

 \times FI

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	M16C/60
Core Size	16-Bit
Speed	32MHz
Connectivity	EBI/EMI, I ² C, SIO, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	111
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	47K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	128-LQFP
Supplier Device Package	128-LFQFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f3651ncnfc-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.5 Pin Assignments

Figure 1.5 to Figure 1.7 show pin assignments. Table 1.7 to Table 1.11 list pin names.

	Control			I/O F			
Pin No.	Pin	Port	Interrupt	Timer	Serial interface	A/D converter, D/A converter	Bus Control Pin
51		P5_6					ALE
52		P5_5					HOLD
53		P5_4					HLDA
54		P13_3					
55		P13_2					
56		P13_1					
57		P13_0					
58		P5_3					BCLK
59		P5_2					RD
60		P5_1					WRH/BHE
61		P5_0					WRL/WR
62		P12_7					
63		P12_6					
64		P12_5					
65		P4_7		PWM1	TXD7/SDA7		CS3
66		P4_6		PWM0	RXD7/SCL7		CS2
67		P4_5			CLK7		CS1
68		P4_4			CTS7/RTS7		CS0
69		P4_3					A19
70		P4_2					A18
71		 P4_1					A17
72		 P4_0					A16
73		 P3_7					A15
74		 P3_6					A14
75							A13
76		 P3_4					A12
77		 P3_3					A11
78		 P3_2					A10
79		 P3_1					A9
30		P12_4					
31							
32		 P12_2					
33		 P12_1					
34		 P12_0					
35	VCC2						
36		P3_0					A8, [A8/D7]
37	VSS						
38		P2_7				AN2_7	A7, [A7/D7], [A7/D6]
39		 P2_6	1			 AN2_6	A6, [A6/D6], [A6/D5]
90		P2_5	INT7			AN2_5	A5, [A5/D5], [A5/D4]
91		P2_4	INT6			AN2_4	A4[A4/D4], [A4/D3]
92		 P2_3	1			 AN2_3	A3, [A3/D3], [A3/D2]
93		P2_2				AN2_2	A2, [A2/D2], [A2/D1]
94		P2_1				AN2_1	A1, [A1/D1], [A1/D0]
95		P2_0				AN2_0	A0, [A0/D0], A0
96		P1_7	INT5	IDU			D15
97		P1_6	INT4	IDW	1		D14
98		P1_5	INT3	IDV			D13
99 99		P1_4					D12
100		P1_3			TXD6/SDA6		D11

 Table 1.8
 Pin Names for the 128-Pin Package (2/3)

Pin	Control			I/O F	Pin for Peripheral Fund	tion	
No.	Pin	Port	Interrupt Timer Serial Interrace D/A converte		A/D converter, D/A converter	Bus Control Pin	
101		P1_2			RXD6/SCL6		D10
102		P1_1			CLK6		D9
103		P1_0			CTS6/RTS6		D8
104		P0_7				AN0_7	D7
105		P0_6				AN0_6	D6
106		P0_5				AN0_5	D5
107		P0_4				AN0_4	D4
108		P0_3				AN0_3	D3
109		P0_2				AN0_2	D2
110		P0_1				AN0_1	D1
111		P0_0				AN0_0	D0
112		P11_7					
113		P11_6					
114		P11_5					
115		P11_4					
116		P11_3					
117		P11_2					
118		P11_1					
119		P11_0					
120		P10_7	KI3			AN7	
121		P10_6	KI2			AN6	
122		P10_5	KI1			AN5	
123		P10_4	KI0			AN4	
124		P10_3				AN3	
125		P10_2				AN2	
126		P10_1				AN1	
127	AVSS						
128		P10_0				AN0	

 Table 1.9
 Pin Names for the 128-Pin Package (3/3)

1.6 Pin Functions

Signal Name	Pin Name	I/O	Power Supply	Description
Power supply input	VCC1, VCC2, VSS	I	-	Apply 2.7 to 5.5 V to pins VCC1 and VCC2 (VCC1 \geq VCC2), and 0 V to the VSS pin.
Analog power supply input	AVCC, AVSS	I	VCC1	This is the power supply for the A/D and D/A converters. Connect the AVCC pin to VCC1, and connect the AVSS pin to VSS.
Reset input	RESET	I	VCC1	Driving this pin low resets the MCU.
CNVSS	CNVSS	I	VCC1	Input pin to switch processor modes. After a reset, to start operating in single-chip mode, connect the CNVSS pin to VSS via a resistor. To start operating in microprocessor mode, connect the pin to VCC1.
External data bus width select input	BYTE	I	VCC1	Input pin to select the data bus of the external area. The data bus is 16 bits when it is low and 8 bits when it is high. This pin must be fixed either high or low. Connect the BYTE pin to VSS in single-chip mode.
	D0 to D7	I/O	VCC2	Inputs or outputs data (D0 to D7) while accessing an external area with a separate bus.
	D8 to D15	I/O	VCC2	Inputs or outputs data (D8 to D15) while accessing an external area with a 16-bit separate bus.
	A0 to A19	0	VCC2	Outputs address bits A0 to A19.
	A0/D0 to A7/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A0 to A7) by timesharing, while accessing an external area with an 8-bit multiplexed bus.
	A1/D0 to A8/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A1 to A8) by timesharing, while accessing an external area with a 16-bit multiplexed bus.
	$\overline{\text{CS0}}$ to $\overline{\text{CS3}}$	0	VCC2	Outputs chip-select signals $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ to specify an external area.
Bus control pins	WRL/WR WRH/BHE RD	0	VCC2	 Outputs WRL, WRH, (WR, BHE), and RD signals. WRL and WRH can be switched with BHE and WR. WRL, WRH, and RD selected If the external data bus is 16 bits, data is written to an even address in an external area when WRL is driven low. Data is written to an odd address when WRH is driven low. Data is read when RD is driven low. WR, BHE, and RD selected Data is written to an external area when WRH is driven low. Data is written to an external area when WRH is driven low. Data is read when RD is driven low. WR, BHE, and RD selected Data is written to an external area when RD is driven low. An odd address is accessed when BHE is driven low. Select WR, BHE, and RD when using an 8-bit external data bus.
	ALE	0	VCC2	Outputs an ALE signal to latch the address.
	HOLD	I	VCC2	HOLD input is unavailable. Connect the HOLD pin to VCC2 via a resistor (pull-up).
	HLDA	0	VCC2	In a hold state, HLDA outputs a low-level signal.
	RDY	I	VCC2	The MCU bus is placed in wait state while the $\overline{\text{RDY}}$ pin is driven low.

Table 1.12Pin Functions for the 128-Pin Package (1/3)

Power supply: VCC2 is used to supply power to the external bus associated pins. The dual power supply configuration allows VCC2 to interface at a different voltage than VCC1.

1.	Overview

Signal Name	Pin Name	I/O	Power Supply	Description
	SDA0 to SDA2, SDA5	I/O	VCC1	Serial data I/O.
UART0 to UART2,	SDA6, SDA7	I/O	VCC2	
UART5 to UART7 I ² C mode	SCL0 to SCL2, SCL5	I/O	VCC1	Transmit/receive clock I/O.
	SCL6, SCL7	I/O	VCC2	
O a mi a li instanta a a	CLK3, CLK4	I/O	VCC1	Transmit/receive clock I/O.
Serial interface SI/O3, SI/O4	SIN3, SIN4	I	VCC1	Serial data input.
	SOUT3, SOUT4	0	VCC1	Serial data output.
Multi-master I ² C-	SDAMM	I/O	VCC1	Serial data I/O (N-channel open drain output).
bus interface	SCLMM	I/O	VCC1	Transmit/receive clock I/O (N-channel open drain output).
CEC I/O	CEC	I/O	VCC1	CEC I/O (N-channel open drain output).
Reference voltage input	VREF	I	VCC1	Reference voltage input for the A/D and D/A converters.
	AN0 to AN7	Ι	VCC1	
A/D converter	AN0_0 to AN0_7 AN2_0 to AN2_7	I	VCC2	Analog input.
	ADTRG	I	VCC1	External trigger input.
	ANEX0, ANEX1	Ι	VCC1	Extended analog input.
D/A converter	DA0, DA1	0	VCC1	Output for the D/A converter.
I/O ports	P0_0 to P0_7 P1_0 to P1_7 P2_0 to P2_7 P3_0 to P3_7 P4_0 to P4_7 P5_0 to P5_7	I/O	VCC2	8-bit CMOS I/O ports. A direction register determines whether each pin is used as an input port or an output port. A pull-up resistor may be enabled or disabled for input ports in 4-bit units.
	P6_0 to P6_7 P7_0 to P7_7 P8_0 to P8_7 P9_0 to P9_7 P10_0 to P10_7	I/O	VCC1	8-bit I/O ports having equivalent functions to P0. However, P7_0, P7_1, and P8_5 are N-channel open drain output ports. No pull-up resistor is provided. P8_5 is an input port for verifying the $\overline{\text{NMI}}$ pin level and shares a pin with $\overline{\text{NMI}}$.

Table 1.17	Pin Functions for the 100-Pin Package (3/3)
------------	---

Table 4.0	SFR Information (6) (7)		
Address	Register	Symbol	Reset Value
01B0h			XXh
01B1h	DMA3 Source Pointer	SAR3	XXh
01B2h			0Xh
01B3h			
01B4h			XXh
01B5h	DMA3 Destination Pointer	DAR3	XXh
01B6h			0Xh
01B7h			
01B8h			XXh
01B9h	DMA3 Transfer Counter	TCR3	XXh
01BAh			
01BBh			
01BCh	DMA3 Control Register	DM3CON	0000 0X00b
01BDh		Dinocort	
01BEh		+	
01BEh			
01C0h			XXh
01C01	Timer B0-1 Register	TB01	XXh
01C1h			XXh
01C2h	Timer B1-1 Register	TB11	
			XXh
01C4h	Timer B2-1 Register	TB21	XXh
01C5h			XXh
01C6h	Pulse Period/Pulse Width Measurement Mode Function Select Register 1	PPWFS1	XXXX X000b
01C7h			
01C8h	Timer B Count Source Select Register 0	TBCS0	00h
01C9h	Timer B Count Source Select Register 1	TBCS1	X0h
01CAh			
01CBh	Timer AB Division Control Register 0	TCKDIVC0	0000 X000b
01CCh			
01CDh			
01CEh			
01CFh			
01D0h	Timer A Count Source Select Register 0	TACS0	00h
01D1h	Timer A Count Source Select Register 1	TACS1	00h
01D2h	Timer A Count Source Select Register 2	TACS2	X0h
01D3h			
	16-bit Pulse Width Modulation Mode Function Select Register	PWMFS	0XX0 X00Xb
01D5h	Timer A Waveform Output Function Select Register	TAPOFS	XXX0 0000b
01D6h		1/1 0/0	77770 00000
01D0h		+	
01D7h 01D8h	Timer A Output Waveform Change Enable Register	TAOW	XXX0 X00Xb
01D8n 01D9h	Timer A Output Wavelorni Onarige Ellable Register	IAUW	
	Three Dhase Drotect Control Decision	TPRC	004
01DAh	Three-Phase Protect Control Register	IPKU	00h
01DBh			
01DCh			
01DDh			
01DEh			
01DFh			

Table 4.6SFR Information (6) (1)

Note:

1. The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
0270h	SI/O3 Transmit/Receive Register	S3TRR	XXh
0270h		531KK	~~!!
0271h 0272h	SI/O3 Control Register	S3C	0100 0000b
	SI/O3 Bit Rate Register	S3BRG	
0273h			XXh
0274h	SI/O4 Transmit/Receive Register	S4TRR	XXh
0275h		0.10	0.4.0.0.0.0.0.0.0
0276h	SI/O4 Control Register	S4C	0100 0000b
0277h	SI/O4 Bit Rate Register	S4BRG	XXh
0278h	SI/O3, 4 Control Register 2	S34C2	00XX X0X0b
0279h			
027Ah			
027Bh			
027Ch			
027Dh			
027Eh			
027Fh			
0280h			
0281h			
0282h			
0283h			
0284h	UART5 Special Mode Register 4	U5SMR4	00h
0285h	UART5 Special Mode Register 3	U5SMR3	000X 0X0Xb
0286h	UART5 Special Mode Register 2	U5SMR2	X000 0000b
0287h	UART5 Special Mode Register	U5SMR	X000 0000b
0288h	UART5 Transmit/Receive Mode Register	U5MR	00h
0289h	UART5 Bit Rate Register	U5BRG	XXh
028Ah	-	CODING	XXh
028Bh	UART5 Transmit Buffer Register	U5TB -	XXh
028Ch	UART5 Transmit/Receive Control Register 0	U5C0	0000 1000b
028Dh	UART5 Transmit/Receive Control Register 1	U5C1	0000 1000b
		0501	
028Eh 028Fh	UART5 Receive Buffer Register	U5RB —	XXh XXh
			AAn
0290h			
0291h			
0292h			
0293h			
0294h	UART6 Special Mode Register 4	U6SMR4	00h
0295h	UART6 Special Mode Register 3	U6SMR3	000X 0X0Xb
0296h	UART6 Special Mode Register 2	U6SMR2	X000 0000b
0297h	UART6 Special Mode Register	U6SMR	X000 0000b
0298h	UART6 Transmit/Receive Mode Register	U6MR	00h
0299h	UART6 Bit Rate Register	U6BRG	XXh
029Ah	UART6 Transmit Buffer Register	U6TB	XXh
029Bh	UCATTO Manshill Duller Acyster		XXh
029Ch	UART6 Transmit/Receive Control Register 0	U6C0	0000 1000b
029Dh	UART6 Transmit/Receive Control Register 1	U6C1	0000 0010b
029Eh			XXh
	UART6 Receive Buffer Register	U6RB –	XXh

Table 4.10SFR Information (10) (1)

Note:

1. The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
0360h	Pull-Up Control Register 0	PUR0	00h
0361h	Pull-Up Control Register 1	PUR1	0000 0000b ⁽²⁾
			0000 0010b
0362h	Pull-Up Control Register 2	PUR2	00h
0363h	Pull-Up Control Register 3	PUR3	00h
0364h			
0365h			
0366h	Port Control Register	PCR	0000 0XX0b
0367h			
0368h			
0369h	NMI/SD Digital Filter Register	NMIDF	XXXX X000b
036Ah			
036Bh			
036Ch			
036Dh			
036Eh			
036Fh			
0370h	PWM Control Register 0	PWMCON0	00h
0371h			
0372h	PWM0 Prescaler	PWMPRE0	00h
0373h	PWM0 Register	PWMREG0	00h
0374h	PWM1 Prescaler	PWMPRE1	00h
0375h	PWM1 Register	PWMREG1	00h
0376h	PWM Control Register 1	PWMCON1	00h
0377h			
0378h			
0379h			
037Ah			
037Bh			
037Ch	Count Source Protection Mode Register	CSPR	00h ⁽³⁾
037Dh	Watchdog Timer Refresh Register	WDTR	XXh
037Eh	Watchdog Timer Start Register	WDTS	XXh
037Fh	Watchdog Timer Control Register	WDC	00XX XXXXb
0380h to			
038Fh			X: Unde

Table 4.14 SFR Information (14) (1)

Notes:

2. Values after hardware reset, power-on reset, or voltage monitor 0 reset are as follows:

- 00000000b when a low-level signal is input to the CNVSS pin

- 00000010b when a high-level signal is input to the CNVSS pin

Values after voltage monitor 1 reset, voltage monitor 2 reset, software reset, watchdog timer reset, or oscillation stop detect reset are as follows:

- 00000000b when bits PM01 and PM00 in the PM0 register are 00b (single-chip mode).

- 00000010b when bits PM01 and PM00 in the PM0 register are 01b (memory expansion mode) or 11b (microprocessor mode).

3. When the CSPROINI bit in the OFS1 address is 0, the reset value is 1000 0000b.

^{1.} The blank areas are reserved. No access is allowed.

Function	Mnemonic
Transfer	MOVDir
Bit processing	BCLR, BMCnd, BNOT, BSET, BTSTC, and BTSTS
Shifting	ROLC, RORC, ROT, SHA, and SHL
Arithmetic operation	ABS, ADC, ADCF, ADD, DEC, DIV, DIVU, DIVX, EXTS, INC, MUL, MULU, NEG, SBB, and SUB
Decimal operation	DADC, DADD, DSBB, and DSUB
Logical operation	AND, NOT, OR, and XOR
Jump	ADJNZ, SBJNZ

Table 4.20 Read-Modify-Write Instructions

5.1.3 A/D Conversion Characteristics

Table 5.5 A/D Conversion Characteristics (1/2) ⁽¹⁾

 $V_{CC1} = AV_{CC} = 3.0$ to 5.5 V \ge $V_{CC2} \ge$ V_{REF} , $V_{SS} = AV_{SS} = 0$ V at $T_{opr} = -20^{\circ}C$ to 85°C/-40°C to 85°C unless otherwise specified.

Symbol	Parameter		N	leasuring Condition		Standar	b	Unit
Symbol	r didificiei		IV	Mododning Condition		Тур.	Max.	Onit
-	Resolution	$AV_{CC} = V_{CC1} \ge V_{CC2} \ge V_{REF}$				10	Bits	
I _{NL}	Integral non-linearity error	10 bits	V _{CC1} = 5.0 V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input (Note 2)			±3	LSB
			V _{CC1} = 3.3 V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input (Note 2)			±3	LSB
			V _{CC1} = 3.0 V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input (Note 2)			±3	LSB
-	Absolute accuracy	10 bits	V _{CC1} = 5.0 V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input (Note 2)			±3	LSB
			V _{CC1} = 3.3 V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input (Note 2)			±3	LSB
			V _{CC1} = 3.0 V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input (Note 2)			±3	LSB

Notes:

1. Use when $AV_{CC} = V_{CC1}$.

2. Flash memory rewrite disabled. Except for the analog input pin, set the pins to be measured as input ports and connect them to V_{SS}. See Figure 5.2 "A/D Accuracy Measure Circuit".

Figure 5.2 A/D Accuracy Measure Circuit

Table 5.6 A/D Conversion Characteristics (2/2) ⁽¹⁾

 $V_{CC1} = AV_{CC} = 3.0 \text{ to } 5.5 \text{ V} \ge V_{CC2} \ge V_{REF}, V_{SS} = AV_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C}/-40^{\circ}\text{C to } 85^{\circ}\text{C}$ unless otherwise specified.

Symbol	Parameter		Magguring Condition		Standard	ł	Unit
Symbol			Measuring Condition	Min.	Тур.	Max.	Unit
φAD	A/D operating clock		$4.0~V \leq V_{CC1} \leq 5.5~V$	2		25	MHz
	frequency	ANEX0 to ANEX1	$3.2~\text{V} \leq \text{V}_{CC1} \leq 4.0~\text{V}$	2		16	MHz
		input	$3.0~\text{V} \leq \text{V}_{\text{CC1}} \leq 3.2~\text{V}$	2		10	MHz
			$4.0~\text{V} \leq \text{V}_{\text{CC2}} \leq 5.5~\text{V}$	2		25	MHz
		input, AN2_0 to	$3.2~\text{V} \leq \text{V}_{CC2} \leq 4.0~\text{V}$	2		16	MHz
	AN	AN2_7 input	$3.0~\text{V} \leq \text{V}_{\text{CC2}} \leq 3.2~\text{V}$	2		10	MHz
-	Tolerance level impe	dance			3		kΩ
D _{NL}	Differential non-linear	rity error	(4)			±1	LSB
-	Offset error		(4)			±3	LSB
-	Gain error		(4)			±3	LSB
t _{CONV}	10-bit conversion tim	e	V _{CC1} = 5 V, φAD = 25 MHz	1.60			μS
t _{SAMP}	Sampling time			0.60			μS
V _{REF}	Reference voltage			3.0		V _{CC1}	V
V _{IA}	Analog input voltage	(2), (3)		0		V _{REF}	V

Notes:

1. Use when $AV_{CC} = V_{CC1}$.

2. When $V_{CC1} \ge V_{CC2}$, set as below: Analog input voltage (AN0 to AN7, ANEX0, and ANEX1) $\le V_{CC1}$ Analog input voltage (AN0_0 to AN0_7 and AN2_0 to AN2_7) $\le V_{CC2}$.

- 3. When analog input voltage is over reference voltage, the result of A/D conversion is 3FFh.
- 4. Flash memory rewrite disabled. Except for the analog input pin, set the pins to be measured as input ports and connect them to V_{SS}. See Figure 5.2 "A/D Accuracy Measure Circuit".

5.1.4 D/A Conversion Characteristics

Table 5.7 D/A Conversion Characteristics

 $V_{CC1} = AV_{CC} = V_{REF} = 3.0$ to 5.5 V, $V_{SS} = AV_{SS} = 0$ V at $T_{opr} = -20^{\circ}C$ to 85°C/-40°C to 85°C unless otherwise specified.

Symbol	Parameter	Measuring Condition		Unit		
Symbol	Falanetei	Measuring Condition	Min.	Тур.	Max.	Offic
-	Resolution				8	Bits
-	Absolute Accuracy				2.5	LSB
t _{SU}	Setup Time				3	μS
R _O	Output Resistance		5	6	8.2	kΩ
I _{VREF}	Reference Power Supply Input Current	See Notes ¹ and ²			1.5	mA

Notes:

1. This applies when using one D/A converter, with the D/A register for the unused D/A converter set to 00h.

2. The current consumption of the A/D converter is not included. Also, the I_{VREF} of the D/A converter will flow even if the ADSTBY bit in the ADCON1 register is 0 (A/D operation stopped (standby)).

Table 5.10 Flash Memory (Data Flash) Electrical Characteristics

 V_{CC1} = 2.7 to 5.5 V at T_{opr} = -20 to 85°C/-40 to 85°C, unless otherwise specified.

Symbol	Parameter	Conditions		Stand	lard	Unit
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Unit
-	Program and erase cycles ^{(1), (3), (4)}	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$	10,000 (2)			times
-	2 word program time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		300	4000	μS
-	Lock bit program time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		140	3000	μS
-	Block erase time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		0.2	3.0	s
t _{d(SR-SUS)}	Time delay from suspend request until suspend				$5 + \frac{3}{f(BCLK)}$	ms
-	Interval from erase start/restart until following suspend request		0			μS
-	Suspend interval necessary for auto-erasure to complete ⁽⁷⁾		20			ms
-	Time from suspend until erase restart				$30 + \frac{1}{f_{(BCLK)}}$	μS
-	Program, erase voltage		2.7		5.5	V
-	Read voltage		2.7		5.5	V
-	Program, erase temperature		-20/-40		85	°C
t _{PS}	Flash memory circuit stabilization wa	ait time			50	μS
-	Data hold time ⁽⁶⁾	Ambient temperature = 55°C	20			year

Notes:

1. Definition of program and erase cycles

The program and erase cycles refer to the number of per-block erasures.

If the program and erase cycles are n (n = 10,000), each block can be erased n times.

For example, if a 4 KB block is erased after writing 2 word data 1,024 times, each to a different address, this counts as one program and erase cycles. Data cannot be written to the same address more than once without erasing the block (rewrite prohibited).

2. Cycles to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 3. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 256 groups before erasing them all in one operation. In addition, averaging the erasure cycles between blocks A and B can further reduce the actual erasure cycles. It is also advisable to retain data on the erasure cycles of each block and limit the number of erase operations to a certain number.
- 4. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 5. Customers desiring program/erase failure rate information should contact a Renesas Electronics sales office.

6. The data hold time includes time that the power supply is off or the clock is not supplied.

7. After an erase start or erase restart, if an interval of at least 20 ms is not set before the next suspend request, the erase sequence cannot be completed.

$V_{CC1} = V_{CC2} = 5 V$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.2.2.3 Timer A Input

Table 5.24 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Onit
t _{c(TA)}	TAilN input cycle time	100		ns
t _{w(TAH)}	TAilN input high pulse width	40		ns
t _{w(TAL)}	TAilN input low pulse width	40		ns

Table 5.25 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Stan	Unit	
	i didifeter	Min.	Max.	Offic
t _{c(TA)}	TAilN input cycle time	400		ns
t _{w(TAH)}	TAilN input high pulse width	200		ns
t _{w(TAL)}	TAilN input low pulse width	200		ns

Table 5.26 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter	Stan	Unit	
	i didificici	Min.	Max.	Offic
t _{c(TA)}	TAilN input cycle time	200		ns
t _{w(TAH)}	TAiIN input high pulse width	100		ns
t _{w(TAL)}	TAiIN input low pulse width	100		ns

Table 5.27Timer A Input (External Trigger Input in Pulse Width Modulation Mode and
Programmable Output Mode)

Symbol	Parameter	Stan	Unit	
	i didificici	Min.	Max.	Onic
t _{w(TAH)}	TAilN input high pulse width	100		ns
t _{w(TAL)}	TAilN input low pulse width	100		ns

Figure 5.7 Timer A Input

Figure 5.17 Timing Diagram

 $V_{CC1} = V_{CC2} = 5 V$

Switching Characteristics

 $(V_{CC1} = V_{CC2} = 5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.2.4.4 In Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$, $3\phi + 4\phi$, and $4\phi + 5\phi$, and When Accessing External Area

Table 5.39Memory Expansion Mode and Microprocessor Mode (in Wait State Setting 2 ϕ + 3 ϕ , 2 ϕ + 4 ϕ , 3 ϕ + 4 ϕ , and 4 ϕ + 5 ϕ , and When Accessing External Area)

Symbol	Deremeter	Measuring	Standard		Linit	
Symbol	Parameter	Condition	Min.	Max.	Unit	
t _{d(BCLK-AD)}	Address output delay time			25	ns	
t _{h(BCLK-AD})	Address output hold time (in relation to BCLK)		0		ns	
t _{h(RD-AD})	Address output hold time (in relation to RD)		0		ns	
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns	
t _{d(BCLK-CS)}	Chip select output delay time			25	ns	
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns	
t _{d(BCLK-ALE)}	ALE signal output delay time			15	ns	
t _{h(BCLK-ALE})	ALE signal output hold time	See	-4		ns	
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.14		25	ns	
t _{h(BCLK-RD)}	RD signal output hold time		0		ns	
t _{d(BCLK-WR)}	WR signal output delay time			25	ns	
t _{h(BCLK} -WR)	WR signal output hold time		0		ns	
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns	
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns	
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 4)		ns	

Notes:

1. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)\times10^9}{f_{(BCLK)}} - 40[ns] \qquad \text{n is 3 for } 2\phi + 3\phi, 4 \text{ for } 2\phi + 4\phi, 4 \text{ for } 3\phi + 4\phi, \text{ and 5 for } 4\phi + 5\phi.$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{6} - 10[ns]$$

$$f_{(BCLK)}$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times ln(1 - V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF $\times 1$ k $\Omega \times ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

4. Calculated according to the BCLK frequency as follows: $\frac{0.5 \times 10^9}{f_{(BCLK)}} - 20[ns]$

Hold time is equal to or less than 0 ns when the BCLK frequency exceeds 25 MHz.

5.3 Electrical Characteristics (V_{CC1} = V_{CC2} = 3 V)

5.3.1 Electrical Characteristics

VCC1 = VCC2 = 3 V

Table 5.41 Electrical Characteristics (1) (1)

 $V_{CC1} = V_{CC2} = 2.7$ to 3.3 V, $V_{SS} = 0$ V at $T_{opr} = -20^{\circ}$ C to 85° C/- 40° C to 85° C, $f_{(BCLK)} = 32$ MHz unless otherwise specified.

Sumbol	Doromotor		Magguring Condition	Standard			Unit	
Symbol		Parameter		Measuring Condition	Min.	Тур.	Max.	Uni
V _{OH}	High output voltage	P6_0 to P6_7, P7_2 to P7_7, P8_6, P8_7, P9_0 to P9_7, P P11_0 to P11_7, P14_0, P14_	10_0 to P10_7,	I _{OH} = -1 mA	V _{CC1} – 0.5		V _{CC1}	V
		P0_0 to P0_7, P1_0 to P1_7, P3_0 to P3_7, P4_0 to P4_7, P12_0 to P12_7, P13_0 to P1	P5_0 to P5_7,	I _{OH} = -1 mA	V _{CC2} – 0.5		V _{CC2}	
V _{OH}	High output	voltage XOUT	HIGH POWER	I _{OH} = -0.1 mA	V _{CC1} - 0.5		V _{CC1}	V
			LOW POWER	I _{OH} = -50 μA	$V_{CC1} - 0.5$		V _{CC1}	
	High output	voltage XCOUT	HIGH POWER	With no load applied		2.6		V
			LOW POWER	With no load applied		2.2		
V _{OL}	Low output voltage	P6_0 to P6_7, P7_0 to P7_7, P9_7, P10_0 to P10_7, P11_0					0.5	V
		P0_0 to P0_7, P1_0 to P1_7, P3_0 to P3_7, P4_0 to P4_7, P12_0 to P12_7, P13_0 to P1	P5_0 to P5_7,	I _{OL} = 1 mA			0.5	
		CEC		I _{OL} = 1 mA		0	0.5	V
V _{OL}	Low output	voltage XOUT	HIGH POWER	I _{OL} = 0.1 mA			0.5	V
			LOW POWER	I _{OL} = 50 μA			0.5	
	Low output	voltage XCOUT	HIGH POWER	With no load applied		0		V
			LOW POWER	With no load applied		0		
V _{T+} -V _{T-} H	Hysteresis HOLD, RDY, TA0IN to TA4IN, INT7, NMI, ADTRG, CTS0 to SCL0 to SCL2, SCL5 to SCL7 to SDA7, CLK0 to CLK7, TA00 KI3, RXD0 to RXD2, RXD5 to PMC0, PMC1, SCLMM, SDAI		CTS2, CTS5 to CTS7, 7, SDA0 to SDA2, SDA5 OUT to TA4OUT, KI0 to RXD7, SIN3, SIN4, SD,		0.2		1.0	
		CEC			0.2	0.5	1.0	V
		RESET			0.2		1.8	V
I _{IH}	High input current	P0_0 to P0_7, P1_0 to P1_7, P3_0 to P3_7, P4_0 to P4_7, P6_0 to P6_7, P7_0 to P7_7, P9_0 to P9_7, P10_0 to P10_ P12_0 to P12_7, P13_0 to P1 XIN, RESET, CNVSS, BYTE	P5_0 to P5_7, P8_0 to P8_7, 7, P11_0 to P11_7,	V ₁ = 3 V			4.0	μΑ
_	Leakage cu	rrent in powered-off state	CEC	$V_{CC1} = 0 V$			1.8	μΑ
IIL	Low input current	P0_0 to P0_7, P1_0 to P1_7, P3_0 to P3_7, P4_0 to P4_7, P6_0 to P6_7, P7_0 to P7_7, P9_0 to P9_7, P10_0 to P10_ P12_0 to P12_7, P13_0 to P1 XIN, RESET, CNVSS, BYTE	P5_0 to P5_7, P8_0 to P8_7, 7, P11_0 to P11_7,	V ₁ = 0 V			-4.0	μΑ
R _{PULLUP}	Pull-up resistance	P0_0 to P0_7, P1_0 to P1_7, P3_0 to P3_7, P4_0 to P4_7, P6_0 to P6_7, P7_2 to P7_7, P8_6, P8_7, P9_0 to P9_7, P P11_0 to P11_7, P12_0 to P1 P13_7, P14_0, P14_1	P5_0 to P5_7, P8_0 to P8_4, 10_0 to P10_7,	V ₁ = 0 V	50	80	150	kΩ
R _{fXIN}	Feedback re	esistance XIN				3.0		MΩ
V _{RAM}	RAM retenti	on voltage		In stop mode	1.8		1	V

Note:

1. When $V_{CC1} \neq V_{CC2}$, refer to 5 V or 3 V standard depending on the voltage.

$V_{CC1} = V_{CC2} = 3 V$

Table 5.44Electrical Characteristics (3) (2/2)

R5F3651ECNFC, R5F3651KCNFC, R5F3650KCNFA, R5F3650KCNFB, R5F3651MCNFC, R5F3650MCNFA, R5F3650MCNFB, R5F3651NCNFC, R5F3650NCNFA, R5F3650NCNFB, R5F3650NCNFB, R5F3650NCNFA, R5F3650NCNFB, R5F3650NCNFA, R5F3650NCNFB, R5F3650NCNFA, R5F3650NCNFB, R5F3650NCNFB, R5F3650NCNFA, R5F3650NCNFB, R5F3650NCNFB, R5F3650NCNFA, R5F3650NCNFB, R5F3650NCNFB, R5F3650NCNFB, R5F3650NCNFA, R5F3650NCNFB, R5F360NCNFB, R5F360NCNFB, R5F360NCNFB, R5F360NCNFB, R5F360NCNFB, R5F360NCNFF, R5F360NCNFB, R5F360NCNFF, R5F360NCNFF, R5F360NCNFF, R5F360NCNFF,

R5F3651ECDFC, R5F3651KCDFC, R5F3650KCDFA, R5F3650KCDFB, R5F3651MCDFC, R5F3650MCDFA, R5F3650MCDFB, R5F3651NCDFC, R5F3650NCDFA, R5F3650NCDFB

 $V_{CC1} = V_{CC2} = 2.7 \text{ to } 3.3 \text{ V}, V_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C} / -40^{\circ}\text{C to } 85^{\circ}\text{C}, f_{(BCLK)} = 32 \text{ MHz unless otherwise specified.}$

Symbol	Parameter	Parameter Measuring Condition			Unit		
Cymbol	rarameter			Min.	Тур.	Max.	Onic
I _{CC}	Power supply current In single-chip, mode, the output pin are open and other pins	Stop mode	Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped Peripheral clock stopped $T_{opr} = 25^{\circ}C$		1.6		μΑ
	are V _{SS}	During flash memory program	f _(BCLK) = 10 MHz, PM17 = 1 (one wait) V _{CC1} = 3.0 V		20.0		mA
		During flash memory erase	$f_{(BCLK)} = 10 \text{ MHz}, \text{PM17} = 1 \text{ (one wait)}$ V _{CC1} = 3.0 V		30.0		mA

$V_{CC1} = V_{CC2} = 3 V$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 3 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

Table 5.51	Timer A Input (Two-Phase Pulse Input in Event Counter Mode)
------------	---

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Onic
t _{c(TA)}	TAilN input cycle time	2		μs
t _{su(TAIN-TAOUT)}	TAiOUT input setup time	500		ns
t _{su(TAOUT-TAIN)}	TAIIN input setup time	500		ns

Figure 5.23 Timer A Input (Two-Phase Pulse Input in Event Counter Mode)

Figure 5.33 Timing Diagram

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
 the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
 use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infingement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

High Quality: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for which it is not intended. Renesas Electronics being it incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by vou.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

 Renesas Electronics America Inc.

 2880 Scott Boulevard Santa Ciara, CA 95050-2554, U.S.A.

 Tel: +1-408-588-6000, Fax: +1-408-588-6130

 Renesas Electronics Canada Limited

 1011 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

 Tel: +1-905-988-5441, Fax: +1-905-989-3220

 Renesas Electronics Europe Limited

 Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

 Tel: +44-1628-585-100, Fax: +444-1628-585-900

 Renesas Electronics Europe GmbH

 Arcadiastrasse 10, 40472 Disseldorf, Germany

 Tel: +49-211-65030, Fax: +449-11-6503-1327

 Renesas Electronics (Shanghal) Co., Ltd.

 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China

 Tel: +86-10-8235-1155, Fax: +862-10-8235-7679

 Renesas Electronics (Shanghal) Co., Ltd.

 Unit 1601-1613, 16/F, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tel: +862-2886-9318, Fax: +862-2887-7858

 Renesas Electronics Taiwan Co., Ltd.

 Natir, Si, Si Shing Noth Road, Taipei, Taiwan

 Tel: +862-2887-9318, Fax: +862-2887-9670

 Renesas Electronics Singapore Pte. Ltd.

 1 harbourfront Avenue, #06-10, keppel Bay Tower, Singapore 098632

 Tel: +862-213-0200, Fax: +862-2875-9670

 Renesas Electronics Singap