

 \times FI

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	M16C/60
Core Size	16-Bit
Speed	32MHz
Connectivity	EBI/EMI, I ² C, SIO, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	111
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	31K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	128-LQFP
Supplier Device Package	128-LFQFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f3651kcdfc-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Item	Function	Description
CPU	Central processing unit	 M16C/60 Series core (multiplier: 16 bit × 16 bit → 32 bit, multiply and accumulate instruction: 16 bit × 16 bit + 32 bit → 32 bit) Number of basic instructions: 91
		 Minimum instruction execution time: 31.25 ns (f(BCLK) = 32 MHz, VCC1 = VCC2 = 2.7 to 5.5 V) Operating modes: Single-chip, memory expansion, and microprocessor
Memory	ROM, RAM, data flash	See Table 1.5 "Product List (N-Version)" to Table 1.6 "Product List (D-Version)".
Voltage Detection	Voltage detector	 Power-on reset 3 voltage detection points (detection level of voltage detection 0 and 1 selectable)
Clock	Clock generator	 5 circuits: Main clock, sub clock, low-speed on-chip oscillator (125 kHz), high-speed on-chip oscillator (40 MHz ±5%), PLL frequency synthesizer Oscillation stop detection: Main clock oscillation stop/restart detection function Frequency divider circuit: Divide ratio selectable from 1, 2, 4, 8, and 16 Power saving features: Wait mode, stop mode Real-time clock
External Bus Expansion	Bus memory expansion	 Address space: 1 MB External bus interface: 0 to 8 waits inserted, 4 chip select outputs, memory area expansion function (expandable to 4 MB), 3 V and 5 V interfaces Bus format: Separate bus or multiplexed bus selectable, data bus width selectable (8 or 16 bits), number of address buses selectable (12, 16, or 20)
I/O Ports	Programmable I/O ports	CMOS I/O ports: 85 (selectable pull-up resistors) N-channel open drain ports: 3
Interrupts	1	 Interrupt vectors: 70 External interrupt inputs: 13 (NMI, INT × 8, key input × 4) Interrupt priority levels: 7
Watchdog Tin	ner	15-bit timer × 1 (with prescaler) Automatic reset start function selectable
DMA	DMAC	 4 channels, cycle steal mode Trigger sources: 43 Transfer modes: 2 (single transfer, repeat transfer)

Table 1.3 Specifications for the 100-Pin Package (1/2)

1.3 Product List

Table 1.5 and Table 1.6 list product information. Figure 1.1 shows the Part No., with Memory Size and Package, and Figure 1.2 shows the Marking Diagram (Top View).

Table 1.5	Product List (N-Version)
-----------	--------------------------

	R	OM Capacit	у	RAM				
Part No.	Program ROM 1	Program ROM 2	Data flash	Capacity	Package Code	Remarks		
R5F36506CNFA	128 KB	16 KB	4 KB	12 KB	PRQP0100JD-B			
R5F36506CNFB	120 ND	TO ND	× 2 blocks	12 ND	PLQP0100KB-A			
R5F3651ECNFC					PLQP0128KB-A			
R5F3650ECNFA	256 KB	16 KB	4 KB × 2 blocks	20 KB	PRQP0100JD-B			
R5F3650ECNFB						PLQP0100KB-A		
R5F3651KCNFC					PLQP0128KB-A			
R5F3650KCNFA	384 KB	16 KB	4 KB × 2 blocks	31 KB	PRQP0100JD-B	Operating		
R5F3650KCNFB							PLQP0100KB-A	temperature -20°C to 85°C
R5F3651MCNFC					PLQP0128KB-A			
R5F3650MCNFA	512 KB	16 KB	4 KB × 2 blocks	31 KB	PRQP0100JD-B			
R5F3650MCNFB					PLQP0100KB-A			
R5F3651NCNFC			4.170		PLQP0128KB-A			
R5F3650NCNFA	512 KB 16 KB	512 KB	4 KB × 2 blocks	47 KB	PRQP0100JD-B			
R5F3650NCNFB			× 2 0100K3		PLQP0100KB-A			

(D): Under development

(P): Planning

Note:

1. Previous package codes are as follows:

PLQP0128KB-A: 128P6Q-A, PRQP0100JD-B: 100P6F-A, PLQP0100KB-A: 100P6Q-A

Table 1.6Product List (D-Version)

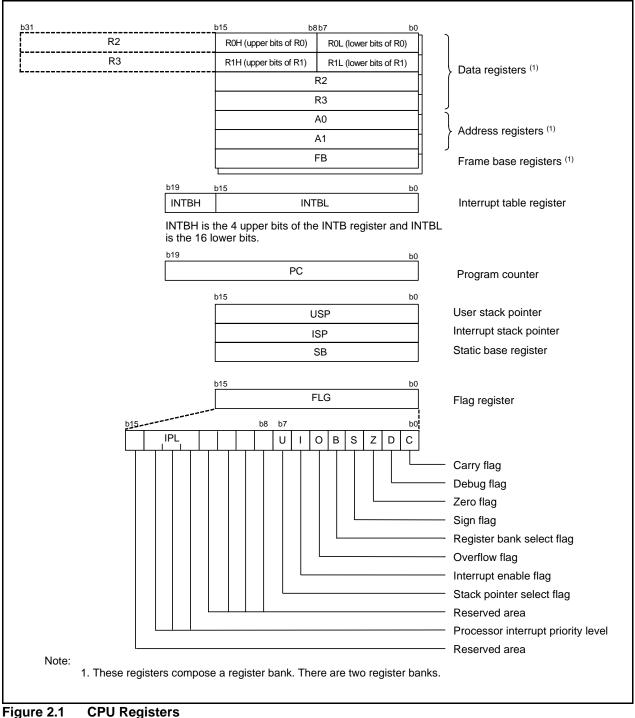
As of July	, 2012
------------	--------

	R	OM Capacity	у	RAM		
Part No.	Program ROM 1	Program ROM 2	Data flash	Capacity	Package Code	Remarks
R5F36506CDFA	128 KB	16 KB	4 KB	12 KB	PRQP0100JD-B	
R5F36506CDFB	120 KB	TO ND	× 2 blocks		PLQP0100KB-A	
R5F3651ECDFC			PLQP0128KB-A			
5F3650ECDFA	256 KB	16 KB	4 KB × 2 blocks	20 KB	PRQP0100JD-B	
R5F3650ECDFB					PLQP0100KB-A	
R5F3651KCDFC				PLQP0128KB-A	- ·	
R5F3650KCDFA		16 KB	4 KB × 2 blocks	31 KB	PRQP0100JD-B	Operating
R5F3650KCDFB					PLQP0100KB-A	temperature -40°C to 85°C
R5F3651MCDFC					PLQP0128KB-A	
R5F3650MCDFA	512 KB	16 KB	4 KB × 2 blocks	31 KB	PRQP0100JD-B	
R5F3650MCDFB					PLQP0100KB-A	
R5F3651NCDFC					PLQP0128KB-A	
R5F3650NCDFA	512 KB	16 KB	4 KB × 2 blocks	47 KB	PRQP0100JD-B	
R5F3650NCDFB			DIOCING		PLQP0100KB-A	

(D): Under development

(P): Planning

Note:


1. Previous package codes are as follows:

PLQP0128KB-A: 128P6Q-A, PRQP0100JD-B: 100P6F-A, PLQP0100KB-A: 100P6Q-A

As of July, 2012

Central Processing Unit (CPU) 2.

Figure 2.1 shows the CPU registers. Seven registers (R0, R1, R2, R3, A0, A1, and FB) out of 13 compose a register bank, and there are two register banks.

2.8.7 Interrupt Enable Flag (I Flag)

The I flag enables maskable interrupts.

Maskable interrupts are disabled when the I flag is 0, and enabled when it is 1. The I flag becomes 0 when an interrupt request is accepted.

2.8.8 Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is 0. USP is selected when the U flag is 1. The U flag becomes 0 when a hardware interrupt request is accepted, or the INT instruction of software interrupt number 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from 0 to 7. If a requested interrupt has higher priority than IPL, the interrupt request is enabled.

2.8.10 Reserved Areas

Only set these bits to 0. The read value is undefined.

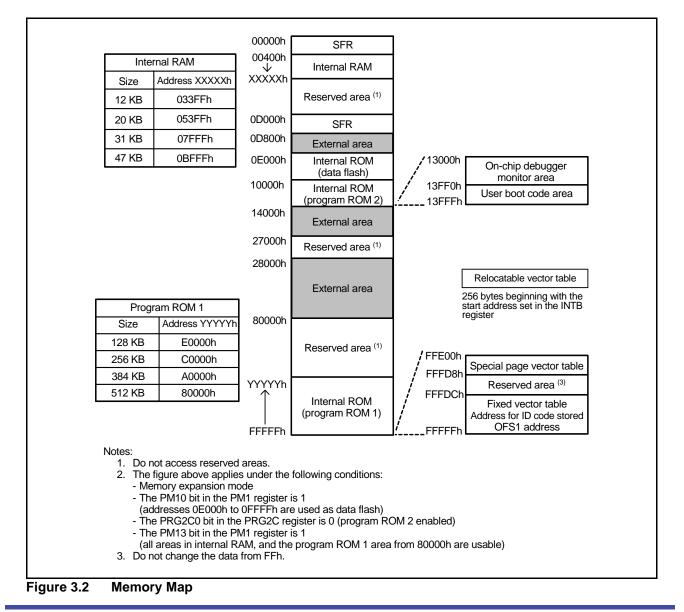
3.2 Memory Map

Special function registers (SFRs) are allocated from address 00000h to 003FFh and from 0D000h to 0D7FFh. Peripheral function control registers are located here. All blank areas within SFRs are reserved. Do not access these areas.

Internal RAM is allocated from address 00400h and higher, with 10 KB of internal RAM allocated from 00400h to 02BFFh. Internal RAM is used not only for data storage, but also for the stack area when subroutines are called or when an interrupt request is accepted.

The internal ROM is flash memory. Three internal ROM areas are available: data flash, program ROM 1, and program ROM 2.

The data flash is allocated from 0E000h to 0FFFFh. This data flash area is mostly used for data storage, but can also store programs.

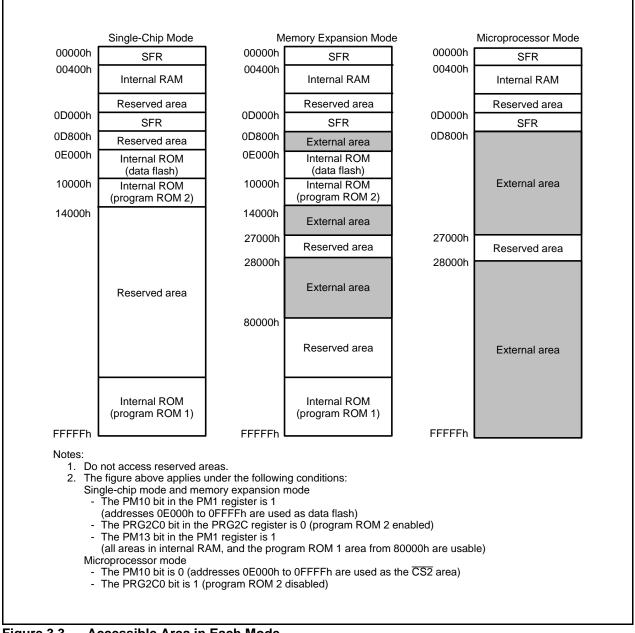

Program ROM 2 is allocated from 10000h to 13FFFh. Program ROM 1 is allocated from FFFFFh and lower, with the 64 KB program ROM 1 area allocated from address F0000h to FFFFFh.

The special page vectors are allocated from FFE00h to FFFD7h. They are used for the JMPS and JSRS instructions. Refer to the M16C/60, M16C/20, M16C/Tiny Series Software Manual for details.

The fixed vector table for interrupts is allocated from FFFDCh to FFFFFh.

The 256 bytes beginning with the start address set in the INTB register compose the relocatable vector table for interrupts.

Figure 3.2 shows the Memory Map.


3.3 Accessible Area in Each Mode

Areas that can be accessed vary depending on processor mode and the status of each control bit. Figure 3.3 shows the Accessible Area in Each Mode.

In single-chip mode, the SFRs, internal RAM, and internal ROM can be accessed.

In memory expansion mode, the SFRs, internal RAM, internal ROM, and external areas can be accessed. Address space is expandable to 4 MB with the memory area expansion function.

In microprocessor mode, the SFRs, internal RAM, and external areas can be accessed. Address space is expandable to 4 MB with the memory area expansion function. Allocate ROM to the fixed vector table from FFFDCh to FFFFFh.

Address	Register	Symbol	Reset Value
0040h			
0041h			
0042h	INT7 Interrupt Control Register	INT7IC	XX00 X000b
0043h	INT6 Interrupt Control Register	INT6IC	XX00 X000b
0044h	INT3 Interrupt Control Register	INT3IC	XX00 X000b
0045h	Timer B5 Interrupt Control Register	TB5IC	XXXX X000b
0046h	Timer B4 Interrupt Control Register UART1 Bus Collision Detection Interrupt Control Register	TB4IC U1BCNIC	XXXX X000b
0047h	Timer B3 Interrupt Control Register UART0 Bus Collision Detection Interrupt Control Register	TB3IC U0BCNIC	XXXX X000b
0048h	SI/O4 Interrupt Control Register INT5 Interrupt Control Register	S4IC INT5IC	XX00 X000b
0049h	SI/O3 Interrupt Control Register INT4 Interrupt Control Register	S3IC INT4IC	XX00 X000b
004Ah	UART2 Bus Collision Detection Interrupt Control Register	BCNIC	XXXX X000b
004Bh	DMA0 Interrupt Control Register	DM0IC	XXXX X000b
004Ch	DMA1 Interrupt Control Register	DM1IC	XXXX X000b
004Dh	Key Input Interrupt Control Register	KUPIC	XXXX X000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXX X000b
004Fh	UART2 Transmit Interrupt Control Register	S2TIC	XXXX X000b
0050h	UART2 Receive Interrupt Control Register	S2RIC	XXXX X000b
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXX X000b
0052h	UART0 Receive Interrupt Control Register	SORIC	XXXX X000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXX X000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXX X000b
0055h	Timer A0 Interrupt Control Register	TA0IC	XXXX X000b
0056h	Timer A1 Interrupt Control Register	TA1IC	XXXX X000b
0057h	Timer A2 Interrupt Control Register	TA2IC	XXXX X000b
0058h	Timer A3 Interrupt Control Register	TA3IC	XXXX X000b
0059h	Timer A4 Interrupt Control Register	TA4IC	XXXX X000b
005Ah	Timer B0 Interrupt Control Register	TB0IC	XXXX X000b
005Bh	Timer B1 Interrupt Control Register	TB1IC	XXXX X000b
005Ch	Timer B2 Interrupt Control Register	TB2IC	XXXX X000b
005Dh	INTO Interrupt Control Register	INTOIC	XX00 X000b
005Eh	INT1 Interrupt Control Register	INT1IC	XX00 X000b
005Fh	INT2 Interrupt Control Register	INT2IC	XX00 X000b

Table 4.3SFR Information (3) (1)

Note:

1. The blank areas are reserved. No access is allowed.

Table 4.0	SFR Information (6) (7)		
Address	Register	Symbol	Reset Value
01B0h			XXh
01B1h	DMA3 Source Pointer	SAR3	XXh
01B2h			0Xh
01B3h			
01B4h			XXh
01B5h	DMA3 Destination Pointer	DAR3	XXh
01B6h			0Xh
01B7h			
01B8h			XXh
01B9h	DMA3 Transfer Counter	TCR3	XXh
01BAh			
01BBh			
01BCh	DMA3 Control Register	DM3CON	0000 0X00b
01BDh		Dinocort	
01BEh		+ +	
01BEh			
01C0h			XXh
01C01	Timer B0-1 Register	TB01	XXh
01C1h			XXh
01C2h	Timer B1-1 Register	TB11	
			XXh
01C4h	Timer B2-1 Register	TB21	XXh
01C5h			XXh
01C6h	Pulse Period/Pulse Width Measurement Mode Function Select Register 1	PPWFS1	XXXX X000b
01C7h			
01C8h	Timer B Count Source Select Register 0	TBCS0	00h
01C9h	Timer B Count Source Select Register 1	TBCS1	X0h
01CAh			
01CBh	Timer AB Division Control Register 0	TCKDIVC0	0000 X000b
01CCh			
01CDh			
01CEh			
01CFh			
01D0h	Timer A Count Source Select Register 0	TACS0	00h
01D1h	Timer A Count Source Select Register 1	TACS1	00h
01D2h	Timer A Count Source Select Register 2	TACS2	X0h
01D3h			
	16-bit Pulse Width Modulation Mode Function Select Register	PWMFS	0XX0 X00Xb
01D5h	Timer A Waveform Output Function Select Register	TAPOFS	XXX0 0000b
01D6h		1/1 0/0	77770 00000
01D0h		+	
01D7h 01D8h	Timer A Output Waveform Change Enable Register	TAOW	XXX0 X00Xb
01D8n 01D9h	Timer A Output Wavelorni Onarige Ellable Register	IAUW	
	Three Dhase Drotect Control Decision	TPRC	004
01DAh	Three-Phase Protect Control Register	IPKU	00h
01DBh			
01DCh			
01DDh			
01DEh			
01DFh			

Table 4.6SFR Information (6) (1)

Note:

1. The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
0390h	DMA2 Source Select Register	DM2SL	00h
0391h		DIVIZOL	0011
0392h	DMA3 Source Select Register	DM3SL	00h
0393h		DIVISOE	0011
0393h 0394h			
039411 0395h			
0396h			
0397h			2.21
0398h	DMA0 Source Select Register	DM0SL	00h
0399h			
039Ah	DMA1 Source Select Register	DM1SL	00h
039Bh			
039Ch			
039Dh			
039Eh			
039Fh			
03A0h			
03A1h			
03A2h	Open-Circuit Detection Assist Function Register	AINRST	XX00 XXXXb
03A3h			
03A4h			
03A5h			
03A6h			
03A7h			
03A8h			
03A9h			
03AAh			
03ABh			
03ACh			
03ADh			
03AEh			
03AEh 03AFh			
03A0h			
03B0n 03B1h			
03B2h			
03B3h			
03B4h	SFR Snoop Address Register	CRCSAR	XXXX XXXXb
03B5h			00XX XXXXb
03B6h	CRC Mode Register	CRCMR	0XXX XXX0b
03B7h			
03B8h			
03B9h			
03BAh			
03BBh			
03BCh	CRC Data Register	CRCD	XXh
03BDh			XXh
03BEh	CRC Input Register	CRCIN	XXh
03BFh			

Table 4.15SFR Information (15) (1)

Note:

1. The blank areas are reserved. No access is allowed.

4.2 Notes on SFRs

4.2.1 Register Settings

Table 4.19 lists Registers with Write-Only Bits and registers whose function differs between reading and writing. Set these registers with immediate values. Do not use read-modify-write instructions. When establishing the next value by altering the existing value, write the existing value to the RAM as well as to the register. Transfer the next value to the register after making changes in the RAM. Read-modify-write instructions can be used when writing to the no register bits.

Address	Register	Symbol
0249h	UART0 Bit Rate Register	U0BRG
024Bh to 024Ah	UART0 Transmit Buffer Register	U0TB
0259h	UART1 Bit Rate Register	U1BRG
025Bh to 025Ah	UART1 Transmit Buffer Register	U1TB
0269h	UART2 Bit Rate Register	U2BRG
026Bh to 026Ah	UART2 Transmit Buffer Register	U2TB
0273h	SI/O3 Bit Rate Register	S3BRG
0277h	SI/O4 Bit Rate Register	S4BRG
0289h	UART5 Bit Rate Register	U5BRG
028Bh to 028Ah	UART5 Transmit Buffer Register	U5TB
0299h	UART6 Bit Rate Register	U6BRG
029Bh to 029Ah	UART6 Transmit Buffer Register	U6TB
02A9h	UART7 Bit Rate Register	U7BRG
02ABh to 02AAh	UART7 Transmit Buffer Register	U7TB
02B6h	I2C0 Control Register 1	S3D0
02B8h	I2C0 Status Register 0	S10
0303h to 0302h	Timer A1-1 Register	TA11
0305h to 0304h	Timer A2-1 Register	TA21
0307h to 0306h	Timer A4-1 Register	TA41
030Ah	Three-Phase Output Buffer Register 0	IDB0
030Bh	Three-Phase Output Buffer Register 1	IDB1
030Ch	Dead Time Timer	DTT
030Dh	Timer B2 Interrupt Generation Frequency Set Counter	ICTB2
0327h to 0326h	Timer A0 Register	TA0
0329h to 0328h	Timer A1 Register	TA1
032Bh to 032Ah	Timer A2 Register	TA2
032Dh to 032Ch	Timer A3 Register	TA3
032Fh to 032Eh	Timer A4 Register	TA4
037Dh	Watchdog Timer Refresh Register	WDTR
037Eh	Watchdog Timer Start Register	WDTS

 Table 4.19
 Registers with Write-Only Bits

5.1.7 Oscillator Electrical Characteristics

Table 5.1640 MHz On-Chip Oscillator Electrical Characteristics (1/2)

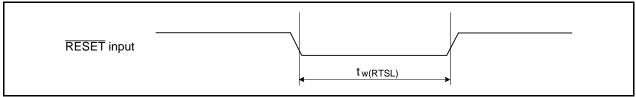
 $V_{CC1} = 2.7$ to 5.5 V, $T_{opr} = -20^{\circ}$ C to 85° C/-40°C to 85° C, unless otherwise specified.

Svmbol	Parameter	Condition	Standard			Unit
Symbol	Falameter	Condition		Тур.	Max.	Unit
f _{OCO40M}	40 MHz on-chip oscillator frequency	Average frequency in a 10 ms period	38	40	42	MHz
tsu(f _{OCO40M})	Wait time until 40 MHz on-chip oscillator stabilizes				2	ms

Table 5.17 125 kHz On-Chip Oscillator Electrical Characteristics

 V_{CC1} = 2.7 to 5.5 V, T_{opr} = -20°C to 85°C/-40°C to 85°C, unless otherwise specified.

Symbol	Symbol Parameter	Condition	Standard			Unit
Symbol		Condition	Min.	Тур.	Max.	Unit
f _{oco-s}	125 kHz on-chip oscillator frequency	Average frequency in a 10 ms period	100	125	150	kHz
tsu(f _{OCO-S})	Wait time until 125 kHz on-chip oscillator stabilizes				20	μS


5.2.2 Timing Requirements (Peripheral Functions and Others)

(V_{CC1} = V_{CC2} = 5 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85° C/-40°C to 85° C unless otherwise specified)

5.2.2.1 Reset Input (RESET Input)

Table 5.22 Reset Input (RESET Input)

Symbol	Symbol Parameter	Stan	Unit	
Symbol		Min.	Max.	Onit
$t_{w(RSTL)}$	RESET input low pulse width	10		μS

Figure 5.5 Reset Input (RESET Input)

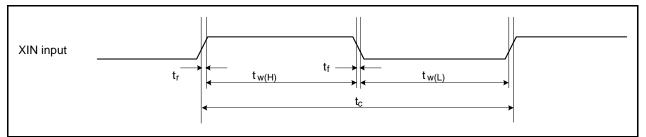

5.2.2.2 External Clock Input

Table 5.23 External Clock Input (XIN Input) ⁽¹⁾

Symbol	Parameter	Stan	Unit	
Gymbol	i arameter	Min.	Max.	Offic
t _c	External clock input cycle time	50		ns
t _{w(H)}	External clock input high pulse width	20		ns
t _{w(L)}	External clock input low pulse width	20		ns
t _r	External clock rise time		9	ns
t _f	External clock fall time		9	ns

Note:

1. The condition is $V_{CC1} = V_{CC2} = 3.0$ to 5.0 V.

Timing Requirements

 $(V_{CC1} = V_{CC2} = 5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

Table 5.28	Timer A Input (Two-Phase Pulse Input in Event Counter Mode)
------------	---

0(17)	Parameter	Stan	Unit		
Symbol	i diameter	Min. Max. 800		Onit	
t _{c(TA)}	TAiIN input cycle time	800		ns	
t _{su(TAIN-TAOUT)}	TAiOUT input setup time	200		ns	
t _{su(TAOUT-TAIN)}	TAiIN input setup time	200		ns	

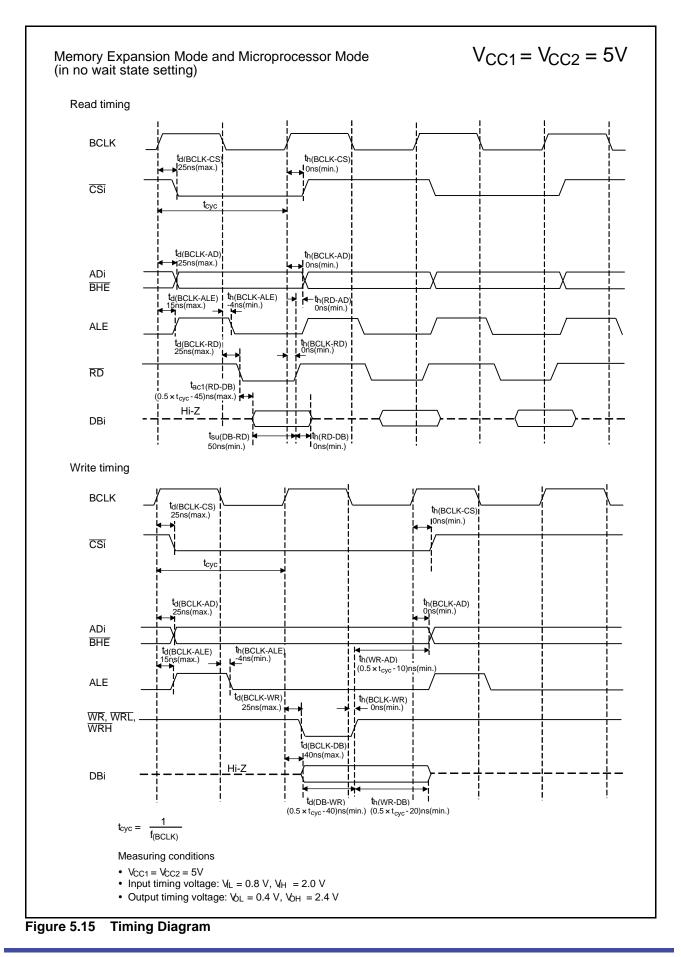



Figure 5.8 Timer A Input (Two-Phase Pulse Input in Event Counter Mode)

RENESAS

Switching Characteristics

 $(V_{CC1} = V_{CC2} = 5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.2.4.3 In 2 or 3 Waits Setting, and When Accessing External Area and Using Multiplexed Bus

Table 5.38 Memory Expansion Mode and Microprocessor Mode (in 2 or 3 Waits Setting, and When Accessing External Area and Using Multiplexed Bus) ⁽⁵⁾

Sumbol	Parameter	Measuring	Standard		Unit	
Symbol	Faiameter	Condition	Min.	Max.	Unit	
t _{d(BCLK-AD)}	Address output delay time			25	ns	
t _{h(BCLK-AD)}	Address output hold time (in relation to BCLK)		0		ns	
t _{h(RD-AD)}	Address output hold time (in relation to RD)		(Note 1)		ns	
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 1)		ns	
t _{d(BCLK-CS)}	Chip select output delay time			25	ns	
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns	
t _{h(RD-CS)}	Chip select output hold time (in relation to RD)		(Note 1)		ns	
t _{h(WR-CS)}	Chip select output hold time (in relation to WR)		(Note 1)		ns	
t _{d(BCLK-RD)}	RD signal output delay time			25	ns	
t _{h(BCLK-RD)}	RD signal output hold time		0		ns	
t _{d(BCLK-WR)}	WR signal output delay time			25	ns	
t _{h(BCLK-WR)}	WR signal output hold time	See Figure 5.14	0		ns	
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)	ga.e e		40	ns	
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 2)		ns	
t _{h(WR-DB)}	Data output hold time (in relation to WR)		(Note 6)		ns	
t _{d(BCLK-ALE)}	ALE signal output delay time (in relation to BCLK)			15	ns	
t _{h(BCLK-ALE)}	ALE signal output hold time (in relation to BCLK)		-4		ns	
t _{d(AD-ALE)}	ALE signal output delay time (in relation to Address)		(Note 3)		ns	
t _{h(AD-ALE)}	ALE signal output hold time (in relation to Address)		(Note 4)		ns	
t _{d(AD-RD)}	RD signal output delay from the end of address		0		ns	
t _{d(AD-WR)}	WR signal output delay from the end of address		0		ns	
t _{dz(RD-AD)}	Address output floating start time			8	ns	

Notes:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 10[ns]$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)\times10^{7}}{f_{(BCLK)}} - 40[ns]$$
 n is 2 for 2-wait setting, 3 for 3-wait setting.

3. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 25[ns]$$

4. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 15[ns]$$

- 5. When using multiplex bus, set $f_{(BCLK)}$ 12.5 MHz or less.
- 6. Calculated according to the BCLK frequency as follows: $\frac{0.5 \times 10^9}{f_{(BCLK)}} 20[ns]$

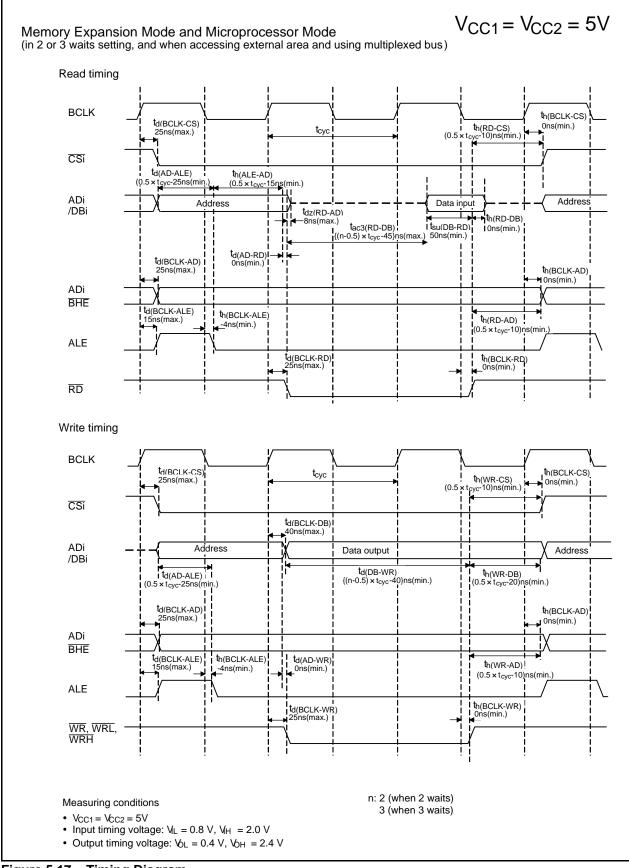


Figure 5.17 Timing Diagram

Switching Characteristics

(V_{CC1} = V_{CC2} = 5 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85°C/-40°C to 85°C unless otherwise specified)

5.2.4.5 In Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$, $3\phi + 4\phi$, and $4\phi + 5\phi$, and When Inserting 1 to 3 Recovery Cycles and Accessing External Area

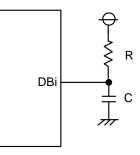
Table 5.40Memory Expansion and Microprocessor Modes (in Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$,
 $3\phi + 4\phi$, and $4\phi + 5\phi$, and When Inserting 1 to 3 Recovery Cycles and Accessing
External Area)

Symbol	Parameter	Measuring	Standard		Unit
Symbol	Falameter	Condition	Min.	Max.	Unit
t _{d(BCLK-AD)}	Address output delay time			25	ns
t _{h(BCLK-AD})	Address output hold time (in relation to BCLK)		0		ns
t _{h(RD-AD})	Address output hold time (in relation to RD)		(Note 4)		ns
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns
t _{d(BCLK-CS)}	Chip select output delay time			25	ns
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns
t _{d(BCLK-ALE)}	ALE signal output delay time			15	ns
t _{h(BCLK-ALE})	ALE signal output hold time	See	-4		ns
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.14		25	ns
t _{h(BCLK-RD)}	RD signal output hold time		0		ns
t _{d(BCLK-WR)}	WR signal output delay time			25	ns
t _{h(BCLK-WR)}	WR signal output hold time		0		ns
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 5)		ns

Notes:

1. Calculated according to the BCLK frequency as follows:

$$\frac{n \times 10^9}{f_{(BCLK)}} - 40[ns]$$


n is 3 for $2\phi + 3\phi$, 4 for $2\phi + 4\phi$, 4 for $3\phi + 4\phi$, and 5 for $4\phi + 5\phi$.

2. Calculated according to the BCLK frequency as follows:

$$\frac{m \times 10^9}{f_{(BCLK)}} - 10[ns]$$

m is 1 when 1 recovery cycle is inserted, 2 when 2 recovery cycles are inserted, and 3 when 3 recovery cycles are inserted.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times ln(1-V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF $\times 1$ k $\Omega \times ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

4. Calculated according to the BCLK frequency as follows:

$$\frac{m \times 10^9}{f_{(BCLK)}} + 0[ns]$$
 m is 1 when 1 recovery cycle is inserted, 2 when 2 recovery cycles are inserted, and 3 when 3 recovery cycles are inserted.

5. Calculated according to the BCLK frequency as follows:

$$\frac{m \times 10^9}{f_{(BCLK)}} - 20[ns]$$
 m is 1 when 1 recovery cycle is inserted, 2 when 2 recovery cycles are inserted, and 3 when 3 recovery cycles are inserted.

Table 5.43 Electrical Characteristics (3) (1/2)

R5F3651ECNFC, R5F3651KCNFC, R5F3650KCNFA, R5F3650KCNFB, R5F3651MCNFC, R5F3650MCNFA, R5F3650MCNFB, R5F3651NCNFC, R5F3650NCNFA, R5F3650NCNFB, R5F3651KCDFC, R5F3650KCDFA, R5F3650KCDFB, R5F3651MCDFC, R5F3650MCDFA,

R5F3650MCDFB, R5F3651NCDFC, R5F3650NCDFA, R5F3650NCDFB

 $V_{CC1} = V_{CC2} = 2.7 \text{ to } 3.3 \text{ V}, V_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C} / -40^{\circ}\text{C to } 85^{\circ}\text{C}, f_{(BCLK)} = 32 \text{ MHz unless otherwise specified.}$

Symbol	Parameter	Parameter Measuring Condition		Standard			Unit
				Min.	Тур.	Max.	
R _{fXCIN}	Feedback resistance XCIN				16		M۵
сс	Power supply current In single-chip, mode, the output pin are open and other pins are V _{SS}	High-speed mode	f _(BCLK) = 32 MHz XIN = 4 MHz (square wave), PLL multiplied by 8 125 kHz on-chip oscillator stopped		26.0		m/
			f _(BCLK) = 32 MHz, A/D conversion XIN = 4 MHz (square wave), PLL multiplied by 8 125 kHz on-chip oscillator stopped		27.0		m/
			f _(BCLK) = 20 MHz XIN = 20 MHz (square wave) 125 kHz on-chip oscillator stopped		17.0		m/
		40 MHz on-chip oscillator mode	Main clock stopped 40 MHz on-chip oscillator on, divide-by-4 (f(BCLK) = 10 MHz) 125 kHz on-chip oscillator stopped		18.0		m/
		125 kHz on-chip oscillator mode	Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator on, no division FMR22 = 1 (slow read mode)		500.0		μΑ
		Low-power mode	$f_{(BCLK)}$ = 32 MHz In low-power mode, FMR 22 = FMR23 = 1 on flash memory ⁽¹⁾		170.0		μ
			$f_{(BCLK)} = 32 \text{ MHz}$ In low-power mode, on RAM ⁽¹⁾		40.0		μA
		Wait mode	Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator on Peripheral clock operating T _{opr} = 25°C		20.0		μ
			$f_{(BCLK)} = 32 MHz$ (oscillation capacity High) 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped Peripheral clock operating $T_{opr} = 25^{\circ}C$		8.0		μ
			$f_{(BCLK)} = 32 \text{ kHz}$ (oscillation capacity Low) 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped Peripheral clock operating $T_{opr} = 25^{\circ}C$		4.0		μ
			XIN = 6 MHz 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped Peripheral clock f1 provision disabled except timers (PCKSTP1A = 1) Main clock as a timer clock source (PCKSTP11 = 0, PCKSTP17 = 1) A given timer operating		0.5		m

Note: 1.

This indicates the memory in which the program to be executed exists.

Timing Requirements

 $(V_{CC1} = V_{CC2} = 3 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C}/-40^{\circ}\text{C to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.3.2.7 Multi-master I²C-bus

Table 5.57Multi-master I²C-bus

Symbol	Parameter	Standard (Standard Clock Mode		Fast-mode	
		Min.	Max.	Min.	Max.	Unit
t _{BUF}	Bus free time	4.7		1.3		μS
t _{HD;STA}	Hold time in start condition	4.0		0.6		μs
t _{LOW}	Hold time in SCL clock 0 status	4.7		1.3		μS
t _R	SCL, SDA signals' rising time		1000	20 + 0.1 Cb	300	ns
t _{HD;DAT}	Data hold time	0		0	0.9	μS
t _{HIGH}	Hold time in SCL clock 1 status	4.0		0.6		μs
f _F	SCL, SDA signals' falling time		300	20 + 0.1 Cb	300	ns
t _{su;DAT}	Data setup time	250		100		ns
t _{su;STA}	Setup time in restart condition	4.7		0.6		μs
t _{su;STO}	Stop condition setup time	4.0		0.6		μs

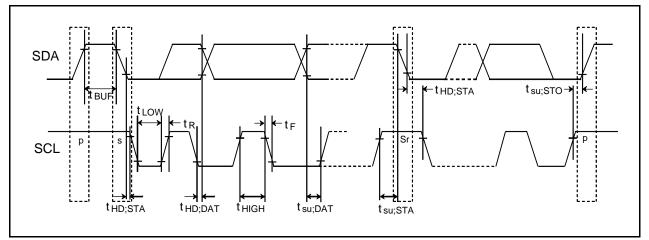


Figure 5.27 Multi-master I²C-bus

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
 the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
 use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infingement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

High Quality: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for which it is not intended. Renesas Electronics being it incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by vou.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

 Renesas Electronics America Inc.

 2880 Scott Boulevard Santa Ciara, CA 95050-2554, U.S.A.

 Tel: +1-408-588-6000, Fax: +1-408-588-6130

 Renesas Electronics Canada Limited

 1011 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

 Tel: +1-905-988-5441, Fax: +1-905-989-3220

 Renesas Electronics Europe Limited

 Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

 Tel: +44-1628-585-100, Fax: +444-1628-585-900

 Renesas Electronics Europe GmbH

 Arcadiastrasse 10, 40472 Disseldorf, Germany

 Tel: +49-211-65030, Fax: +449-11-6503-1327

 Renesas Electronics (Shanghal) Co., Ltd.

 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China

 Tel: +86-10-8235-1155, Fax: +862-10-8235-7679

 Renesas Electronics (Shanghal) Co., Ltd.

 Unit 1601-1613, 16/F, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tel: +862-2886-9318, Fax: +862-2887-7858

 Renesas Electronics Taiwan Co., Ltd.

 Natir, Si, Si Shing Noth Road, Taipei, Taiwan

 Tel: +862-2887-9318, Fax: +862-2887-9670

 Renesas Electronics Singapore Pte. Ltd.

 1 harbourfront Avenue, #06-10, keppel Bay Tower, Singapore 098632

 Tel: +862-213-0200, Fax: +862-2875-9670

 Renesas Electronics Singap