E·XFL

NXP USA Inc. - MK64FX512VDC12 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, SD, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	86
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	192К х 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 37x16b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	121-XFBGA
Supplier Device Package	121-XFBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk64fx512vdc12

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	—	185	mA
V _{DIO}	Digital input voltage (except RESET, EXTAL, and XTAL)	-0.3	5.5	V
V _{DRTC_WAKEU}	RTC Wakeup input voltage	-0.3	V _{BAT} + 0.3	V
Р				
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
I _D	Maximum current single pin limit (applies to all digital pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{USB0_DP}	USB0_DP input voltage	-0.3	3.63	V
V _{USB0_DM}	USB0_DM input voltage	-0.3	3.63	V
V _{REGIN}	USB regulator input	-0.3	6.0	V
V _{BAT}	RTC battery supply voltage	-0.3	3.8	V

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

2 General

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + (V_{IH} - V_{IL}) / 2

Figure 2. Input signal measurement reference

2.2 Nonswitching electrical specifications

	55 11 5	•	•	•		
Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling VDD POR detect voltage	0.8	1.1	1.5	V	
V _{LVDH}	Falling low-voltage detect threshold — high range (LVDV=01)	2.48	2.56	2.64	V	
	Low-voltage warning thresholds — high range					1
V _{LVW1H}	Level 1 falling (LVWV=00)	2.62	2.70	2.78	V	
V _{LVW2H}	Level 2 falling (LVWV=01)	2.72	2.80	2.88	V	
V _{LVW3H}	 Level 3 falling (LVWV=10) 	2.82	2.90	2.98	V	
V _{LVW4H}	Level 4 falling (LVWV=11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	80	_	mV	
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	
	Low-voltage warning thresholds — low range					1
V _{LVW1L}	Level 1 falling (LVWV=00)	1.74	1.80	1.86	V	
V _{LVW2L}	Level 2 falling (LVWV=01)	1.84	1.90	1.96	V	
V _{LVW3L}	 Level 3 falling (LVWV=10) 	1.94	2.00	2.06	V	
V _{LVW4L}	Level 4 falling (LVWV=11)	2.04	2.10	2.16	v	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	60	_	mV	
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	

2.2.2 LVD and POR operating requirements

Table 2. V_{DD} supply LVD and POR operating requirements

1. Rising threshold is the sum of falling threshold and hysteresis voltage

Table 3. VBAT power operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR_VBAT}	Falling VBAT supply POR detect voltage	0.8	1.1	1.5	V	

2.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — high drive strength				
	Table continues on the n	ext nade			

Symbol	Description	Min.	Max.	Unit	Notes
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -8mA	V _{DD} – 0.5	—	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -3mA	$V_{DD} - 0.5$	—	V	
	Output high voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -2mA	V _{DD} – 0.5	—	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -0.6 \text{mA}$	V _{DD} – 0.5	—	V	
I _{ОНТ}	Output high current total for all ports	_	100	mA	
V _{OH_RTC_WA}	Output high voltage — high drive strength	V _{BAT} – 0.5	_	V	
KEUP	• $2.7 \text{ V} \le \text{V}_{BAT} \le 3.6 \text{ V}, \text{ I}_{OH} = -10 \text{mA}$	V _{BAT} – 0.5	—	V	
	• $1.71 \text{ V} \le \text{V}_{BAT} \le 2.7 \text{ V}, \text{ I}_{OH} = -3\text{mA}$				
	Output high voltage — low drive strength	V _{BAT} – 0.5	_	V	
	• 2.7 V \leq V _{BAT} \leq 3.6 V, I _{OH} = -2mA	V _{BAT} – 0.5	_	V	
	• 1.71 V \leq V _{BAT} \leq 2.7 V, I _{OH} = -0.6mA				
I _{OH_RTC_WAK}	Output high current total for RTC_WAKEUP pins	_	100	mA	
V _{OL}	Output low voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 9mA	—	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 3\text{mA}$	_	0.5	V	
	Output low voltage — low drive strength				
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{ I}_{\text{OL}} = 2\text{mA}$	—	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 0.6 \text{mA}$	—	0.5	V	
I _{OLT}	Output low current total for all ports	_	100	mA	
V _{OL_RTC_WA}	Output low voltage — high drive strength	—	0.5	V	
KEUP	• $2.7 \text{ V} \le \text{V}_{BAT} \le 3.6 \text{ V}, \text{ I}_{OL} = 10 \text{mA}$	—	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{BAT} \le 2.7 \text{ V}, \text{ I}_{OL} = 3\text{mA}$				
	Output low voltage — low drive strength	_	0.5	V	
	• 2.7 V \leq V _{BAT} \leq 3.6 V, I _{OL} = 2mA	_	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{BAT} \le 2.7 \text{ V}, \text{ I}_{OL} = 0.6\text{mA}$				
I _{OL_RTC_WAK}	Output low current total for RTC_WAKEUP pins	_	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	—	1	μΑ	1
I _{IN}	Input leakage current (per pin) at 25°C	—	0.025	μA	1
I _{IN_RTC_WAK}	Input leakage current (per RTC_WAKEUP pin) for full temperature range	—	1	μA	
I _{IN_RTC_WAK}	Input leakage current (per RTC_WAKEUP pin) at 25°C		0.025	μA	

2.2.5 Power consumption operating behaviors

NOTE

The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	—	—	See note	mA	1
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash					2
	• @ 1.8V	_	31.1	36.65	mA	
	• @ 3.0V		31	36.75	mA	
I _{DD_RUN}	Run mode current — all peripheral clocks enabled, code executing from flash • @ 1.8V	_	42.7	48.35	mA	3, 4
	• @ 3.0V					
	• @ 25°C	_	40	41.60	mA	
	• @ 105°C	_	48.33	51.50	mA	
I _{DD_WAIT}	Wait mode high frequency current at 3.0 V — all peripheral clocks disabled	_	17.9		mA	2
I _{DD_WAIT}	Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled		6.9	_	mA	5
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks disabled	_	1.0	_	mA	6
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks enabled		1.7		mA	7
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled		0.678	_	mA	8
I _{DD_STOP}	Stop mode current at 3.0 V					
	• @ -40 to 25°C	_	0.49	1.24	mA	
	• @ 70°C	_	1.18	4.3	mA	
	• @ 105°C	_	3.0	12.5	mA	
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V					
	• @40 to 25°C	_	57	139.31	μA	
	• @ 70°C	_	291	679.33	μA	
	• @ 105°C	_	927.3	1869.85	μA	
I _{DD_LLS}	Low leakage stop mode current at 3.0 V					9

Table 6.	Power consum	ption op	perating	behaviors
----------	--------------	----------	----------	-----------

- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFE

Figure 3. Run mode supply current vs. core frequency

Board type	Symbol	Descriptio n	144 LQFP	144 MAPBGA	121 XFBGA	100 LQFP	Unit	Notes
		junction to case						
	Ψ _{JT}	Thermal characteriza tion parameter, junction to package top outside center (natural convection)	2	0.9	0.2	2	°C/W	4

Table 13. Thermal all ibules (continued)
--

1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).

2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.

3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.

4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 Debug trace timing specifications

Table 14. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
T _{cyc}	Clock period	Frequency	dependent	MHz
T _{wl}	Low pulse width	2	—	ns
T _{wh}	High pulse width	2	—	ns
T _r	Clock and data rise time	—	3	ns
T _f	Clock and data fall time	—	3	ns
Ts	Data setup	1.5	—	ns
T _h	Data hold	1	—	ns

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{loc_low}	Loss of external c RANGE = 00	lock minimum frequency —	(3/5) x f _{ints_t}		—	kHz	
f _{loc_high}	Loss of external c RANGE = 01, 10,	lock minimum frequency — or 11	(16/5) x f _{ints_t}	—	—	kHz	
	1	FI	 LL				
f _{fll_ref}	FLL reference free	quency range	31.25	—	39.0625	kHz	
f _{dco}	DCO output	Low range (DRS=00)	20	20.97	25	MHz	3, 4
	frequency range	$640 \times f_{fll_ref}$					
		Mid range (DRS=01)	40	41.94	50	MHz	
		$1280 \times f_{fll_ref}$					
		Mid-high range (DRS=10)	60	62.91	75	MHz	
		$1920 \times f_{fll_ref}$					
		High range (DRS=11)	80	83.89	100	MHz	
		$2560 \times f_{fll_ref}$					
f _{dco_t_DMX3}	DCO output	Low range (DRS=00)	—	23.99	—	MHz	5, 6
2	frequency	$732 \times f_{fll_ref}$					
		Mid range (DRS=01)	—	47.97	—	MHz	
		$1464 \times f_{fll_ref}$					
		Mid-high range (DRS=10)	—	71.99	—	MHz	
		$2197 \times f_{fll_ref}$					
		High range (DRS=11)	—	95.98	—	MHz	
		$2929 \times f_{fll_ref}$					
J _{cyc_fll}	FLL period jitter		_	180	_	ps	
	• f _{DCO} = 48 M	1Hz	_	150	_		
	• f _{DCO} = 98 M	1HZ					-
Lfll_acquire	FLL target freque				I	ms	/
f	VCO operating fre		48.0		120	MH-7	
	PLL operating cur	rrent	40.0		120		8
'pll	• PLL @ 96 N	MHz (f _{osc_hi_1} = 8 MHz, f _{pll_ref}	—	1060	—	μA	
	= 2 MHz, V	DIV multiplier = 48)					
I _{pll}	PLL operating cur	rrent MHz (f	_	600	_	μA	8
	= 2 MHz, V	DIV multiplier = 24)					
f _{pll_ref}	PLL reference fre	quency range	2.0		4.0	MHz	
J _{cyc_pll}	PLL period jitter (I	RMS)					9
	• f _{vco} = 48 MH	Ηz	_	120		ps	
	• f _{vco} = 120 N	1Hz	_	80	_	ps	
J _{acc_pll}	PLL accumulated	jitter over 1µs (RMS)					9

Table 17. MCG specifications (continued	Table 17.	MCG specifications (continued)
---	-----------	--------------------------------

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• f _{vco} = 48 MHz	—	1350	—	ps	
	• f _{vco} = 120 MHz	_	600	—	ps	
D _{lock}	Lock entry frequency tolerance	± 1.49	_	± 2.98	%	
D _{unl}	Lock exit frequency tolerance	± 4.47	_	± 5.97	%	
t _{pll_lock}	Lock detector detection time	_	_	150 × 10 ⁻⁶ + 1075(1/ f _{pll_ref})	S	10

Table 17. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. 2 V <= VDD <= 3.6 V.
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco_1}) over voltage and temperature should be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 8. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 9. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

3.3.2 IRC48M specifications

Table 18. IRC48M specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
I _{DD48M}	Supply current	_	400	500	μA	
f _{irc48m}	Internal reference frequency	—	48	—	MHz	
Δf _{irc48m_ol_lv}	Open loop total deviation of IRC48M frequency at low voltage (VDD=1.71V-1.89V) over full temperature • Regulator disable (USB_CLK_RECOVER_IRC_EN[REG_EN]=0) • Regulator enable (USB_CLK_RECOVER_IRC_EN[REG_EN]=1)	_	± 0.5 ± 0.5	± 1.5 ± 2.0	%f _{irc48m}	1
Δf _{irc48m_ol_hv}	Open loop total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over full temperature • Regulator enable (USB_CLK_RECOVER_IRC_EN[REG_EN]=1)		± 0.5	± 1.5	%f _{irc48m}	1

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
C _x	EXTAL load capacitance	_	—	—		2, 3
Cy	XTAL load capacitance	_	_	—		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_	_	_	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	_	10	_	MΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)	—	—	—	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	—	1	—	MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	—	_	—	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	—	200	—	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_	_	—	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	—	0.6	—	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

Table 19. Oscillator DC electrical specifications (continued)

1. V_{DD}=3.3 V, Temperature =25 °C

2. See crystal or resonator manufacturer's recommendation

3. C_x and C_y can be provided by using either integrated capacitors or external components.

4. When low-power mode is selected, R_F is integrated and must not be attached externally.

5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other device.

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	—	years	
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2
	Data Flas	sh				
t _{nvmretd10k}	Data retention after up to 10 K cycles	5	50	—	years	
t _{nvmretd1k}	Data retention after up to 1 K cycles	20	100	_	years	
n _{nvmcycd}	Cycling endurance	10 K	50 K	_	cycles	2
	FlexRAM as EE	PROM			•	
t _{nvmretee100}	Data retention up to 100% of write endurance	5	50	—	years	
t _{nvmretee10}	Data retention up to 10% of write endurance	20	100	_	years	
n _{nvmcycee}	Cycling endurance for EEPROM backup	20 K	50 K	_	cycles	2
	Write endurance					3
n _{nvmwree16}	 EEPROM backup to FlexRAM ratio = 16 	140 K	400 K	—	writes	
n _{nvmwree128}	 EEPROM backup to FlexRAM ratio = 128 	1.26 M	3.2 M	—	writes	
n _{nvmwree512}	 EEPROM backup to FlexRAM ratio = 512 	5 M	12.8 M	—	writes	
n _{nvmwree2k}	 EEPROM backup to FlexRAM ratio = 2,048 	20 M	50 M	—	writes	
n _{nvmwree4k}	 EEPROM backup to FlexRAM ratio = 4,096 	40 M	100 M	—	writes	

 Table 26.
 NVM reliability specifications (continued)

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40°C \leq T_j \leq 125°C.

3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM and the allocated EEPROM backup per subsystem. Minimum and typical values assume all 16-bit or 32-bit writes to FlexRAM; all 8-bit writes result in 50% less endurance.

3.4.1.5 Write endurance to FlexRAM for EEPROM

When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values.

The bytes not assigned to data flash via the FlexNVM partition code are used by the FTFE to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space.

While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.

Peripheral operating requirements and behaviors

Figure 13. FlexBus read timing diagram

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
TUE	Total unadjusted	12-bit modes	—	±4	±6.8	LSB ⁴	5
	error	 <12-bit modes 	_	±1.4	±2.1		
DNL	Differential non- linearity	12-bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5
		 <12-bit modes 	_	±0.2	–0.3 to 0.5		
INL	Integral non-linearity	12-bit modes	—	±1.0	-2.7 to +1.9	LSB ⁴	5
		 <12-bit modes 	_	±0.5	-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	—	-4	-5.4	LSB ⁴	$V_{ADIN} = V_{DDA}^{5}$
		 <12-bit modes 	_	-1.4	-1.8		
EQ	Quantization error	16-bit modes	—	-1 to 0	—	LSB ⁴	
		• ≤13-bit modes	_	_	±0.5		
ENOB	Effective number of	16-bit differential mode					6
	bits	• Avg = 32	12.8	14.5	_	bits	
		• Avg = 4	11.9	13.8	_	bits	
		16-bit single-ended mode					
		• Avg = 32	12.2	13.9	—	bits	
		• Avg = 4	11.4	13.1		bits	
SINAD	Signal-to-noise plus distortion	See ENOB	6.02 ×	ENOB +	1.76	dB	
THD	Total harmonic	16-bit differential mode				dB	7
	distortion	• Avg = 32	-	-94	—	٩D	
		16-bit single-ended mode • Avg = 32	_	-85	_	uв	
SFDR	Spurious free dynamic range	16-bit differential mode	82	95		dB	7
		//// U			_	dB	
		16-bit single-ended mode • Avg = 32	78	90			
E _{IL}	Input leakage error			$I_{ln} \times R_{AS}$	<u> </u>	mV	I _{In} = leakage current
							(refer to the MCU's voltage and

Table 31. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Typical ADC 16-bit Single-Ended ENOB vs ADC Clock

Figure 17. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

3.6.2 CMP and 6-bit DAC electrical specifications Table 32. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	_	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	_	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	_	20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3	_	V _{DD}	V
V _{AIO}	Analog input offset voltage	_	_	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	 CR0[HYSTCTR] = 11 	_	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5		_	V
V _{CMPOI}	Output low	_	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	_	μA
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	_	0.3	LSB

Figure 23. RMII/MII receive signal timing diagram

3.8.1.2 RMII signal switching specifications

The following timing specs meet the requirements for RMII style interfaces for a range of transceiver devices.

Num	Description	Min.	Max.	Unit
—	EXTAL frequency (RMII input clock RMII_CLK)	—	50	MHz
RMII1	RMII_CLK pulse width high	35%	65%	RMII_CLK period
RMII2	RMII_CLK pulse width low	35%	65%	RMII_CLK period
RMII3	RXD[1:0], CRS_DV, RXER to RMII_CLK setup	4	—	ns
RMII4	RMII_CLK to RXD[1:0], CRS_DV, RXER hold	2	—	ns
RMII7	RMII_CLK to TXD[1:0], TXEN invalid	4	—	ns
RMII8	RMII_CLK to TXD[1:0], TXEN valid	_	15	ns

Table 40. RMII signal switching specifications

3.8.1.3 MDIO serial management timing specifications Table 41. MDIO serial management channel signal timing

Num	Characteristic	Symbol	Min	Max	Unit
E10	MDC cycle time	t _{MDC}	400	—	ns
E11	MDC pulse width		40	60	% t _{MDC}
E12	MDC to MDIO output valid		_	375	ns
E13	MDC to MDIO output invalid		25	—	ns
E14	MDIO input to MDC setup		10	_	ns
E15	MDIO input to MDC hold		0	_	ns

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
	Frequency of operation		15 ¹	MHz
DS9	DSPI_SCK input cycle time	4 x t _{BUS}	—	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns
DS11	DSPI_SCK to DSPI_SOUT valid	—	10	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	—	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	—	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	—	ns
DS15	DSPI_SS active to DSPI_SOUT driven	—	14	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	—	14	ns

Table 45. Slave mode DSPI timing (limited voltage range)

1. The maximum operating frequency is measured with non-continuous CS and SCK. When DSPI is configured with continuous CS and SCK, there is a constraint that SPI clock should not be greater than 1/6 of bus clock, for example, when bus clock is 60MHz, SPI clock should not be greater than 10MHz

Figure 26. DSPI classic SPI timing — slave mode

Figure 30. SDHC timing

3.8.11 I²S switching specifications

This section provides the AC timings for the I²S in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame sync (I2S_FS) shown in the figures below.

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
S1	I2S_MCLK cycle time	40	—	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_BCLK cycle time	80	—	ns
S4	I2S_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_BCLK to I2S_FS output valid	_	15	ns
S6	I2S_BCLK to I2S_FS output invalid	0	—	ns
S7	I2S_BCLK to I2S_TXD valid	_	15	ns
S8	I2S_BCLK to I2S_TXD invalid	0	—	ns
S9	I2S_RXD/I2S_FS input setup before I2S_BCLK	17		ns
S10	I2S_RXD/I2S_FS input hold after I2S_BCLK	0		ns

Table 51. I²S master mode timing

Figure 36. I2S/SAI timing — slave modes

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to nxp.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
100-pin LQFP	98ASS23308W
121-pin XFBGA	98ASA00595D
144-pin LQFP	98ASS23177W
144-pin MAPBGA	98ASA00222D

5 Pinout

144 QFP	144 Map	100 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	ALT8	ALT9
	BGA													
									8_BLS23_ 16_b					
126	B5	_	DISABLED		PTC19		UART3_ CTS_b	ENET0_ 1588_ TMR3	FB_CS3_b/ FB_BE7_ 0_BLS31_ 24_b	FB_TA_b				
127	A5	93	DISABLED		PTD0/ LLWU_P12	SPIO_ PCS0	UART2_ RTS_b	FTM3_CH0	FB_ALE/ FB_CS1_b/ FB_TS_b				LLWU_P12	
128	D4	94	ADC0_ SE5b	ADC0_ SE5b	PTD1	SPI0_SCK	UART2_ CTS_b	FTM3_CH1	FB_CS0_b					
129	C4	95	DISABLED		PTD2/ LLWU_P13	SPI0_ SOUT	UART2_ RX	FTM3_CH2	FB_AD4		I2C0_SCL		LLWU_P13	
130	B4	96	DISABLED		PTD3	SPI0_SIN	UART2_TX	FTM3_CH3	FB_AD3		I2C0_SDA			
131	A4	97	DISABLED		PTD4/ LLWU_P14	SPI0_ PCS1	UART0_ RTS_b	FTM0_CH4	FB_AD2	EWM_IN	SPI1_ PCS0		LLWU_P14	
132	A3	98	ADC0_ SE6b	ADC0_ SE6b	PTD5	SPI0_ PCS2	UART0_ CTS_b/ UART0_ COL_b	FTM0_CH5	FB_AD1	EWM_ OUT_b	SPI1_SCK			
133	A2	99	ADC0_ SE7b	ADC0_ SE7b	PTD6/ LLWU_P15	SPI0_ PCS3	UART0_ RX	FTM0_CH6	FB_AD0	FTM0_ FLT0	SPI1_ SOUT		LLWU_P15	
134	M10	_	VSS	VSS										
135	F8	_	VDD	VDD										

5.2 Unused analog interfaces

Table 57. Unused analog interfaces

Module name	Pins	Recommendation if unused
ADC	ADC0_DP1, ADC0_DM1, ADC1_DP1, ADC1_DM1, ADC0_DP0/ADC1_DP3, ADC0_DM0/ADC1_DM3, ADC1_DP0/ ADC0_DP3, ADC1_DM0/ADC0_DM3, ADC1_SE16/ADC0_SE22, ADC0_SE16/ADC0_SE21, ADC1_SE18	Ground
DAC ¹	DAC0_OUT, DAC1_OUT	Float
USB	VREGIN, USB0_GND, VOUT33 ²	Connect VREGIN and VOUT33 together and tie to ground through a 10 $k\Omega$ resistor. Do not tie directly to ground, as this causes a latch-up risk.
	USB0_DM, USB0_DP	Float

1. Unused DAC signals do not apply to all parts. See the Pinout section for details.

2. USB0_VBUS and USB0_GND are board level signals

8.3 Typical-value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit	
T _A	Ambient temperature	25	٥°C	
V _{DD}	Supply voltage	3.3	V	

8.4 Relationship between ratings and operating requirements

8.5 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/salestermsandconditions.

NXP, NXP logo, and Kinetis are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. The USB-IF Logo is a registered trademark of USB Implementers Forum, Inc. All rights reserved.

©2014-2016 NXP B.V.

Document Number K64P144M120SF5 Revision 7, 10/2016

