

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	M16C/60
Core Size	16-Bit
Speed	32MHz
Connectivity	EBI/EMI, I ² C, SIO, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	47K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f3650ncnfb-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

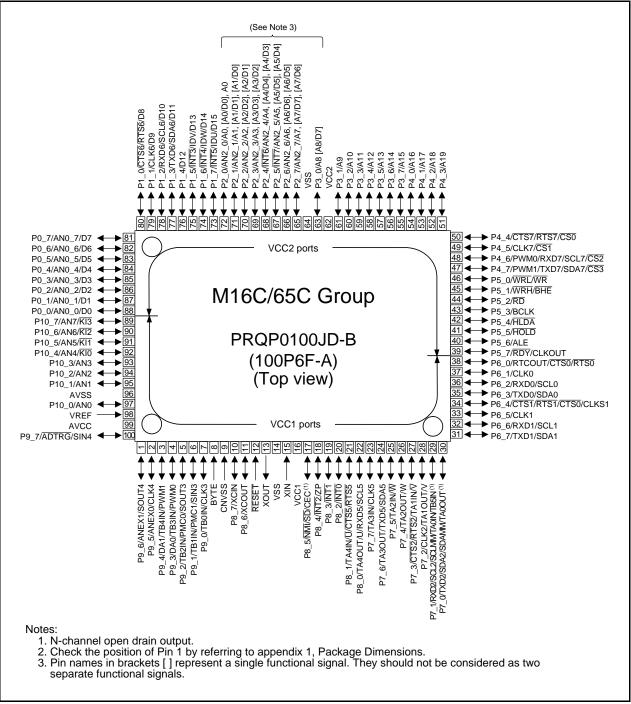


Figure 1.6 Pin Assignment for the 100-Pin Package

	No.			I/O Pin for Peripheral Function			1		
		Control	Port					Bus Control Pin	
FA	FB	Pin	1 OIL	Interrupt	Timer	Serial interface	D/A converter	Dus Control 1 III	
51	49		P4_3					A19	
52	50		 P4_2					A18	
53	51		 P4_1					A17	
54	52		 P4_0					A16	
55	53		P3_7					A15	
56	54		P3_6					A14	
57	55		P3_5					A13	
58	56		P3_4					A12	
59	57		P3_3					A11	
60	58		P3_2					A10	
61	59		P3_1					A9	
62	60	VCC2							
63	61	1002	P3_0					A8, [A8/D7]	
64	62	VSS	10_0						
65	63		P2_7				AN2_7	A7, [A7/D7], [A7/D6]	
66	64		P2_6				AN2_6	A6, [A6/D6], [A6/D5]	
67	65	-	P2_5	INT7			AN2_5	A5, [A5/D5], [A5/D4]	
68	66		P2_4	INT6			AN2_4	A4, [A4/D4], [A4/D3]	
69	67		P2_3				AN2_3	A3, [A3/D3], [A3/D2]	
70	68		P2_2				AN2_2	A2, [A2/D2], [A2/D1]	
70	69		P2_1				AN2_1	A1, [A1/D1], [A1/D0]	
72	70		P2_0				AN2_0	A0, [A0/D0], A0	
73	70		P2_0 P1_7	INT5	IDU		ANZ_U	D15	
73 74	71		P1_7	INT3 INT4	IDU			D13	
74	72		P1_0	INT3	IDV			D14	
76	73 74		P1_3	11113	IDV			D13	
76	74 75		P1_4 P1_3			TXD6/SDA6		D12 D11	
78	75 76		P1_3			RXD6/SCL6		D10	
78 79	76 77		P1_2 P1_1	-		CLK6		D10	
79 80	77 78					CTS6/RTS6		D9 D8	
			P1_0			C150/R150	ANIO 7		
81	79 80		P0_7				AN0_7	D7	
82	80		P0_6				AN0_6	D6	
83	81		P0_5				AN0_5	D5	
84	82		P0_4				AN0_4	D4	
85	83		P0_3				AN0_3	D3	
86	84		P0_2				AN0_2	D2	
87	85		P0_1				AN0_1	D1	
88	86		P0_0	1/10			AN0_0	D0	
89	87		P10_7				AN7		
90	88		P10_6				AN6		
91	89		P10_5				AN5		
92	90		P10_4	KI0			AN4		
93	91		P10_3				AN3		
94	92		P10_2				AN2		
95	93		P10_1				AN1		
96	94	AVSS							
97	95		P10_0				AN0		
98	96	VREF							
99	97	AVCC							
100	98		P9_7			SIN4	ADTRG		

 Table 1.11
 Pin Names for the 100-Pin Package (2/2)

Signal Name	Pin Name	I/O	Power Supply	Description
Main clock input	XIN	Ι	VCC1	I/O for the main clock oscillator. Connect a ceramic resonator or crystal between pins XIN and XOUT. ⁽¹⁾
Main clock output	XOUT	0	VCC1	Input an external clock to XIN pin and leave XOUT pin open.
between pins XCIN and		I/O for a sub clock oscillator. Connect a crystal between pins XCIN and XCOUT. ⁽¹⁾ Input an external		
Sub clock output	XCOUT	0	VCC1	clock to XCIN pin and leave XCOUT pin open.
BCLK output	BCLK	0	VCC2	Outputs the BCLK signal.
Clock output	CLKOUT	0	VCC2	Outputs a clock with the same frequency as fC, f1, f8, or f32.
INT interrupt input	INTO to INT2	Ι	VCC1	Input for the INT interrupt.
in interrupt input	INT3 to INT7	I	VCC2	
NMI interrupt input	NMI	I	VCC1	Input for the MII interrupt.
Key input interrupt input	KI0 to KI3	Ι	VCC1	Input for the key input interrupt.
	TA0OUT to TA4OUT	I/O	VCC1	I/O for timers A0 to A4 (TA0OUT is N-channel open drain output).
Timer A	TA0IN to TA4IN	Ι	VCC1	Input for timers A0 to A4.
	ZP	I	VCC1	Input for Z-phase.
Timer B	TB0IN to TB5IN	Ι	VCC1	Input for timers B0 to B5.
	$U,\overline{U},V,\overline{V},W,\overline{W}$	0	VCC1	Output for the three-phase motor control timer.
Three-phase motor control timer	SD	I	VCC1	Forced cutoff input.
	IDU, IDV, IDW	I	VCC2	Input for the position data.
Real-time clock output	RTCOUT	0	VCC1	Output for the real-time clock.
PWM output	PWM0, PWM1	0	VCC1, VCC2	PWM output.
Remote control signal receiver input	PMC0, PMC1	I	VCC1	Input for the remote control signal receiver.
	CTS0 to CTS2, CTS5	I	VCC1	Input pins to control data transmission.
	CTS6, CTS7	I	VCC2	
	RTS0 to RTS2, RTS5	0	VCC1	Output pins to control data reception.
	RTS6, RTS7	0	VCC2	
Serial interface	CLK0 to CLK2, CLK5	I/O	VCC1	Transmit/receive clock I/O.
UART0 to UART2, UART5 to UART7	CLK6, CLK7	I/O	VCC2	1
	RXD0 to RXD2, RXD5	I	VCC1	Serial data input.
	RXD6, RXD7	Ι	VCC2	
	TXD0 to TXD2, TXD5	0	VCC1	Serial data output. ⁽²⁾
	TXD6, TXD7	0	VCC2	
	CLKS1	0	VCC1	Output for the transmit/receive clock multiple-pin output function.

Table 1.13 Pin Functions for the 128-Pin Package (2/3)

Notes:

1. Contact the manufacturer of crystal/ceramic resonator regarding the oscillation characteristics.

 TXD2, SDA2, and SCL2 are N-channel open drain output pins. TXDi (i = 0, 1, 5 to 7), SDAi, and SCLi can be selected as CMOS output pins or N-channel open drain output pins.

Signal Name	Pin Name	I/O	Power Supply	Description
	SDA0 to SDA2, SDA5	I/O	VCC1	Serial data I/O.
UART0 to UART2, UART5 to UART7	SDA6, SDA7	I/O	VCC2	
I ² C mode	SCL0 to SCL2, SCL5	I/O	VCC1	Transmit/receive clock I/O.
	SCL6, SCL7	I/O	VCC2	
Corrig Linterfood	CLK3, CLK4	I/O	VCC1	Transmit/receive clock I/O.
Serial interface SI/O3, SI/O4	SIN3, SIN4	Ι	VCC1	Serial data input.
	SOUT3, SOUT4	0	VCC1	Serial data output.
Multi-master I ² C-	SDAMM	I/O	VCC1	Serial data I/O (N-channel open drain output).
bus interface	SCLMM	I/O	VCC1	Transmit/receive clock I/O (N-channel open drain output).
CEC I/O	CEC	I/O	VCC1	CEC I/O (N-channel open drain output).
Reference voltage input	VREF	I	VCC1	Reference voltage input for the A/D and D/A converters.
	AN0 to AN7	I	VCC1	
A/D converter	AN0_0 to AN0_7 AN2_0 to AN2_7	I	VCC2	Analog input.
	ADTRG	Ι	VCC1	External trigger input.
	ANEX0, ANEX1	I	VCC1	Extended analog input.
D/A converter	DA0, DA1	0	VCC1	Output pin the D/A converter.
I/O ports	P0_0 to P0_7 P1_0 to P1_7 P2_0 to P2_7 P3_0 to P3_7 P4_0 to P4_7 P5_0 to P5_7 P12_0 to P12_7 P13_0 to P13_7	I/O	VCC2	8-bit CMOS I/O ports. A direction register determines whether each pin is used as an input port or an output port. A pull-up resistor may be enabled or disabled for input ports in 4-bit units.
	P6_0 to P6_7 P7_0 to P7_7 P8_0 to P8_7 P9_0 to P9_7 P10_0 to P10_7 P11_0 to P11_7	I/O	VCC1	8-bit I/O ports having equivalent functions to P0. However, P7_0, P7_1, and P8_5 are N-channel open drain output ports. No pull-up resistor is provided. P8_5 is an input port for verifying the NMI pin level and shares a pin with NMI.
	P14_0, P14_1	I/O	VCC1	I/O ports having equivalent functions to P0.

 Table 1.14
 Pin Functions for the 128-Pin Package (3/3)

Signal Name	Pin Name	I/O	Power Supply	Description
Power supply input	VCC1, VCC2, VSS	I	-	Apply 2.7 to 5.5 V to pins VCC1 and VCC2 (VCC1 \ge VCC2) and 0 V to the VSS pin.
Analog power supply input	AVCC, AVSS	I	VCC1	This is the power supply for the A/D and D/A converters. Connect the AVCC pin to VCC1, and connect the AVSS pin to VSS.
Reset input	RESET	I	VCC1	Driving this pin low resets the MCU.
CNVSS	CNVSS	I	VCC1	Input pin to switch processor modes. After a reset, to start operating in single-chip mode, connect the CNVSS pin to VSS via a resistor. To start operating in microprocessor mode, connect the pin to VCC1.
External data bus width select input	BYTE	I	VCC1	Input pin to select the data bus of the external area. The data bus is 16 bits when it is low, and 8 bits when it is high. This pin must be fixed either high or low. Connect the BYTE pin to VSS in single-chip mode.
	D0 to D7	I/O	VCC2	Inputs or outputs data (D0 to D7) while accessing an external area with a separate bus.
	D8 to D15	I/O	VCC2	Inputs or outputs data (D8 to D15) while accessing an external area with a 16-bit separate bus.
	A0 to A19	0	VCC2	Outputs address bits A0 to A19.
	A0/D0 to A7/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A0 to A7) by timesharing, while accessing an external area with an 8-bit multiplexed bus.
	A1/D0 to A8/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A1 to A8) by timesharing, while accessing an external area with a 16-bit multiplexed bus.
	$\overline{\text{CS0}}$ to $\overline{\text{CS3}}$	0	VCC2	Outputs chip-select signals $\overline{CS0}$ to $\overline{CS3}$ to specify an external area.
Bus control pins	WRL/WR WRH/BHE RD	0	VCC2	 Outputs WRL, WRH, (WR, BHE), and RD signals. WRL and WRH can be switched with BHE and WR. WRL, WRH, and RD selected If the external data bus is 16 bits, data is written to an even address in an external area when WRL is driven low. Data is written to an odd address when WRH is driven low. Data is read when RD is driven low. WR, BHE, and RD selected Data is written to an external area when WRH is driven low. Data is written to an external area when WRH is driven low. An odd address is accessed when RD is driven low. Select WR, BHE, and RD when using an 8-bit external data bus.
	ALE	0	VCC2	Outputs an ALE signal to latch the address.
	HOLD	I	VCC2	HOLD input is unavailable. Connect the HOLD pin to VCC2 via a resistor (pull-up).
	HLDA	0	VCC2	In a hold state, HLDA outputs a low-level signal.
	RDY	Ι	VCC2	The MCU bus is placed in a wait state while the $\overline{\text{RDY}}$ pin is driven low.

Table 1.15 Pin Functions for the 100-Pin Package (1/3)

Power supply: VCC2 is used to supply power to the external bus associated pins. The dual power supply configuration allows VCC2 to interface at a different voltage than VCC1.

2.1 Data Registers (R0, R1, R2, and R3)

R0, R1, R2, and R3 are 16-bit registers used for transfer, arithmetic, and logic operations. R0 and R1 can be split into upper (R0H/R1H) and lower (R0L/R1L) bits to be used separately as 8-bit data registers. R0 can be combined with R2, and R3 can be combined with R1 and be used as 32-bit data registers R2R0 and R3R1, respectively.

2.2 Address Registers (A0 and A1)

A0 and A1 are 16-bit registers used for indirect addressing, relative addressing, transfer, arithmetic, and logic operations. A0 can be combined with A1 and used as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register that is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of a relocatable interrupt vector table.

2.5 Program Counter (PC)

The PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The USP and ISP stack pointers (SP) are each comprised of 16 bits. The U flag is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register used for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register that indicates the CPU state.

2.8.1 Carry Flag (C Flag)

The C flag retains a carry, borrow, or shift-out bit generated by the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z Flag)

The Z flag becomes 1 when an arithmetic operation results in 0. Otherwise, it becomes 0.

2.8.4 Sign Flag (S Flag)

The S flag becomes 1 when an arithmetic operation results in a negative value. Otherwise, it becomes 0.

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is 1.

2.8.6 Overflow Flag (O Flag)

The O flag becomes 1 when an arithmetic operation results in an overflow. Otherwise, it becomes 0.

Address	Register	Symbol	Reset Value
0180h	5		XXh
0181h	DMA0 Source Pointer	SAR0	XXh
0182h	•		0Xh
0183h			
0184h			XXh
0185h	DMA0 Destination Pointer	DAR0	XXh
0186h			0Xh
0187h			
0188h		TODA	XXh
0189h	DMA0 Transfer Counter	TCR0	XXh
018Ah			
018Bh			
018Ch	DMA0 Control Register	DM0CON	0000 0X00b
018Dh	<u>_</u>		
018Eh			
018Fh			
0190h			XXh
0191h	DMA1 Source Pointer	SAR1	XXh
0192h			0Xh
0193h			-
0194h			XXh
0195h	DMA1 Destination Pointer	DAR1	XXh
0196h			0Xh
0197h			-
0198h			XXh
0199h	DMA1 Transfer Counter	TCR1	XXh
019Ah			
019Bh			
019Ch	DMA1 Control Register	DM1CON	0000 0X00b
019Dh			
019Eh			
019Fh			
01A0h			XXh
01A1h	DMA2 Source Pointer	SAR2	XXh
01A2h			0Xh
01A3h			¢741
01A4h			XXh
01A5h	DMA2 Destination Pointer	DAR2	XXh
01A6h			0Xh
01A7h			
01A8h			XXh
01A9h	DMA2 Transfer Counter	TCR2	XXh
01AAh			, , , , , , , , , , , , , , , , , , , ,
01ABh			
01ADh	DMA2 Control Register	DM2CON	0000 0X00b
01ADh		Divizoon	
01ADh 01AEh			

Table 4.5SFR Information (5) (1)

Note:

1. The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
0270h	SI/O3 Transmit/Receive Register	S3TRR	XXh
0270h		531KK	~~!!
0271h 0272h	SI/O3 Control Register	S3C	0100 0000b
	SI/O3 Bit Rate Register	S3BRG	
0273h			XXh
0274h	SI/O4 Transmit/Receive Register	S4TRR	XXh
0275h		0.10	0.4.0.0.0.0.0.0.0
0276h	SI/O4 Control Register	S4C	0100 0000b
0277h	SI/O4 Bit Rate Register	S4BRG	XXh
0278h	SI/O3, 4 Control Register 2	S34C2	00XX X0X0b
0279h			
027Ah			
027Bh			
027Ch			
027Dh			
027Eh			
027Fh			
0280h			
0281h			
0282h			
0283h			
0284h	UART5 Special Mode Register 4	U5SMR4	00h
0285h	UART5 Special Mode Register 3	U5SMR3	000X 0X0Xb
0286h	UART5 Special Mode Register 2	U5SMR2	X000 0000b
0287h	UART5 Special Mode Register	U5SMR	X000 0000b
0288h	UART5 Transmit/Receive Mode Register	U5MR	00h
0289h	UART5 Bit Rate Register	U5BRG	XXh
028Ah	-	CODING	XXh
028Bh	UART5 Transmit Buffer Register	U5TB -	XXh
028Ch	UART5 Transmit/Receive Control Register 0	U5C0	0000 1000b
028Dh	UART5 Transmit/Receive Control Register 1	U5C1	0000 1000b
		0501	
028Eh 028Fh	UART5 Receive Buffer Register	U5RB —	XXh XXh
			AAn
0290h			
0291h			
0292h			
0293h			
0294h	UART6 Special Mode Register 4	U6SMR4	00h
0295h	UART6 Special Mode Register 3	U6SMR3	000X 0X0Xb
0296h	UART6 Special Mode Register 2	U6SMR2	X000 0000b
0297h	UART6 Special Mode Register	U6SMR	X000 0000b
0298h	UART6 Transmit/Receive Mode Register	U6MR	00h
0299h	UART6 Bit Rate Register	U6BRG	XXh
029Ah	UART6 Transmit Buffer Register	U6TB	XXh
029Bh	UCATTO Manshill Duller Acyster		XXh
029Ch	UART6 Transmit/Receive Control Register 0	U6C0	0000 1000b
029Dh	UART6 Transmit/Receive Control Register 1	U6C1	0000 0010b
029Eh			XXh
	UART6 Receive Buffer Register	U6RB –	XXh

Table 4.10SFR Information (10) (1)

Note:

1. The blank areas are reserved. No access is allowed.

4.2 Notes on SFRs

4.2.1 Register Settings

Table 4.19 lists Registers with Write-Only Bits and registers whose function differs between reading and writing. Set these registers with immediate values. Do not use read-modify-write instructions. When establishing the next value by altering the existing value, write the existing value to the RAM as well as to the register. Transfer the next value to the register after making changes in the RAM. Read-modify-write instructions can be used when writing to the no register bits.

Address	Register	Symbol
0249h	UART0 Bit Rate Register	U0BRG
024Bh to 024Ah	UART0 Transmit Buffer Register	U0TB
0259h	UART1 Bit Rate Register	U1BRG
025Bh to 025Ah	UART1 Transmit Buffer Register	U1TB
0269h	UART2 Bit Rate Register	U2BRG
026Bh to 026Ah	UART2 Transmit Buffer Register	U2TB
0273h	SI/O3 Bit Rate Register	S3BRG
0277h	SI/O4 Bit Rate Register	S4BRG
0289h	UART5 Bit Rate Register	U5BRG
028Bh to 028Ah	UART5 Transmit Buffer Register	U5TB
0299h	UART6 Bit Rate Register	U6BRG
029Bh to 029Ah	UART6 Transmit Buffer Register	U6TB
02A9h	UART7 Bit Rate Register	U7BRG
02ABh to 02AAh	UART7 Transmit Buffer Register	U7TB
02B6h	I2C0 Control Register 1	S3D0
02B8h	I2C0 Status Register 0	S10
0303h to 0302h	Timer A1-1 Register	TA11
0305h to 0304h	Timer A2-1 Register	TA21
0307h to 0306h	Timer A4-1 Register	TA41
030Ah	Three-Phase Output Buffer Register 0	IDB0
030Bh	Three-Phase Output Buffer Register 1	IDB1
030Ch	Dead Time Timer	DTT
030Dh	Timer B2 Interrupt Generation Frequency Set Counter	ICTB2
0327h to 0326h	Timer A0 Register	TA0
0329h to 0328h	Timer A1 Register	TA1
032Bh to 032Ah	Timer A2 Register	TA2
032Dh to 032Ch	Timer A3 Register	TA3
032Fh to 032Eh	Timer A4 Register	TA4
037Dh	Watchdog Timer Refresh Register	WDTR
037Eh	Watchdog Timer Start Register	WDTS

 Table 4.19
 Registers with Write-Only Bits

Table 5.10 Flash Memory (Data Flash) Electrical Characteristics

 V_{CC1} = 2.7 to 5.5 V at T_{opr} = -20 to 85°C/-40 to 85°C, unless otherwise specified.

Symbol	Parameter	Conditions		Unit		
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Unit
-	Program and erase cycles ^{(1), (3), (4)}	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$	10,000 (2)			times
-	2 word program time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		300	4000	μs
-	Lock bit program time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		140	3000	μS
-	Block erase time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		0.2	3.0	s
t _{d(SR-SUS)}	Time delay from suspend request until suspend				$5 + \frac{3}{f(BCLK)}$	ms
-	Interval from erase start/restart until following suspend request		0			μS
-	Suspend interval necessary for auto-erasure to complete ⁽⁷⁾		20			ms
-	Time from suspend until erase restart				$30 + \frac{1}{f_{(BCLK)}}$	μS
-	Program, erase voltage		2.7		5.5	V
-	Read voltage		2.7		5.5	V
-	Program, erase temperature		-20/-40		85	°C
t _{PS}	Flash memory circuit stabilization wa	ait time			50	μS
-	Data hold time ⁽⁶⁾	Ambient temperature = 55°C	20			year

Notes:

1. Definition of program and erase cycles

The program and erase cycles refer to the number of per-block erasures.

If the program and erase cycles are n (n = 10,000), each block can be erased n times.

For example, if a 4 KB block is erased after writing 2 word data 1,024 times, each to a different address, this counts as one program and erase cycles. Data cannot be written to the same address more than once without erasing the block (rewrite prohibited).

2. Cycles to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 3. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 256 groups before erasing them all in one operation. In addition, averaging the erasure cycles between blocks A and B can further reduce the actual erasure cycles. It is also advisable to retain data on the erasure cycles of each block and limit the number of erase operations to a certain number.
- 4. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 5. Customers desiring program/erase failure rate information should contact a Renesas Electronics sales office.

6. The data hold time includes time that the power supply is off or the clock is not supplied.

7. After an erase start or erase restart, if an interval of at least 20 ms is not set before the next suspend request, the erase sequence cannot be completed.

Table 5.15 Power Supply Circuit Timing Characteristics

The measurement condition is V_{CC1} = 2.7 to 5.5 V and T_{opr} = 25°C, unless otherwise specified.

Symbol	Parameter	Condition	S	Unit		
Symbol	r arameter	Condition	Min.	Тур.	Max.	Unit
t _{d(P-R)}	Internal power supply stability time when power is on ⁽¹⁾				5	ms
t _{d(R-S)}	STOP release time				150	μS
t _{d(W-S)}	Low power mode wait mode release time				150	μS

Note:

1. Waiting time until the internal power supply generator stabilizes when power is on.

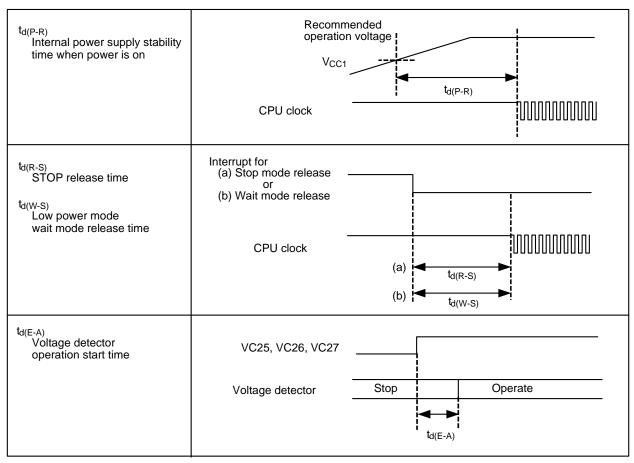
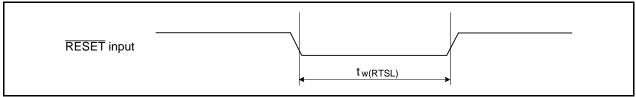


Figure 5.4 Power Supply Circuit Timing Diagram


5.2.2 Timing Requirements (Peripheral Functions and Others)

(V_{CC1} = V_{CC2} = 5 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85° C/-40°C to 85° C unless otherwise specified)

5.2.2.1 Reset Input (RESET Input)

Table 5.22 Reset Input (RESET Input)

Symbol	Parameter	Stan	Unit	
	T arameter	Min.	Max.	Onit
$t_{w(RSTL)}$	RESET input low pulse width	10		μS

Figure 5.5 Reset Input (RESET Input)

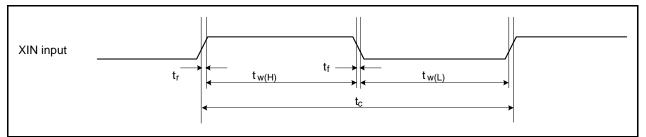

5.2.2.2 External Clock Input

Table 5.23 External Clock Input (XIN Input) ⁽¹⁾

Symbol	Parameter	Stan	dard	Unit
Gymbol	i arameter	Min.	Max.	Offic
t _c	External clock input cycle time	50		ns
t _{w(H)}	External clock input high pulse width	20		ns
t _{w(L)}	External clock input low pulse width	20		ns
t _r	External clock rise time		9	ns
t _f	External clock fall time		9	ns

Note:

1. The condition is $V_{CC1} = V_{CC2} = 3.0$ to 5.0 V.

Timing Requirements

 $(V_{CC1} = V_{CC2} = 5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.2.2.3 Timer A Input

Table 5.24 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit	
		Min.	Onit		
t _{c(TA)}	TAilN input cycle time	100		ns	
t _{w(TAH)}	TAilN input high pulse width	40		ns	
t _{w(TAL)}	TAilN input low pulse width	40		ns	

Table 5.25 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Stan	dard	Unit
	i didifeter	Min.	1in. Max.	
t _{c(TA)}	TAilN input cycle time	400		ns
t _{w(TAH)}	TAilN input high pulse width	200		ns
t _{w(TAL)}	TAilN input low pulse width	200		ns

Table 5.26 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter	Standard		Unit	
		Min.	Max.	Offic	
t _{c(TA)}	TAilN input cycle time	200		ns	
t _{w(TAH)}	TAiIN input high pulse width	100		ns	
t _{w(TAL)}	TAiIN input low pulse width	100		ns	

Table 5.27Timer A Input (External Trigger Input in Pulse Width Modulation Mode and
Programmable Output Mode)

Symbol	Parameter	Standard		Unit
Gymbol		Min.	Max.	Onic
t _{w(TAH)}	TAilN input high pulse width	100		ns
t _{w(TAL)}	TAiIN input low pulse width	100		ns

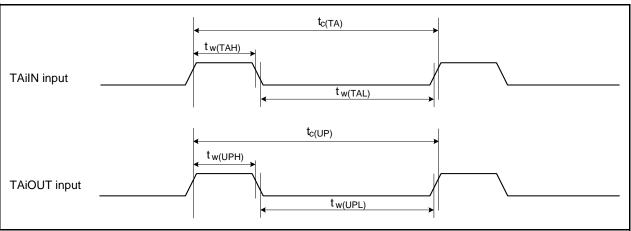


Figure 5.7 Timer A Input

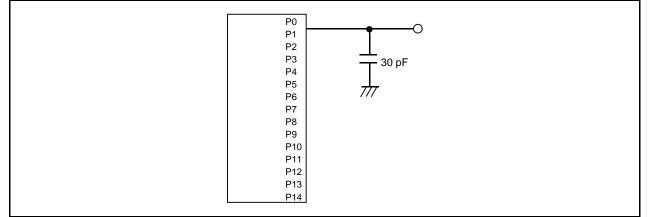


Figure 5.14 Ports P0 to P14 Measurement Circuit

Switching Characteristics

 $(V_{CC1} = V_{CC2} = 5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

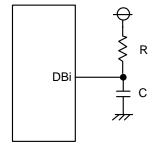
5.2.4.2 In 1 to 3 Waits Setting and When Accessing External Area

Table 5.37 Memory Expansion Mode and Microprocessor Mode (in 1 to 3 Waits Setting and When Accessing External Area)

Symbol	Doromotor	Measuring	•		Unit
Symbol	Parameter	Condition	Min.	Max.	Unit
t _{d(BCLK-AD)}	Address output delay time			25	ns
t _{h(BCLK-AD})	Address output hold time (in relation to BCLK)		0		ns
t _{h(RD-AD})	Address output hold time (in relation to RD)		0		ns
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns
t _{d(BCLK-CS)}	Chip select output delay time			25	ns
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns
t _{d(BCLK-ALE)}	ALE signal output delay time			15	ns
t _{h(BCLK-ALE})	ALE signal output hold time	See	-4		ns
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.14		25	ns
t _{h(BCLK-RD)}	RD signal output hold time		0		ns
t _{d(BCLK-WR)}	WR signal output delay time			25	ns
t _{h(BCLK-WR)}	WR signal output hold time		0		ns
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 4)		ns

Notes:

1. Calculated according to the BCLK frequency as follows:


 $\frac{(n-0.5) \times 10^9}{f_{(BCLK)}} - 40[ns]$ n is 1 for 1 wait setting, 2 for 2 waits setting and 3 for 3 waits setting. When n = 1, f_(BCLK) is 12.5 MHz or less.

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f} - 10[ns]$$

 $f_{(BCLK)}$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times ln(1 - V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF x 1 k $\Omega \times ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

4. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{6} - 20[ns]$$

 $f_{(BCLK)} = 20$

Hold time is equal to or less than 0 ns when the BCLK frequency exceeds 25 MHz.

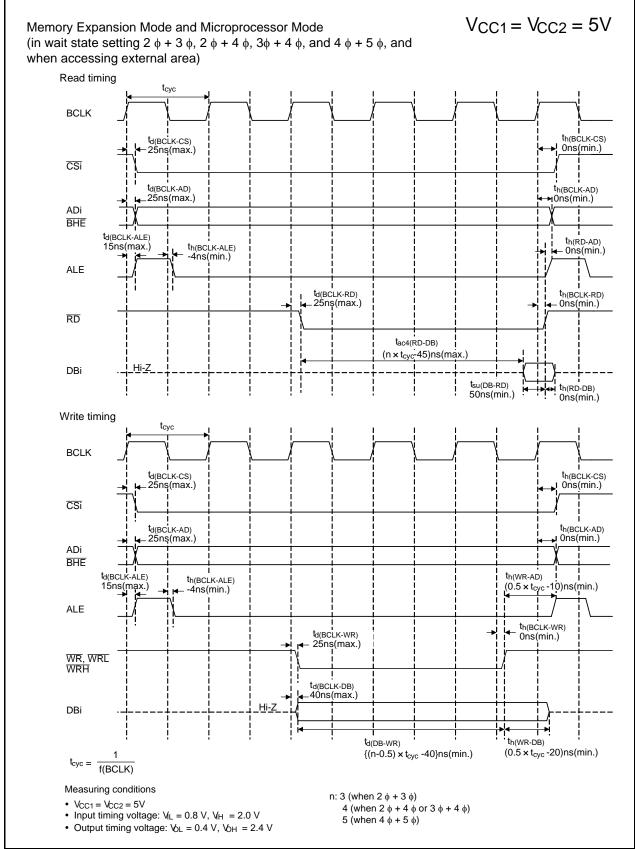


Figure 5.18 Timing Diagram

Switching Characteristics

(V_{CC1} = V_{CC2} = 5 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85°C/-40°C to 85°C unless otherwise specified)

5.2.4.5 In Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$, $3\phi + 4\phi$, and $4\phi + 5\phi$, and When Inserting 1 to 3 Recovery Cycles and Accessing External Area

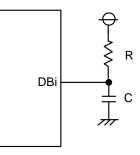
Table 5.40Memory Expansion and Microprocessor Modes (in Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$,
 $3\phi + 4\phi$, and $4\phi + 5\phi$, and When Inserting 1 to 3 Recovery Cycles and Accessing
External Area)

Symbol	Parameter	Measuring	Standard		Unit
Symbol	Falameter	Condition	Min.	Max.	Unit
t _{d(BCLK-AD)}	Address output delay time			25	ns
t _{h(BCLK-AD})	Address output hold time (in relation to BCLK)		0		ns
t _{h(RD-AD})	Address output hold time (in relation to RD)		(Note 4)		ns
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns
t _{d(BCLK-CS)}	Chip select output delay time			25	ns
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns
t _{d(BCLK-ALE)}	ALE signal output delay time			15	ns
t _{h(BCLK-ALE})	ALE signal output hold time	See	-4		ns
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.14		25	ns
t _{h(BCLK-RD)}	RD signal output hold time		0		ns
t _{d(BCLK-WR)}	WR signal output delay time			25	ns
t _{h(BCLK-WR)}	WR signal output hold time		0		ns
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 5)		ns

Notes:

1. Calculated according to the BCLK frequency as follows:

$$\frac{n \times 10^9}{f_{(BCLK)}} - 40[ns]$$


n is 3 for $2\phi + 3\phi$, 4 for $2\phi + 4\phi$, 4 for $3\phi + 4\phi$, and 5 for $4\phi + 5\phi$.

2. Calculated according to the BCLK frequency as follows:

$$\frac{m \times 10^9}{f_{(BCLK)}} - 10[ns]$$

m is 1 when 1 recovery cycle is inserted, 2 when 2 recovery cycles are inserted, and 3 when 3 recovery cycles are inserted.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times ln(1-V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF $\times 1$ k $\Omega \times ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

4. Calculated according to the BCLK frequency as follows:

$$\frac{m \times 10^9}{f_{(BCLK)}} + 0[ns]$$
 m is 1 when 1 recovery cycle is inserted, 2 when 2 recovery cycles are inserted, and 3 when 3 recovery cycles are inserted.

5. Calculated according to the BCLK frequency as follows:

$$\frac{m \times 10^9}{f_{(BCLK)}} - 20[ns]$$
 m is 1 when 1 recovery cycle is inserted, 2 when 2 recovery cycles are inserted, and 3 when 3 recovery cycles are inserted.

5.3 Electrical Characteristics (V_{CC1} = V_{CC2} = 3 V)

5.3.1 Electrical Characteristics

VCC1 = VCC2 = 3 V

Table 5.41 Electrical Characteristics (1) (1)

 $V_{CC1} = V_{CC2} = 2.7$ to 3.3 V, $V_{SS} = 0$ V at $T_{opr} = -20^{\circ}$ C to 85° C/- 40° C to 85° C, $f_{(BCLK)} = 32$ MHz unless otherwise specified.

Sumbol	pol Parameter Measurin		Magguring Condition	Standard			Lloit	
Symbol			Measuring Condition	Min.	Тур.	Max.	Unit	
V _{OH}	High output voltage	P6_0 to P6_7, P7_2 to P7_7, P8_6, P8_7, P9_0 to P9_7, P P11_0 to P11_7, P14_0, P14_	10_0 to P10_7,	I _{OH} = -1 mA	V _{CC1} – 0.5		V _{CC1}	V
		P0_0 to P0_7, P1_0 to P1_7, P3_0 to P3_7, P4_0 to P4_7, P12_0 to P12_7, P13_0 to P1	P5_0 to P5_7,	I _{OH} = -1 mA	V _{CC2} – 0.5		V _{CC2}	
V _{OH}	High output	voltage XOUT	HIGH POWER	I _{OH} = -0.1 mA	V _{CC1} - 0.5		V _{CC1}	V
			LOW POWER	I _{OH} = -50 μA	$V_{CC1} - 0.5$		V _{CC1}	
	High output	voltage XCOUT	HIGH POWER	With no load applied		2.6		V
			LOW POWER	With no load applied		2.2		
V _{OL}	Low output voltage	P6_0 to P6_7, P7_0 to P7_7, P9_7, P10_0 to P10_7, P11_0					0.5	V
		P0_0 to P0_7, P1_0 to P1_7, P3_0 to P3_7, P4_0 to P4_7, P12_0 to P12_7, P13_0 to P1	P5_0 to P5_7,	I _{OL} = 1 mA			0.5	
		CEC		I _{OL} = 1 mA		0	0.5	V
V _{OL}	Low output	voltage XOUT	HIGH POWER	I _{OL} = 0.1 mA			0.5	V
			LOW POWER	I _{OL} = 50 μA			0.5	
	Low output voltage XCOUT		HIGH POWER	With no load applied		0		V
			LOW POWER	With no load applied		0		
V _{T+} -V _{T-} Hy	Hysteresis HOLD, RDY, TA0IN to TA4IN, INT7, NMI, ADTRG, CTS0 to C SCL0 to SCL2, SCL5 to SCL7, to SDA7, CLK0 to CLK7, TA0C KI3, RXD0 to RXD2, RXD5 to PMC0, PMC1, SCLMM, SDAM		CTS2, CTS5 to CTS7, 7, SDA0 to SDA2, SDA5 OUT to TA4OUT, KI0 to RXD7, SIN3, SIN4, SD,		0.2		1.0	
		CEC			0.2	0.5	1.0	V
		RESET			0.2		1.8	V
IIH	High input current	P0_0 to P0_7, P1_0 to P1_7, P3_0 to P3_7, P4_0 to P4_7, P6_0 to P6_7, P7_0 to P7_7, P9_0 to P9_7, P10_0 to P10_ P12_0 to P12_7, P13_0 to P1 XIN, RESET, CNVSS, BYTE	P5_0 to P5_7, P8_0 to P8_7, 7, P11_0 to P11_7,	V ₁ = 3 V			4.0	μA
_	Leakage cu	rrent in powered-off state	CEC	$V_{CC1} = 0 V$			1.8	μΑ
IIL	Low input current	P0_0 to P0_7, P1_0 to P1_7, P3_0 to P3_7, P4_0 to P4_7, P6_0 to P6_7, P7_0 to P7_7, P9_0 to P9_7, P10_0 to P10_ P12_0 to P12_7, P13_0 to P1 XIN, RESET, CNVSS, BYTE	P5_0 to P5_7, P8_0 to P8_7, 7, P11_0 to P11_7,	V ₁ = 0 V			-4.0	μΑ
R _{PULLUP}	Pull-up resistance	P0_0 to P0_7, P1_0 to P1_7, P3_0 to P3_7, P4_0 to P4_7, P6_0 to P6_7, P7_2 to P7_7, P8_6, P8_7, P9_0 to P9_7, P P11_0 to P11_7, P12_0 to P1 P13_7, P14_0, P14_1	P5_0 to P5_7, P8_0 to P8_4, 10_0 to P10_7,	V ₁ = 0 V	50	80	150	kΩ
R _{fXIN}	Feedback re	esistance XIN				3.0		MΩ
V _{RAM}	RAM retenti	on voltage		In stop mode	1.8		1	V

Note:

1. When $V_{CC1} \neq V_{CC2}$, refer to 5 V or 3 V standard depending on the voltage.

Table 5.44Electrical Characteristics (3) (2/2)

R5F3651ECNFC, R5F3651KCNFC, R5F3650KCNFA, R5F3650KCNFB, R5F3651MCNFC, R5F3650MCNFA, R5F3650MCNFB, R5F3651NCNFC, R5F3650NCNFA, R5F3650NCNFB, R5F3650NCNFB, R5F3650NCNFA, R5F3650NCNFB, R5F3650NCNFA, R5F3650NCNFB, R5F3650NCNFA, R5F3650NCNFB, R5F3650NCNFB, R5F3650NCNFA, R5F3650NCNFB, R5F3650NCNFB, R5F3650NCNFA, R5F3650NCNFB, R5F3650NCNFB, R5F3650NCNFB, R5F3650NCNFA, R5F3650NCNFB, R5F360NCNFB, R5F360NCNFB, R5F360NCNFB, R5F360NCNFB, R5F360NCNFB, R5F360NCNFB, R5F360NCNFB, R5F360NCNFF, R5F360NCNFF, R5F360NCNFF

R5F3651ECDFC, R5F3651KCDFC, R5F3650KCDFA, R5F3650KCDFB, R5F3651MCDFC, R5F3650MCDFA, R5F3650MCDFB, R5F3651NCDFC, R5F3650NCDFA, R5F3650NCDFB

 $V_{CC1} = V_{CC2} = 2.7 \text{ to } 3.3 \text{ V}, V_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C} / -40^{\circ}\text{C to } 85^{\circ}\text{C}, f_{(BCLK)} = 32 \text{ MHz unless otherwise specified.}$

Symbol Parameter			Measuring Condition Standard		b	Unit	
Cymbol	rarameter		Measuring Condition	Min.	Тур.	Max.	Onic
I _{CC}	Power supply current In single-chip, mode, the output pin are open and other pins	Stop mode	Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped Peripheral clock stopped $T_{opr} = 25^{\circ}C$		1.6		μΑ
	are V _{SS}	During flash memory program	f _(BCLK) = 10 MHz, PM17 = 1 (one wait) V _{CC1} = 3.0 V		20.0		mA
		During flash memory erase	$f_{(BCLK)} = 10 \text{ MHz}, \text{PM17} = 1 \text{ (one wait)}$ V _{CC1} = 3.0 V		30.0		mA

5.3.4 Switching Characteristics (Memory Expansion Mode and Microprocessor Mode)

(V_{CC1} = V_{CC2} = 3 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85°C/-40°C to 85°C unless otherwise specified)

5.3.4.1 In No Wait State Setting

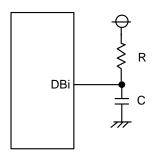
Table 5.59 Memory Expansion and Microprocessor Modes (in No Wait State Setting)

Currente e l	Deremeter	Measuring	Stan	dard	Unit	
Symbol	Parameter	Condition	Min.	Max.	Onit	
t _{d(BCLK-AD)}	Address output delay time			30	ns	
t _{h(BCLK-AD)}	Address output hold time (in relation to BCLK)		0		ns	
t _{h(RD-AD)}	Address output hold time (in relation to RD)		0		ns	
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns	
t _{d(BCLK-CS)}	Chip select output delay time			30	ns	
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns	
t _{d(BCLK-ALE)}	ALE signal output delay time			25	ns	
t _{h(BCLK-ALE)}	ALE signal output hold time	See	-4		ns	
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.29		30	ns	
t _{h(BCLK-RD)}	RD signal output hold time		0		ns	
t _{d(BCLK-WR)}	WR signal output delay time			30	ns	
t _{h(BCLK-WR)}	WR signal output hold time		0		ns	
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns	
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns	
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 4)		ns	

Notes:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 40[ns] \quad f_{(BCLK)} \text{ is 12.5 MHz or less.}$$


2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 15[ns]$$

- 3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times ln(1 - V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 kΩ, hold time of output low level is t = -30 pF $\times 1$ kΩ $\times ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.
- 4. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 25[ns]$$

Hold time is equal to or less than 0 ns when the BCLK frequency exceeds 20 MHz.

