

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	M16C/60
Core Size	16-Bit
Speed	32MHz
Connectivity	EBI/EMI, I²C, SIO, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f3650ecnfb-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Item	Function	Description		
	Timer A	16-bit timer × 5 Timer mode, event counter mode, one-shot timer mode, pulse width modulation (PWM) mode Event counter two-phase pulse signal processing (two-phase encoder input) × 3 Programmable output mode × 3		
Timers	Timer B	16-bit timer × 6 Timer mode, event counter mode, pulse period measurement mode, pulse width measurement mode		
	Three-phase motor control timer functions	 Three-phase inverter control (timer A1, timer A2, timer A4, timer B2) On-chip dead time timer 		
	Real-time clock	Count: seconds, minutes, hours, days of the week		
	PWM function	8 bits × 2		
	Remote control signal receiver	 2 circuits 4 wave pattern matchings (differentiate wave pattern for headers, data 0, data 1, and special data) 6-byte receive buffer (1 circuit only) Operating frequency of 32 kHz 		
Serial Interface	UART0 to UART2, UART5 to UART7	Clock synchronous/asynchronous × 6 channels I ² C-bus, IEBus, special mode 2 SIM (UART2)		
	SI/O3, SI/O4	Clock synchronization only × 2 channels		
Multi-master	I ² C-bus Interface	1 channel		
CEC Functio	ns ⁽²⁾	CEC transmit/receive, arbitration lost detection, ACK automatic output, operation frequency of 32 kHz		
A/D Converte	er	10-bit resolution \times 26 channels, including sample and hold function Conversion time: 1.72 μs		
D/A Converte	er	8-bit resolution x 2 circuits		
CRC Calcula	tor	CRC-CCITT (X ¹⁶ + X ¹² + X ⁵ + 1), CRC-16 (X ¹⁶ + X ¹⁵ + X ² + 1) compliant		
Flash Memo	ſŷ	 Program and erase power supply voltage: 2.7 to 5.5 V Program and erase cycles: 1,000 times (program ROM 1, program ROM 2), 10,000 times (data flash) Program security: ROM code protect, ID code check 		
Debug Funct	ions	On-chip debug, on-board flash rewrite, address match interrupt × 4		
-	equency/Supply Voltage	25 MHz/VCC1 = 2.7 to 5.5 V, VCC2 = 2.7 V to VCC1 32 MHz/VCC1 = 2.7 to 5.5 V, VCC2 = 2.7 V to VCC1		
Current Cons	sumption	Refer to the Electrical Characteristics chapter		
Operating Te	mperature	-20°C to 85°C, -40°C to 85°C ⁽¹⁾		
Package		100-pin QFP: PRQP0100JD-B (Previous package code: 100P6F-A) 100-pin LQFP: PLQP0100KB-A (Previous package code: 100P6Q-A)		

Table 1.4	Specifications for the 100-Pin Package (2/2)
-----------	--

Notes:

1. See Table 1.5 "Product List (N-Version)" to Table 1.6 "Product List (D-Version)" for the operating temperature.

2. The CEC function indicates circuitry which supports the transmission and reception of CEC signals standardized by the High-Definition Multimedia Interface (HDMI). HDMI and High-Definition Multimedia Interface are registered trademarks of HDMI Licensing, LLC.

1.6 Pin Functions

Signal Name	Pin Name	I/O	Power Supply	Description
Power supply input	VCC1, VCC2, VSS	I	-	Apply 2.7 to 5.5 V to pins VCC1 and VCC2 (VCC1 \geq VCC2), and 0 V to the VSS pin.
Analog power supply input	AVCC, AVSS	I	VCC1	This is the power supply for the A/D and D/A converters. Connect the AVCC pin to VCC1, and connect the AVSS pin to VSS.
Reset input	RESET	I	VCC1	Driving this pin low resets the MCU.
CNVSS	CNVSS	I	VCC1	Input pin to switch processor modes. After a reset, to start operating in single-chip mode, connect the CNVSS pin to VSS via a resistor. To start operating in microprocessor mode, connect the pin to VCC1.
External data bus width select input	BYTE	I	VCC1	Input pin to select the data bus of the external area. The data bus is 16 bits when it is low and 8 bits when it is high. This pin must be fixed either high or low. Connect the BYTE pin to VSS in single-chip mode.
	D0 to D7	I/O	VCC2	Inputs or outputs data (D0 to D7) while accessing an external area with a separate bus.
	D8 to D15	I/O	VCC2	Inputs or outputs data (D8 to D15) while accessing an external area with a 16-bit separate bus.
	A0 to A19	0	VCC2	Outputs address bits A0 to A19.
	A0/D0 to A7/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A0 to A7) by timesharing, while accessing an external area with an 8-bit multiplexed bus.
	A1/D0 to A8/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A1 to A8) by timesharing, while accessing an external area with a 16-bit multiplexed bus.
	$\overline{\text{CS0}}$ to $\overline{\text{CS3}}$	0	VCC2	Outputs chip-select signals $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ to specify an external area.
Bus control pins	WRL/WR WRH/BHE RD	0	VCC2	 Outputs WRL, WRH, (WR, BHE), and RD signals. WRL and WRH can be switched with BHE and WR. WRL, WRH, and RD selected If the external data bus is 16 bits, data is written to an even address in an external area when WRL is driven low. Data is written to an odd address when WRH is driven low. Data is read when RD is driven low. WR, BHE, and RD selected Data is written to an external area when WRH is driven low. Data is written to an external area when WRH is driven low. Data is read when RD is driven low. WR, BHE, and RD selected Data is written to an external area when RD is driven low. An odd address is accessed when BHE is driven low. Select WR, BHE, and RD when using an 8-bit external data bus.
	ALE	0	VCC2	Outputs an ALE signal to latch the address.
	HOLD	Ι	VCC2	HOLD input is unavailable. Connect the HOLD pin to VCC2 via a resistor (pull-up).
	HLDA	0	VCC2	In a hold state, HLDA outputs a low-level signal.
	RDY	I	VCC2	The MCU bus is placed in wait state while the $\overline{\text{RDY}}$ pin is driven low.

Table 1.12Pin Functions for the 128-Pin Package (1/3)

Power supply: VCC2 is used to supply power to the external bus associated pins. The dual power supply configuration allows VCC2 to interface at a different voltage than VCC1.

Signal Name	Pin Name	I/O	Power Supply	Description	
	SDA0 to SDA2, SDA5	I/O	VCC1	Serial data I/O.	
UART0 to UART2, UART5 to UART7	SDA6, SDA7	I/O	VCC2		
I ² C mode	SCL0 to SCL2, SCL5	I/O	VCC1	Transmit/receive clock I/O.	
	SCL6, SCL7	I/O	VCC2		
Corrig Linterfood	CLK3, CLK4	I/O	VCC1	Transmit/receive clock I/O.	
Serial interface SI/O3, SI/O4	SIN3, SIN4	Ι	VCC1	Serial data input.	
	SOUT3, SOUT4	0	VCC1	Serial data output.	
Multi-master I ² C-	SDAMM	I/O	VCC1	Serial data I/O (N-channel open drain output).	
bus interface	SCLMM	I/O	VCC1	Transmit/receive clock I/O (N-channel open drain output).	
CEC I/O	CEC	I/O	VCC1	CEC I/O (N-channel open drain output).	
Reference voltage input	VREF	I	VCC1	Reference voltage input for the A/D and D/A converters.	
	AN0 to AN7	I	VCC1		
A/D converter	AN0_0 to AN0_7 AN2_0 to AN2_7	I	VCC2	Analog input.	
	ADTRG	Ι	VCC1	External trigger input.	
	ANEX0, ANEX1	I	VCC1	Extended analog input.	
D/A converter	DA0, DA1	0	VCC1	Output pin the D/A converter.	
I/O ports	P0_0 to P0_7 P1_0 to P1_7 P2_0 to P2_7 P3_0 to P3_7 P4_0 to P4_7 P5_0 to P5_7 P12_0 to P12_7 P13_0 to P13_7	I/O	VCC2	8-bit CMOS I/O ports. A direction register determines whether each pin is used as an input port or an output port. A pull-up resistor may be enabled or disabled for input ports in 4-bit units.	
	P6_0 to P6_7 P7_0 to P7_7 P8_0 to P8_7 P9_0 to P9_7 P10_0 to P10_7 P11_0 to P11_7	I/O	VCC1	8-bit I/O ports having equivalent functions to P0. However, P7_0, P7_1, and P8_5 are N-channel open drain output ports. No pull-up resistor is provided. P8_5 is an input port for verifying the NMI pin level and shares a pin with NMI.	
	P14_0, P14_1	I/O	VCC1	I/O ports having equivalent functions to P0.	

 Table 1.14
 Pin Functions for the 128-Pin Package (3/3)

3. Address Space

3.1 Address Space

The M16C/65C Group has a 1 MB address space from 00000h to FFFFFh. Address space is expandable to 4 MB with the memory area expansion function. Addresses 40000h to BFFFFh can be used as external areas from bank 0 to bank 7. Figure 3.1 shows the Address Space. Areas that can be accessed vary depending on processor mode and the status of each control bit.

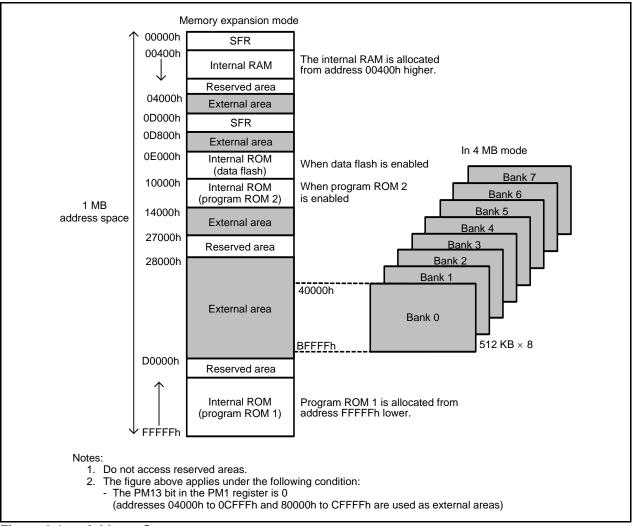


Figure 3.1 Address Space

4. Special Function Registers (SFRs)

4.1 SFRs

An SFR is a control register for a peripheral function.

Address	Register	Symbol	Reset Value
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	0000 0000b (CNVSS pin is low) 0000 0011b (CNVSS pin is high) ⁽²
0005h	Processor Mode Register 1	PM1	0000 1000b
0006h	System Clock Control Register 0	CM0	0100 1000b
0007h	System Clock Control Register 1	CM1	0010 0000b
0008h	Chip Select Control Register	CSR	01h
0009h	External Area Recovery Cycle Control Register	EWR	XXXX XX00b
000Ah	Protect Register	PRCR	00h
000Bh	Data Bank Register	DBR	00h
000Ch	Oscillation Stop Detection Register	CM2	0X00 0010b ⁽³⁾
000Dh			
000Eh			
000Fh			
0010h	Program 2 Area Control Register	PRG2C	XXXX XX00b
0011h	External Area Wait Control Expansion Register	EWC	00h
0012h	Peripheral Clock Select Register	PCLKR	0000 0011b
0013h			
0014h			
0015h	Clock Prescaler Reset Flag	CPSRF	0XXX XXXXb
0016h	Peripheral Clock Stop Register 1	PCLKSTP1	0XXX XX00b
0017h			
0018h	Reset Source Determine Register	RSTFR	XX00 001Xb (hardware reset) ⁽⁴⁾
0019h	Voltage Detector 2 Flag Register	VCR1	0000 1000b ⁽⁵⁾
001Ah	Voltage Detector Operation Enable Register	VCR2	00h (5)
001Bh	Chip Select Expansion Control Register	CSE	00h
001Ch	PLL Control Register 0	PLC0	0X01 X010b
001Dh			
001Eh	Processor Mode Register 2	PM2	XX00 0X01b
001Fh			

Table 4.1SFR Information (1) (1)

Notes:

- 1. The blank areas are reserved. No access is allowed.
- 2. Software reset, watchdog timer reset, oscillator stop detect reset, voltage monitor 1 reset, and voltage monitor 2 reset do not affect the following bits: bits PM01 and PM00 in the PM0 register.
- 3. Oscillator stop detect reset does not affect bits CM20, CM21, and CM27.
- 4. The state of bits in the RSTFR register depends on the reset type.
- 5. This is the reset value after hardware reset. Refer to the explanation of each register for details.

Table 4.2	SFR mornation (2) (1)		
Address	Register	Symbol	Reset Value
0020h			
0021h			
0022h	40 MHz On-Chip Oscillator Control Register 0	FRA0	XXXX XX00b
0023h			
0024h			
0025h			
0026h	Voltage Monitor Function Select Register	VWCE	00h
0027h			
0028h	Voltage Detector 1 Level Select Register	VD1LS	0000 1010b ⁽²⁾
0029h			
002Ah	Voltage Monitor 0 Control Register	VW0C	1000 XX10b (2)
002Bh	Voltage Monitor 1 Control Register	VW1C	1000 1010b ⁽²⁾
002Ch	Voltage Monitor 2 Control Register	VW2C	1000 0X10b ⁽²⁾
002Dh			
002Eh			
002Fh			
0030h			
0031h			
0032h			
0033h			
0034h			
0035h			
0036h			
0037h			
0038h			
0039h			
003Ah			
003Bh			
003Ch			
003Dh			
003Eh			
003Fh			

Table 4.2SFR Information (2) (1)

Notes:

2. This is the reset value after hardware reset. Refer to the explanation of each register for details.

^{1.} The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
0040h			
0041h			
0042h	INT7 Interrupt Control Register	INT7IC	XX00 X000b
0043h	INT6 Interrupt Control Register	INT6IC	XX00 X000b
0044h	INT3 Interrupt Control Register	INT3IC	XX00 X000b
0045h	Timer B5 Interrupt Control Register	TB5IC	XXXX X000b
0046h	Timer B4 Interrupt Control Register UART1 Bus Collision Detection Interrupt Control Register	TB4IC U1BCNIC	XXXX X000b
0047h	Timer B3 Interrupt Control Register UART0 Bus Collision Detection Interrupt Control Register	TB3IC U0BCNIC	XXXX X000b
0048h	SI/O4 Interrupt Control Register INT5 Interrupt Control Register	S4IC INT5IC	XX00 X000b
0049h	SI/O3 Interrupt Control Register INT4 Interrupt Control Register	S3IC INT4IC	XX00 X000b
004Ah	UART2 Bus Collision Detection Interrupt Control Register	BCNIC	XXXX X000b
004Bh	DMA0 Interrupt Control Register	DM0IC	XXXX X000b
004Ch	DMA1 Interrupt Control Register	DM1IC	XXXX X000b
004Dh	Key Input Interrupt Control Register	KUPIC	XXXX X000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXX X000b
004Fh	UART2 Transmit Interrupt Control Register	S2TIC	XXXX X000b
0050h	UART2 Receive Interrupt Control Register	S2RIC	XXXX X000b
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXX X000b
0052h	UART0 Receive Interrupt Control Register	SORIC	XXXX X000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXX X000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXX X000b
0055h	Timer A0 Interrupt Control Register	TA0IC	XXXX X000b
0056h	Timer A1 Interrupt Control Register	TA1IC	XXXX X000b
0057h	Timer A2 Interrupt Control Register	TA2IC	XXXX X000b
0058h	Timer A3 Interrupt Control Register	TA3IC	XXXX X000b
0059h	Timer A4 Interrupt Control Register	TA4IC	XXXX X000b
005Ah	Timer B0 Interrupt Control Register	TB0IC	XXXX X000b
005Bh	Timer B1 Interrupt Control Register	TB1IC	XXXX X000b
005Ch	Timer B2 Interrupt Control Register	TB2IC	XXXX X000b
005Dh	INTO Interrupt Control Register	INTOIC	XX00 X000b
005Eh	INT1 Interrupt Control Register	INT1IC	XX00 X000b
005Fh	INT2 Interrupt Control Register	INT2IC	XX00 X000b

Table 4.3SFR Information (3) (1)

Note:

1. The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
0210h			00h
0211h	Address Match Interrupt Register 0	RMAD0	00h
0212h			X0h
0213h			
0214h			00h
0215h	Address Match Interrupt Register 1	RMAD1	00h
0216h			X0h
0217h			
0218h			00h
0219h	Address Match Interrupt Register 2	RMAD2	00h
021Ah			X0h
021Bh			
021Ch			00h
021Dh	Address Match Interrupt Register 3	RMAD3	00h
021Eh			X0h
021Fh			
0220h	Flash Memory Control Register 0	FMR0	0000 0001b (Other than user boot mode) 0010 0001b (User boot mode)
0221h	Flash Memory Control Register 1	FMR1	00X0 XX0Xb
0222h	Flash Memory Control Register 2	FMR2	XXXX 0000b
0223h	Flash Memory Control Register 3	FMR3	XXXX 0000b
0224h			
0225h			
0226h			
0227h			
0228h			
0229h			
022Ah			
022Bh			
022Ch			
022Dh			
022Eh			
022Fh			
0230h	Flash Memory Control Register 6	FMR6	XX0X XX00b
0231h			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0232h			
0232h			1
0233h			1
023411 0235h			
0235h			
0230h			
0237h 0238h			
0230h			
0239h			+
023An 023Bh			
023BN 023Ch			
023Ch 023Dh			
023Dh 023Eh			
023Fh			

Table 4.8SFR Information (8) (1)

X: Undefined

Note:

1. The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
03C0h	A/D Register 0	AD0	XXXX XXXXb
03C1h	A/D Register 0	ADU	0000 00XXb
03C2h	A/D Desister 4	4.54	XXXX XXXXb
03C3h	A/D Register 1	AD1	0000 00XXb
03C4h		4.02	XXXX XXXXb
03C5h	A/D Register 2	AD2	0000 00XXb
03C6h		4.52	XXXX XXXXb
03C7h	A/D Register 3	AD3	0000 00XXb
03C8h		4.5.4	XXXX XXXXb
03C9h	A/D Register 4	AD4	0000 00XXb
03CAh		105	XXXX XXXXb
03CBh	A/D Register 5	AD5	0000 00XXb
03CCh			XXXX XXXXb
03CDh	A/D Register 6	AD6	0000 00XXb
03CEh			XXXX XXXXb
03CFh	A/D Register 7	AD7	0000 00XXb
03D0h		+ +	
03D1h			
03D2h			
03D3h			
03D4h	A/D Control Register 2	ADCON2	0000 X00Xb
03D5h			
03D6h	A/D Control Register 0	ADCON0	0000 0XXXb
03D7h	A/D Control Register 1	ADCON1	0000 X000b
03D8h	D/A0 Register	DA0	00h
03D9h			
03DAh	D/A1 Register	DA1	00h
03DBh			
03DCh	D/A Control Register	DACON	00h
03DDh			
03DEh			
03DFh			
03E0h	Port P0 Register	P0	XXh
03E1h	Port P1 Register	P1	XXh
03E2h	Port P0 Direction Register	PD0	00h
03E3h	Port P1 Direction Register	PD1	00h
03E4h	Port P2 Register	P2	XXh
03E5h	Port P3 Register	P3	XXh
03E6h	Port P2 Direction Register	PD2	00h
03E7h	Port P3 Direction Register	PD3	00h
03E8h	Port P4 Register	P4	XXh
03E9h	Port P5 Register	P5	XXh
03EAh	Port P4 Direction Register	PD4	00h
03EAn	Port P5 Direction Register	PD4 PD5	00h
03EDh	Port P6 Register	PD5	XXh
002011	Port P7 Register	P0	XXh
03EDP			
03EDh 03EEh	Port P6 Direction Register	PD6	00h

Table 4.16SFR Information (16) (1)

X: Undefined

Note:

1. The blank areas are reserved. No access is allowed.

5.1.5 Flash Memory Electrical Characteristics

Table 5.8 CPU Clock When Operating Flash Memory (f(BCLK))

V_{CC1} = 2.7 to 5.5 V, T_{opr} = -20°C to 85°C/-40°C to 85°C unless otherwise specified.

Symbol	Parameter	Conditions		Unit		
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Onic
-	CPU rewrite mode				10 (1)	MHz
f(SLOW_R)	Slow read mode				5 (3)	MHz
-	Low current consumption read mode			fC(32.768)	35	kHz
-	Data flash read	$2.7 \text{ V} \le \text{V}_{CC1} \le 3.0 \text{ V}$			16 ⁽²⁾	MHz
		$3.0 \text{ V} < \text{V}_{\text{CC1}} \le 5.5 \text{ V}$			20 (2)	MHz

Notes:

1. Set the PM17 bit in the PM1 register to 1 (one wait).

2. When the frequency is over this value, set the FMR17 bit in the FMR1 register to 0 (one wait) or the PM17 bit in the PM1 register to 1 (one wait)

3. Set the PM17 bit in the PM1 register to 1 (one wait). When using 125 kHz on-chip oscillator clock or sub clock as the CPU clock source, a wait is not necessary.

Table 5.9 Flash Memory (Program ROM 1, 2) Electrical Characteristics

V_{CC1} = 2.7 to 5.5 V at T_{opr} = 0°C to 60°C (option: -40°C to 85°C), unless otherwise specified.

Symbol	Parameter	Conditions	Standard			Unit
Symbol	Falanetei		Min.	Тур.	Max.	Unit
-	Program and erase cycles ^{(1), (3), (4)}	V _{CC1} = 3.3 V, T _{opr} = 25°C	1,000 (2)			times
-	2 word program time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		150	4000	μs
-	Lock bit program time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		70	3000	μs
-	Block erase time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		0.2	3.0	S
t _{d(SR-SUS)}	Time delay from suspend request until suspend				$5 + \frac{3}{f(BCLK)}$	ms
-	Interval from erase start/restart until following suspend request		0			μS
-	Suspend interval necessary for auto-erasure to complete ⁽⁷⁾		20			ms
-	Time from suspend until erase restart				$30 + \frac{1}{f(BCLK)}$	μS
-	Program, erase voltage		2.7		5.5	V
-	Read voltage	T_{opr} = -20°C to 85°C/-40°C to 85°C	2.7		5.5	V
-	Program, erase temperature		0		60	°C
t _{PS}	Flash memory circuit stabilization w	ait time			50	μs
-	Data hold time ⁽⁶⁾	Ambient temperature = 55°C	20			year

Notes:

1. Definition of program and erase cycles:

The program and erase cycles refer to the number of per-block erasures. If the program and erase cycles are n (n = 1,000), each block can be erased n times. For example, if a block is erased after writing 2 word data 16,384 times, each to a different address, this counts as one program and erase cycles. Data cannot be written to the same address more than once without erasing the block (rewrite prohibited).

2. Cycles to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 3. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. It is advisable to retain data on the erasure cycles of each block and limit the number of erase operations to a certain number.
- 4. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

5. Customers desiring program/erase failure rate information should contact a Renesas Electronics sales office.

- 6. The data hold time includes time that the power supply is off or the clock is not supplied.
- 7. After an erase start or erase restart, if an interval of at least 20 ms is not set before the next suspend request, the erase sequence cannot be completed.

5.1.6 Voltage Detector and Power Supply Circuit Electrical Characteristics

Table 5.11 Voltage Detector 0 Electrical Characteristics

The measurement condition is V_{CC1} = 2.7 to 5.5 V, T_{opr} = -20°C to 85°C/-40°C to 85°C, unless otherwise specified.

Symbol	Parameter	Condition	,	Standard	k	Unit
Symbol	T arameter	Condition	Min.	Тур.	Max.	Offic
V _{det0}	Voltage detection level Vdet0_0 ⁽¹⁾	When V _{CC1} is falling.	1.80	1.90	2.10	V
	Voltage detection level Vdet0_2 ⁽¹⁾	When V _{CC1} is falling.	2.70	2.85	3.00	V
-	Voltage detector 0 response time ⁽³⁾	When V _{CC1} falls from 5 V to (Vdet0_0 - 0.1) V			200	μS
-	Voltage detector self power consumption	VC25 = 1, V _{CC1} = 5.0 V		1.5		μΑ
t _{d(E-A)}	Waiting time until voltage detector operation starts ⁽²⁾				100	μS

Notes:

1. Select the voltage detection level with the VDSEL1 bit in the OFS1 address.

2. Necessary time until the voltage detector operates when setting to 1 again after setting the VC25 bit in the VCR2 register to 0.

3. Time from when passing the V_{det0} until when a voltage monitor 0 reset is generated.

Table 5.12 Voltage Detector 1 Electrical Characteristics

The measurement condition is V_{CC1} = 2.7 to 5.5 V, T_{opr} = -20°C to 85°C/-40°C to 85°C, unless otherwise specified.

Symbol	Parameter	Condition	Standard			Unit
Symbol	Falameter	Condition	Min.	Тур.	Max.	Unit
V _{det1}	Voltage detection level Vdet1_6 ⁽¹⁾	When V _{CC1} is falling.	2.80	3.10	3.40	V
	Voltage detection level Vdet1_B ⁽¹⁾	When V _{CC1} is falling.	3.55	3.85	4.15	V
	Voltage detection level Vdet1_F ⁽¹⁾	When V _{CC1} is falling.	4.15	4.45	4.75	V
-	Hysteresis width when V _{CC1} of voltage detector 1 is rising			0.15		V
-	Voltage detector 1 response time ⁽³⁾	When V _{CC1} falls from 5 V to (Vdet1_0 - 0.1) V			200	μs
-	Voltage detector self power consumption	VC26 = 1, V _{CC1} = 5.0 V		1.7		μΑ
t _{d(E-A)}	Waiting time until voltage detector operation starts ⁽²⁾				100	μs

Notes:

1. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.

2. Necessary time until the voltage detector operates when setting to 1 again after setting the VC26 bit in the VCR2 register to 0.

3. Time from when passing the V_{det1} until when a voltage monitor 1 reset is generated.

5.1.7 Oscillator Electrical Characteristics

Table 5.1640 MHz On-Chip Oscillator Electrical Characteristics (1/2)

 $V_{CC1} = 2.7$ to 5.5 V, $T_{opr} = -20^{\circ}$ C to 85° C/-40°C to 85° C, unless otherwise specified.

Symbol	Parameter	Condition	Standard			Unit
Symbol	Falameter	Condition	Min.	Тур.	Max.	Unit
f _{OCO40M}	40 MHz on-chip oscillator frequency	Average frequency in a 10 ms period	38	40	42	MHz
tsu(f _{OCO40M})	Wait time until 40 MHz on-chip oscillator stabilizes				2	ms

Table 5.17 125 kHz On-Chip Oscillator Electrical Characteristics

 V_{CC1} = 2.7 to 5.5 V, T_{opr} = -20°C to 85°C/-40°C to 85°C, unless otherwise specified.

Symbol	Parameter	Condition	S	Unit		
Symbol	i diametei	Condition	Min.	Тур.	Max.	Onit
f _{oco-s}	125 kHz on-chip oscillator frequency	Average frequency in a 10 ms period	100	125	150	kHz
tsu(f _{OCO-S})	Wait time until 125 kHz on-chip oscillator stabilizes				20	μs

Table 5.21Electrical Characteristics (4)

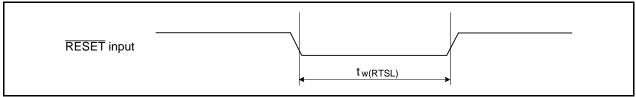
R5F3651ECNFC, R5F3651KCNFC, R5F3650KCNFA, R5F3650KCNFB, R5F3651MCNFC, R5F3650MCNFA, R5F3650MCNFB, R5F3651NCNFC, R5F3650NCNFA, R5F3650NCNFB, R5F3651ECDFC, R5F3651KCDFC, R5F3650KCDFA, R5F3650KCDFB, R5F3651MCDFC, R5F3650NCDFA, R5F3650MCDFB, R5F3651NCDFC, R5F3650NCDFA, R5F3650NCDFB

 $V_{CC1} = V_{CC2} = 4.2$ to 5.5 V, $V_{SS} = 0$ V at $T_{opr} = -20^{\circ}$ C to 85° C/ -40° C to 85° C, $f_{(BCLK)} = 32$ MHz unless otherwise specified.

Symbol	Parameter		Measuring Condition	Min.	Standarc Typ.	Max.	Unit
R _{fXCIN}	Feedback resistance				8		MΩ
СС	XCIN Power supply current	High-speed mode	f _(BCLK) = 32 MHz				
	i olioi ouppiy ourioin	ngn opeed mede	XIN = 4 MHz (square wave), PLL multiplied by 8		26.0		mA
	In single-chip, mode,		125 kHz on-chip oscillator stopped		20.0		
	the output pin are		$f_{(BCLK)} = 32 \text{ MHz}, \text{ A/D conversion}$				
	open and other pins		XIN = 4 MHz (square wave), PLL multiplied by 8		27.0		mA
	are V _{SS}		125 kHz on-chip oscillator stopped				
	00		$f_{(BCLK)} = 20 \text{ MHz}$				
			XIN = 20 MHz (square wave)		17.0		mA
			125 kHz on-chip oscillator stopped				
		40 MHz on-chip	Main clock stopped				
		oscillator mode	40 MHz on-chip oscillator on,		10.0		
			divide-by-4 (f(BCLK) = 10 MHz)		18.0		mA
			125 kHz on-chip oscillator stopped				
		125 kHz on-chip	Main clock stopped				
		oscillator mode	40 MHz on-chip oscillator stopped		550.0		μA
			125 kHz on-chip oscillator on, no division				
			FMR22 = 1 (slow read mode)				
		Low-power mode	$f_{(BCLK)} = 32 \text{ kHz}$				
			In low-power mode		170.0		μA
			FMR22 = FMR23 = 1				
			on flash memory ⁽¹⁾				
			$f_{(BCLK)} = 32 \text{ kHz}$				
			In low-power mode		45.0		μA
			on RAM ⁽¹⁾				
		Wait mode	Main clock stopped				
			40 MHz on-chip oscillator stopped		00.5		
			125 kHz on-chip oscillator on		20.5		μA
			Peripheral clock operating $T_{opr} = 25^{\circ}C$				
			$f_{(BCLK)} = 32 \text{ kHz}$ (oscillation capacity High)				
			40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped		11.0		
					11.0		μA
			Peripheral clock operating -25° C				
			$T_{opr} = 25^{\circ}C$				
			$f_{(BCLK)} = 32 \text{ kHz}$ (oscillation capacity low)				
			40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped		6.0		
			Peripheral clock operating		0.0		μA
			$T_{opr} = 25^{\circ}C$				
			$T_{opr} = 23 \text{ G}$ XIN = 6 MHz				
			40 MHz on-chip oscillator stopped				
			125 kHz on-chip oscillator stopped				
			Peripheral clock f1 provision disabled except				
			timers (PCKSTP1A = 1)		1.2		m/
			Main clock as a timer clock source				
			(PCKSTP11 = 0, PCKSTP17 = 1)				
			A given timer operating				
	Stop mode	Main clock stopped					
			40 MHz on-chip oscillator stopped				1
			125 kHz on-chip oscillator stopped		1.7		μA
			Peripheral clock stopped				
			$T_{opr} = 25^{\circ}C$				
		During flash memory	$f_{(BCLK)} = 10 \text{ MHz}, \text{ PM17} = 1 \text{ (one wait)}$		20.0		
		program	$V_{CC1} = 5.0 V$		20.0		m/
		During flash memory	$f_{(BCLK)} = 10 \text{ MHz}, \text{ PM17} = 1 \text{ (one wait)}$				
	1	erase	$V_{CC1} = 5.0 V$	1	30.0		m/

Note: 1.

This indicates the memory in which the program to be executed exists.


5.2.2 Timing Requirements (Peripheral Functions and Others)

(V_{CC1} = V_{CC2} = 5 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85° C/-40°C to 85° C unless otherwise specified)

5.2.2.1 Reset Input (RESET Input)

Table 5.22 Reset Input (RESET Input)

Symbol	Symbol Parameter	Stan	Unit	
Gymbol	T arameter	Min.	Max.	Onit
$t_{w(RSTL)}$	RESET input low pulse width	10		μS

Figure 5.5 Reset Input (RESET Input)

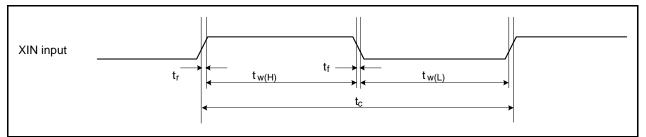

5.2.2.2 External Clock Input

Table 5.23 External Clock Input (XIN Input) ⁽¹⁾

Symbol	Parameter	Stan	Unit	
Gymbol	i arameter	Min.	Max.	Offic
t _c	External clock input cycle time	50		ns
t _{w(H)}	External clock input high pulse width	20		ns
t _{w(L)}	External clock input low pulse width	20		ns
t _r	External clock rise time		9	ns
t _f	External clock fall time		9	ns

Note:

1. The condition is $V_{CC1} = V_{CC2} = 3.0$ to 5.0 V.

Timing Requirements

 $(V_{CC1} = V_{CC2} = 5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C}/-40^{\circ}\text{C to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.2.2.7 Multi-master I²C-bus

Table 5.34 Multi-master I²C-bus

Cumhal	Deremeter	Standard (Clock Mode	Fast-r	Fast-mode	Linit
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t _{BUF}	Bus free time	4.7		1.3		μS
t _{HD;STA}	Hold time in start condition	4.0		0.6		μS
t _{LOW}	Hold time in SCL clock 0 status	4.7		1.3		μS
t _R	SCL, SDA signals' rising time		1000	20 + 0.1 Cb	300	ns
t _{HD;DAT}	Data hold time	0		0	0.9	μS
t _{HIGH}	Hold time in SCL clock 1 status	4.0		0.6		μS
f _F	SCL, SDA signals' falling time		300	20 + 0.1 Cb	300	ns
t _{su;DAT}	Data setup time	250		100		ns
t _{su;STA}	Setup time in restart condition	4.7		0.6		μS
t _{su;STO}	Stop condition setup time	4.0		0.6		μS

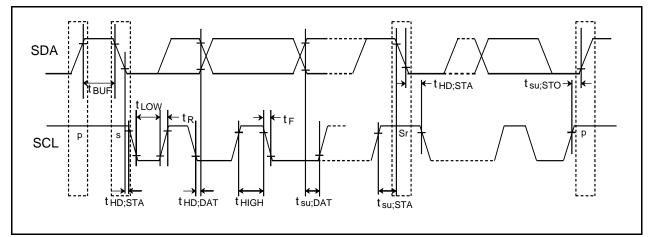


Figure 5.12 Multi-master I²C-bus

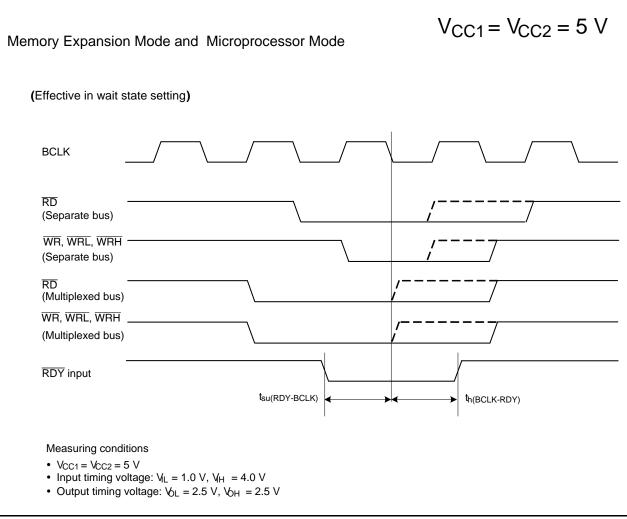


Figure 5.13 Timing Diagram

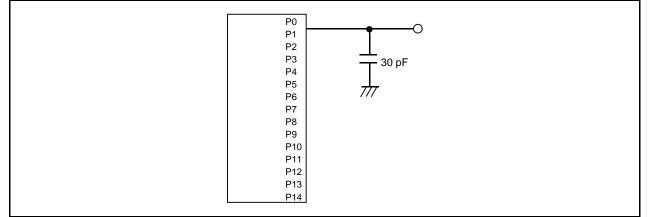


Figure 5.14 Ports P0 to P14 Measurement Circuit

Switching Characteristics

(V_{CC1} = V_{CC2} = 5 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85°C/-40°C to 85°C unless otherwise specified)

5.2.4.5 In Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$, $3\phi + 4\phi$, and $4\phi + 5\phi$, and When Inserting 1 to 3 Recovery Cycles and Accessing External Area

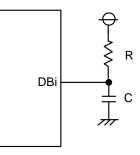
Table 5.40Memory Expansion and Microprocessor Modes (in Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$,
 $3\phi + 4\phi$, and $4\phi + 5\phi$, and When Inserting 1 to 3 Recovery Cycles and Accessing
External Area)

Symbol	Parameter	Measuring	Stan	dard	Unit
Symbol	Falameter	Condition	Min.	Max.	Unit
t _{d(BCLK-AD)}	Address output delay time			25	ns
t _{h(BCLK-AD})	Address output hold time (in relation to BCLK)		0		ns
t _{h(RD-AD})	Address output hold time (in relation to RD)		(Note 4)		ns
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns
t _{d(BCLK-CS)}	Chip select output delay time			25	ns
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns
t _{d(BCLK-ALE)}	ALE signal output delay time			15	ns
t _{h(BCLK-ALE})	ALE signal output hold time	See	-4		ns
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.14		25	ns
t _{h(BCLK-RD)}	RD signal output hold time		0		ns
t _{d(BCLK-WR)}	WR signal output delay time			25	ns
t _{h(BCLK-WR)}	WR signal output hold time		0		ns
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 5)		ns

Notes:

1. Calculated according to the BCLK frequency as follows:

$$\frac{n \times 10^9}{f_{(BCLK)}} - 40[ns]$$


n is 3 for $2\phi + 3\phi$, 4 for $2\phi + 4\phi$, 4 for $3\phi + 4\phi$, and 5 for $4\phi + 5\phi$.

2. Calculated according to the BCLK frequency as follows:

$$\frac{m \times 10^9}{f_{(BCLK)}} - 10[ns]$$

m is 1 when 1 recovery cycle is inserted, 2 when 2 recovery cycles are inserted, and 3 when 3 recovery cycles are inserted.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times ln(1-V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF $\times 1$ k $\Omega \times ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

4. Calculated according to the BCLK frequency as follows:

$$\frac{m \times 10^9}{f_{(BCLK)}} + 0[ns]$$
 m is 1 when 1 recovery cycle is inserted, 2 when 2 recovery cycles are inserted, and 3 when 3 recovery cycles are inserted.

5. Calculated according to the BCLK frequency as follows:

$$\frac{m \times 10^9}{f_{(BCLK)}} - 20[ns]$$
 m is 1 when 1 recovery cycle is inserted, 2 when 2 recovery cycles are inserted, and 3 when 3 recovery cycles are inserted.

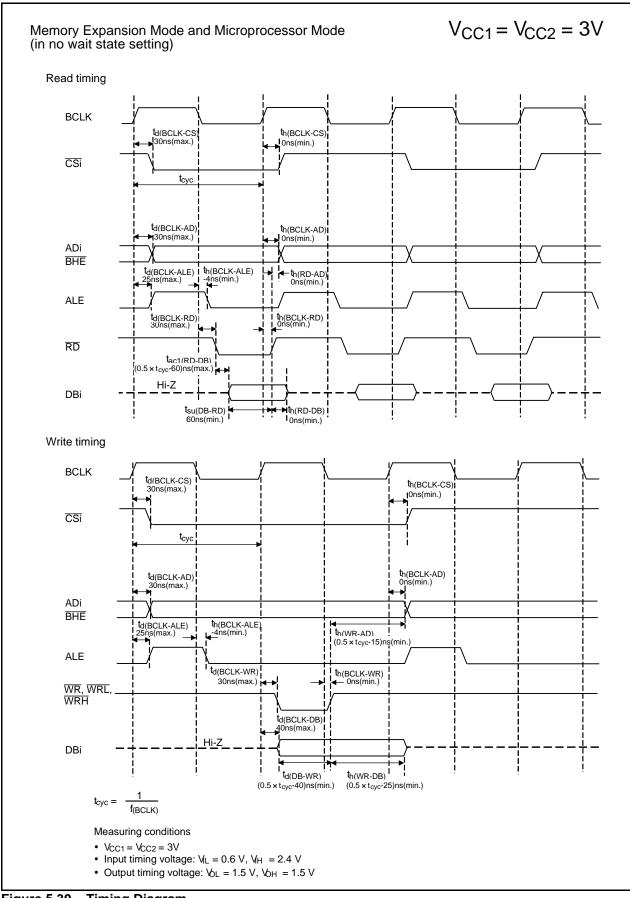


Figure 5.30 Timing Diagram

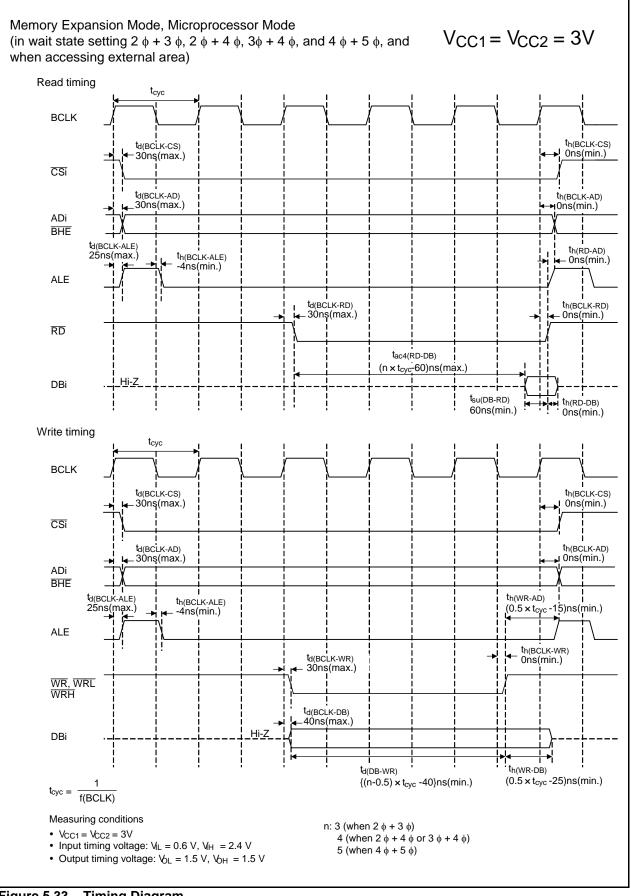


Figure 5.33 Timing Diagram

