCR	0011 1111b
0319h			
031Ah			
031Bh	Timer B3 Mode Register	TB3MR	00XX 0000b
031Ch	Timer B4 Mode Register	TB4MR	00XX 0000b
031Dh	Timer B5 Mode Register	TB5MR	00XX 0000b
031Eh			
031Fh			
0320h	Count Start Flag	TABSR	00h
0321h			
0322h	One-Shot Start Flag	ONSF	00h
0323h	Trigger Select Register	TRGSR	00h
0324h	Increment/Decrement Flag	UDF	00h
0325h			
0326h			XXh
0327h	Timer A0 Register	TA0	XXh
0328h			XXh
0329h	Timer A1 Register	TA1	XXh
032Ah			XXh
032Rh	Timer A2 Register	TA2	XXh
032Ch			XXh
032Dh	Timer A3 Register	TA3	XXh
032Eh			XXh
032Eh	Timer A4 Register	TA4	<u> </u>
032111			Y: Undofined

Table 4.12SFR Information (12) (1)

Note:

1. The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
0360h	Pull-Up Control Register 0	PUR0	00h
0361h	Pull-Up Control Register 1	PUR1	0000 0000b ⁽²⁾
			0000 0010b
0362h	Pull-Up Control Register 2	PUR2	00h
0363h	Pull-Up Control Register 3	PUR3	00h
0364h			
0365h			
0366h	Port Control Register	PCR	0000 0XX0b
0367h			
0368h			
0369h	NMI/SD Digital Filter Register	NMIDF	XXXX X000b
036Ah			
036Bh			
036Ch			
036Dh			
036Eh			
036Fh			
0370h	PWM Control Register 0	PWMCON0	00h
0371h			
0372h	PWM0 Prescaler	PWMPRE0	00h
0373h	PWM0 Register	PWMREG0	00h
0374h	PWM1 Prescaler	PWMPRE1	00h
0375h	PWM1 Register	PWMREG1	00h
0376h	PWM Control Register 1	PWMCON1	00h
0377h			
0378h			
0379h			
037Ah			
037Bh			
037Ch	Count Source Protection Mode Register	CSPR	00h ⁽³⁾
037Dh	Watchdog Timer Refresh Register	WDTR	XXh
037Eh	Watchdog Timer Start Register	WDTS	XXh
037Fh	Watchdog Timer Control Register	WDC	00XX XXXXb
0380h to			
038Fh			
			X: Undefined

Table 4.14 SFR Information (14) (1)

Notes:

2. Values after hardware reset, power-on reset, or voltage monitor 0 reset are as follows:

- 00000000b when a low-level signal is input to the CNVSS pin

- 00000010b when a high-level signal is input to the CNVSS pin

Values after voltage monitor 1 reset, voltage monitor 2 reset, software reset, watchdog timer reset, or oscillation stop detect reset are as follows:

- 00000000b when bits PM01 and PM00 in the PM0 register are 00b (single-chip mode).

- 00000010b when bits PM01 and PM00 in the PM0 register are 01b (memory expansion mode) or 11b (microprocessor mode).

3. When the CSPROINI bit in the OFS1 address is 0, the reset value is 1000 0000b.

^{1.} The blank areas are reserved. No access is allowed.

5. Electrical Characteristics

5.1 Electrical Characteristics (Common to 3 V and 5 V)

5.1.1 Absolute Maximum Rating

Table 5.1Absolute Maximum Ratings

Symbol	ol Parameter		Condition	Rated Value	Unit
V _{CC1}	Supply voltage		$V_{CC1} = AV_{CC}$	-0.3 to 6.5	V
V _{CC2}	Supply voltage		$V_{CC1} = AV_{CC}$	–0.3 to V_{CC1} + 0.1 $^{(1)}$	V
AV _{CC}	Analog supply	voltage	$V_{CC1} = AV_{CC}$	-0.3 to 6.5	V
V _{REF}	Analog referen	ce voltage	$V_{CC1} = AV_{CC}$	–0.3 to V_{CC1} + 0.1 $^{(1)}$	V
Vı	Input voltage	RESET, CNVSS, BYTE, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1 XIN		–0.3 to V _{CC1} + 0.3 ⁽¹⁾	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7		-0.3 to V _{CC2} + 0.3 ⁽¹⁾	V
		P7_0, P7_1, P8_5		-0.3 to 6.5	V
Vo	Output voltage	P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1 XOUT		–0.3 to V _{CC1} + 0.3 ⁽¹⁾	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7		-0.3 to V _{CC2} + 0.3 ⁽¹⁾	V
		P7_0, P7_1, P8_5		-0.3 to 6.5	V
P _d	Power consum	ption	$-40^{\circ}C < T_{opr} \le 85^{\circ}C$	300	mW
T _{opr}	Operating	When the MCU is operating		-20 to 85/-40 to 85	°C
	temperature	Flash program erase	Program area Data area	0 to 60 -20 to 85/-40 to 85	
T _{stg}	Storage tempe	rature		-65 to 150	°C

Note:

1. Maximum value is 6.5 V.

Table 5.3

able 5.3 Recommended Operating Conditions (2/3) $V_{CC1} = V_{CC2} = 2.7$ to 5.5 V at $T_{opr} = -20^{\circ}$ C to 85°C/-40°C to 85°C unless otherwise specified.

Symbol	Parameter				Standard			
Symbol			Falameter	Min.	Тур.	Max.		
I _{OL(sum)}	Low peak output current	Sum of I _{OL(r} P2_0 to P2_ P10_0 to P1	_{beak)} at P0_0 to P0_7, P1_0 to P1_7, _7, P8_6, P8_7, P9_0 to P9_7, 10_7, P11_0 to P11_7, P14_0 to P14_1			80.0	mA	
		Sum of I _{OL(r} P5_0 to P5_ P8_0 to P8_	_{beak)} at P3_0 to P3_7, P4_0 to P4_7, _7, P6_0 to P6_7, P7_0 to P7_7, _5, P12_0 to P12_7, P13_0 to P13_7			80.0	mA	
I _{OL(peak)}	Low peak output current	P0_0 to P0_ P3_0 to P3_ P6_0 to P6_ P9_0 to P9_ P12_0 to P1	7, P1_0 to P1_7, P2_0 to P2_7, 7, P4_0 to P4_7, P5_0 to P5_7, 7, P7_0 to P7_7, P8_0 to P8_7, 7, P10_0 to P10_7, P11_0 to P11_7, 12_7, P13_0 to P13_7, P14_0, P14_1			10.0	mA	
I _{OL(avg)}	Low average output current ⁽¹⁾	P0_0 to P0_ P3_0 to P3_ P6_0 to P6_ P9_0 to P9_ P12_0 to P1	7, P1_0 to P1_7, P2_0 to P2_7, 7, P4_0 to P4_7, P5_0 to P5_7, 7, P7_0 to P7_7, P8_0 to P8_7, 7, P10_0 to P10_7, P11_0 to P11_7, 12_7, P13_0 to P13_7, P14_0, P14_1			5.0	mA	
f _(XIN)	Main clock oscillation	input frequency	V _{CC1} = 2.7 V to 5.5 V	2		20	MHz	
f _(XCIN)	Sub clock of	oscillation fre	quency		32.768	50	kHz	
f _(PLL)	PLL clock oscillation frequency		V _{CC1} = 2.7 V to 5.5 V	10		32	MHz	
f _(BCLK)	CPU opera	tion clock	•	2		32	MHz	
t _{SU(PLL)}	PLL freque	ency	V _{CC1} = 5.0 V			2	ms	
	synthesize stabilizatio	r n wait time	V _{CC1} = 3.0 V			3	ms	

Note:

The average output current is the mean value within 100 ms. 1.

5.1.6 Voltage Detector and Power Supply Circuit Electrical Characteristics

Table 5.11 Voltage Detector 0 Electrical Characteristics

The measurement condition is V_{CC1} = 2.7 to 5.5 V, T_{opr} = -20°C to 85°C/-40°C to 85°C, unless otherwise specified.

Symbol	Parameter	Condition		Unit		
Symbol	i arameter	Condition	Min.	Тур.	Max.	Onit
V _{det0}	Voltage detection level Vdet0_0 ⁽¹⁾	When V _{CC1} is falling.	1.80	1.90	2.10	V
	Voltage detection level Vdet0_2 ⁽¹⁾	When V _{CC1} is falling.	2.70	2.85	3.00	V
-	Voltage detector 0 response time ⁽³⁾	When V _{CC1} falls from 5 V to (Vdet0_0 - 0.1) V			200	μS
-	Voltage detector self power consumption	VC25 = 1, V _{CC1} = 5.0 V		1.5		μΑ
t _{d(E-A)}	Waiting time until voltage detector operation starts ⁽²⁾				100	μS

Notes:

1. Select the voltage detection level with the VDSEL1 bit in the OFS1 address.

2. Necessary time until the voltage detector operates when setting to 1 again after setting the VC25 bit in the VCR2 register to 0.

3. Time from when passing the V_{det0} until when a voltage monitor 0 reset is generated.

Table 5.12 Voltage Detector 1 Electrical Characteristics

The measurement condition is V_{CC1} = 2.7 to 5.5 V, T_{opr} = -20°C to 85°C/-40°C to 85°C, unless otherwise specified.

Symbol	Parameter	Condition		Llpit		
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Unit
V _{det1}	Voltage detection level Vdet1_6 ⁽¹⁾	When V _{CC1} is falling.	2.80	3.10	3.40	V
	Voltage detection level Vdet1_B ⁽¹⁾	When V _{CC1} is falling.	3.55	3.85	4.15	V
	Voltage detection level Vdet1_F (1)	When V _{CC1} is falling.	4.15	4.45	4.75	V
-	Hysteresis width when V _{CC1} of voltage detector 1 is rising			0.15		V
-	Voltage detector 1 response time ⁽³⁾	When V _{CC1} falls from 5 V to (Vdet1_0 - 0.1) V			200	μS
-	Voltage detector self power consumption	VC26 = 1, V _{CC1} = 5.0 V		1.7		μΑ
t _{d(E-A)}	Waiting time until voltage detector operation starts ⁽²⁾				100	μS

Notes:

1. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.

2. Necessary time until the voltage detector operates when setting to 1 again after setting the VC26 bit in the VCR2 register to 0.

3. Time from when passing the V_{det1} until when a voltage monitor 1 reset is generated.

$V_{\rm CC1} = V_{\rm CC2} = 5 \ V$

Electrical Characteristics (4) Table 5.21

R5F3651ECNFC, R5F3651KCNFC, R5F3650KCNFA, R5F3650KCNFB, R5F3651MCNFC, R5F3650MCNFA, R5F3650MCNFB, R5F3651NCNFC, R5F3650NCNFA, R5F3650NCNFB, R5F3651ECDFC, R5F3651KCDFC, R5F3650KCDFA, R5F3650KCDFB, R5F3651MCDFC, R5F3650MCDFA, R5F3650MCDFB, R5F3651NCDFC, R5F3650NCDFA, R5F3650NCDFB V

/ \/	101- 5 5 1 1 1 0 1	- I T 0000 I - 0500	1 4000 1- 0500 (OO MILL	C 1
A = V = A	4 2 to 5 5 V Voo = U V	$at = -20^{\circ}$ $to 85^{\circ}$	-40° 1085° 1085°	= 32 MIHZ LINIESS OTHERWISE SHECIT	nen
C(1) = V(1) = 1	$\pm 12 10 0.0 $, $\sqrt{55} = 0$	1000 - 2000000			iou.
001 002	, 00				

Symbol	Parameter		Measuring Condition		Standard	3	Unit
D				Min.	Тур.	Max.	01111
R _{fXCIN}	XCIN				8		MΩ
I _{CC}	Power supply current	High-speed mode	f _(BCLK) = 32 MHz				
			XIN = 4 MHz (square wave), PLL multiplied by 8		26.0		mA
	In single-chip, mode,		125 kHz on-chip oscillator stopped				
	the output pin are		f _(BCLK) = 32 MHz, A/D conversion				
	open and other pins		XIN = 4 MHz (square wave), PLL multiplied by 8		27.0		mA
	are V _{SS}		125 kHz on-chip oscillator stopped				
			$f_{(BCLK)} = 20 \text{ MHz}$				
			XIN = 20 MHz (square wave)		17.0		mA
			125 kHz on-chip oscillator stopped				
		40 MHz on-chip	Main clock stopped				
		oscillator mode	40 MHz on-chip oscillator on,		18.0		mA
			divide-by-4 (f(BCLK) = 10 MHz)				
		405 111	125 kHz on-chip oscillator stopped	I			
		125 KHZ ON-Chip	Main clock stopped				
		oscillator mode	40 MHz on-chip oscillator stopped		550.0		μA
			125 KHZ on-chip oscillator on, no division				
		Low power mode		ļ!			
		Low-power mode	I(BCLK) = 32 KHz				
			In low-power mode		170.0		μA
			FMR22 = FMR23 = 1				-
			on flash memory ⁽¹⁾	I			
			$f_{(BCLK)} = 32 \text{ kHz}$				
			In low-power mode		45.0		μA
			on RAM ⁽¹⁾				
		Wait mode	Main clock stopped				
			40 MHz on-chip oscillator stopped				
			125 kHz on-chip oscillator on		20.5		μA
			Peripheral clock operating				
			$T_{opr} = 25^{\circ}C$				
			f _(BCLK) = 32 kHz (oscillation capacity High)				
			40 MHz on-chip oscillator stopped				
			125 kHz on-chip oscillator stopped		11.0		μA
			Peripheral clock operating				
			$T_{opr} = 25^{\circ}C$				
			f _(BCLK) = 32 kHz (oscillation capacity low)				
			40 MHz on-chip oscillator stopped				
			125 kHz on-chip oscillator stopped		6.0		μA
			Peripheral clock operating				-
			$T_{opr} = 25^{\circ}C$				
			XIN = 6 MHz				
			40 MHz on-chip oscillator stopped				
			125 kHz on-chip oscillator stopped				
			Peripheral clock f1 provision disabled except		10		
			timers (PCKSTP1A = 1)		1.2		mΑ
			Main clock as a timer clock source				
			(PCKSTP11 = 0, PCKSTP17 = 1)				
			A given timer operating				
		Stop mode	Main clock stopped				
			40 MHz on-chip oscillator stopped				
			125 kHz on-chip oscillator stopped		1.7		μΑ
			Peripheral clock stopped				
			T _{opr} = 25°C				
		During flash memory	$f_{(BCLK)} = 10 \text{ MHz}, \text{ PM17} = 1 \text{ (one wait)}$		00.0		
		program	$V_{CC1} = 5.0 V$		20.0		mΑ
		During flash memory	$f_{(BCLK)} = 10 \text{ MHz}, \text{ PM17} = 1 \text{ (one wait)}$	<u>├</u>			
		erase	$V_{CC1} = 5.0 V$		30.0		mA
L							

Note: 1.

RENESAS

 $V_{CC1} = V_{CC2} = 5 V$

Switching Characteristics

 $(V_{CC1} = V_{CC2} = 5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.2.4.4 In Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$, $3\phi + 4\phi$, and $4\phi + 5\phi$, and When Accessing External Area

Table 5.39Memory Expansion Mode and Microprocessor Mode (in Wait State Setting 2 ϕ + 3 ϕ , 2 ϕ + 4 ϕ , 3 ϕ + 4 ϕ , and 4 ϕ + 5 ϕ , and When Accessing External Area)

Symbol	Parameter	Measuring	Standard		Lloit
Cymbol	Faianielei	Condition	Min.	Max.	Onit
t _{d(BCLK-AD)}	Address output delay time			25	ns
t _{h(BCLK-AD})	Address output hold time (in relation to BCLK)		0		ns
t _{h(RD-AD})	Address output hold time (in relation to RD)		0		ns
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns
t _{d(BCLK-CS)}	Chip select output delay time			25	ns
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns
t _{d(BCLK-ALE)}	ALE signal output delay time			15	ns
t _{h(BCLK-ALE})	ALE signal output hold time	See	-4		ns
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.14		25	ns
t _{h(BCLK-RD)}	RD signal output hold time		0		ns
t _{d(BCLK-WR)}	WR signal output delay time			25	ns
t _{h(BCLK-WR)}	WR signal output hold time		0		ns
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 4)		ns

Notes:

1. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)\times10^9}{f_{(BCLK)}} - 40[ns] \qquad \text{n is 3 for } 2\phi + 3\phi, 4 \text{ for } 2\phi + 4\phi, 4 \text{ for } 3\phi + 4\phi, \text{ and 5 for } 4\phi + 5\phi.$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{6} - 10[ns]$$

$$f_{(BCLK)}$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times ln(1 - V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF $\times 1$ k $\Omega \times ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

4. Calculated according to the BCLK frequency as follows: $\frac{0.5 \times 10^9}{f_{(BCLK)}} - 20[ns]$

Hold time is equal to or less than 0 ns when the BCLK frequency exceeds 25 MHz.

$V_{CC1} = V_{CC2} = 5 V$

Switching Characteristics

(V_{CC1} = V_{CC2} = 5 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85°C/-40°C to 85°C unless otherwise specified)

5.2.4.5 In Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$, $3\phi + 4\phi$, and $4\phi + 5\phi$, and When Inserting 1 to 3 Recovery Cycles and Accessing External Area

Table 5.40Memory Expansion and Microprocessor Modes (in Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$,
 $3\phi + 4\phi$, and $4\phi + 5\phi$, and When Inserting 1 to 3 Recovery Cycles and Accessing
External Area)

Symbol	Parameter	Measuring	Standard		Lloit
Cymbol	Falanielei	Condition	Min.	Max.	Onit
t _{d(BCLK-AD)}	Address output delay time			25	ns
t _{h(BCLK-AD})	Address output hold time (in relation to BCLK)		0		ns
t _{h(RD-AD})	Address output hold time (in relation to RD)		(Note 4)		ns
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns
t _{d(BCLK-CS)}	Chip select output delay time			25	ns
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns
t _{d(BCLK-ALE)}	ALE signal output delay time			15	ns
t _{h(BCLK-ALE})	ALE signal output hold time	See	-4		ns
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.14		25	ns
t _{h(BCLK-RD)}	RD signal output hold time		0		ns
t _{d(BCLK-WR)}	WR signal output delay time			25	ns
t _{h(BCLK-WR)}	WR signal output hold time		0		ns
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 5)		ns

Notes:

1. Calculated according to the BCLK frequency as follows:

$$\frac{n \times 10^9}{f_{(BCLK)}} - 40[ns]$$

n is 3 for $2\phi + 3\phi$, 4 for $2\phi + 4\phi$, 4 for $3\phi + 4\phi$, and 5 for $4\phi + 5\phi$.

2. Calculated according to the BCLK frequency as follows:

$$\frac{m \times 10^9}{f_{(BCLK)}} - 10[ns]$$

m is 1 when 1 recovery cycle is inserted, 2 when 2 recovery cycles are inserted, and 3 when 3 recovery cycles are inserted.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times ln(1-V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF $\times 1$ k $\Omega \times ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

4. Calculated according to the BCLK frequency as follows:

$$\frac{m \times 10^9}{f_{(BCLK)}} + 0[ns]$$
 m is 1 when 1 recovery cycle is inserted, 2 when 2 recovery cycles are inserted, and 3 when 3 recovery cycles are inserted.

5. Calculated according to the BCLK frequency as follows:

$$\frac{m \times 10^9}{f_{(BCLK)}} - 20[ns]$$
 m is 1 when 1 recovery cycle is inserted, 2 when 2 recovery cycles are inserted, and 3 when 3 recovery cycles are inserted.

 $V_{CC1} = V_{CC2} = 3 V$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 3 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.3.2.5 Serial Interface

Table 5.55Serial Interface

Symbol	Parameter	Stan	Lloit	
		Min.	Max.	Onit
t _{c(CK)}	CLKi input cycle time	300		ns
t _{w(CKH)}	CLKi input high pulse width	150		ns
t _{w(CKL)}	CLKi input low pulse width	150		ns
t _{d(C-Q)}	TXDi output delay time		160	ns
t _{h(C-Q)}	TXDi hold time	0		ns
t _{su(D-C)}	RXDi input setup time	100		ns
t _{h(C-D)}	RXDi input hold time	90		ns

Figure 5.25 Serial Interface

5.3.2.6 External Interrupt INTi Input

Table 5.56 External Interrupt INTi Input

Symbol	Parameter	Stan	Lloit	
		Min.	Max.	Offic
t _{w(INH)}	INTi input high pulse width	380		ns
t _{w(INL)}	INTi input low pulse width	380		ns

Figure 5.26 External Interrupt INTi Input

 $V_{CC1} = V_{CC2} = 3 V$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 3 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.3.3 Timing Requirements (Memory Expansion Mode and Microprocessor Mode)

Table 5.58	Memory Expansion Mode and Microprocessor Mode
------------	---

Symbol	Parametar	Stan	Linit	
	Falanetei	Min.	Max.	Offic
t _{ac1(RD-DB)}	Data input access time (for setting with no wait)		(Note 1)	ns
t _{ac2(RD-DB)}	Data input access time (for setting with wait)		(Note 2)	ns
t _{ac3(RD-DB)}	Data input access time (when accessing multiplex bus area)		(Note 3)	ns
t _{ac4(RD-DB)}	Data input access time (for setting with 2 ϕ + 3 ϕ or more)		(Note 4)	ns
t _{su(DB-RD)}	Data input setup time	60		ns
t _{su(RDY-BCLK)}	RDY input setup time	85		ns
t _{h(RD-DB)}	Data input hold time	0		ns
t _{h(BCLK-RDY)}	RDY input hold time	0		ns

Notes:

1. Calculated according to the BCLK frequency as follows:

 $\frac{0.5 \times 10^9}{f_{(BCLK)}} - 60[ns]$

2. Calculated according to the BCLK frequency as follows:

 $\frac{(n+0.5) \times 10^9}{f_{(BCLK)}} - 60[ns]$ n is 1 for 1 wait setting, 2 for 2 waits setting and 3 for 3 waits setting.

3. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5) \times 10^9}{f_{(BCLK)}} - 60[ns]$ n is 2 for 2 waits setting, 3 for 3 waits setting.

4. Calculated according to the BCLK frequency as follows:

 $\frac{n \times 10^9}{f_{(BCLK)}} - 60[ns] \qquad \text{n is 3 for 2} \phi + 3 \phi, 4 \text{ for 2} \phi + 4 \phi, 4 \text{ for 3} \phi + 4 \phi, 5 \text{ for 4} \phi + 5 \phi,.$

Figure 5.28 Timing Diagram

Figure 5.30 Timing Diagram

 $V_{CC1} = V_{CC2} = 3 V$

Switching Characteristics

 $(V_{CC1} = V_{CC2} = 3 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.3.4.3 In 2 or 3 Waits Setting, and When Accessing External Area and Using Multiplexed Bus

Table 5.61Memory Expansion Mode and Microprocessor Mode (in 2 or 3 Waits Setting, and When
Accessing External Area and Using Multiplexed Bus) ⁽⁵⁾

Symbol	Parameter	Measuring	Standard		Linit
Symbol		Condition	Min.	Max.	Onit
t _{d(BCLK-AD)}	Address output delay time			50	ns
t _{h(BCLK-AD)}	Address output hold time (in relation to BCLK)		0		ns
t _{h(RD-AD)}	Address output hold time (in relation to RD)		(Note 1)		ns
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 6)		ns
t _{d(BCLK-CS)}	Chip select output delay time			50	ns
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns
t _{h(RD-CS)}	Chip select output hold time (in relation to RD)		(Note 1)		ns
t _{h(WR-CS)}	Chip select output hold time (in relation to WR)		(Note 1)		ns
t _{d(BCLK-RD)}	RD signal output delay time			40	ns
t _{h(BCLK-RD)}	RD signal output hold time		0		ns
t _{d(BCLK-WR)}	WR signal output delay time			40	ns
t _{h(BCLK-WR)}	WR signal output hold time	See Figure 5.29	0		ns
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			50	ns
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 2)		ns
t _{h(WR-DB)}	Data output hold time (in relation to WR)		(Note 7)		ns
t _{d(BCLK-ALE)}	ALE signal output delay time (in relation to BCLK)			25	ns
t _{h(BCLK-ALE)}	ALE signal output hold time (in relation to BCLK)		-4		ns
t _{d(AD-ALE)}	ALE signal output delay time (in relation to Address)		(Note 3)		ns
t _{h(AD-ALE)}	ALE signal output hold time (in relation to Address)		(Note 4)		ns
t _{d(AD-RD)}	RD signal output delay from the end of address		0		ns
t _{d(AD-WR)}	WR signal output delay from the end of address		0		ns
t _{dz(RD-AD)}	Address output floating start time			8	ns

Notes:

1. Calculated according to the BCLK frequency as follows:
$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 10[ns]$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)\times10^{7}}{f_{(BCLK)}} - 50[ns]$$
 n is 2 for 2 waits setting, 3 for 3 waits setting.

3. Calculated according to the BCLK frequency as follows:
$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 40[ns]$$

4. Calculated according to the BCLK frequency as follows:
$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 15[ns]$$

5. When using multiplexed bus, set $f_{(BCLK)}$ 12.5 MHz or less.

6. Calculated according to the BCLK frequency as follows:
$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 15[ns]$$

7. Calculated according to the BCLK frequency as follows: $\frac{0.5 \times 10^9}{f_{(BCLK)}} - 25[ns]$

