

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, SD, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	100
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	192K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 41x16b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk64fx512vlq12

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{BAT}	RTC battery supply voltage	1.71	3.6	V	
V _{IH}	Input high voltage				
	• 2.7 V \leq V _{DD} \leq 3.6 V	$0.7 \times V_{DD}$	—	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	—	V	
VIL	Input low voltage				
	• 2.7 V \leq V _{DD} \leq 3.6 V	—	$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	_	$0.3 \times V_{DD}$	v	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$		V	
I _{ICDIO}	Digital pin negative DC injection current — single pin				1
	• V _{IN} < V _{SS} -0.3V	-5	—	mA	
I _{ICAIO}	Analog ² , EXTAL, and XTAL pin DC injection current				3
		F		mA	
	• $v_{\rm IN} < v_{\rm SS}$ -0.3V (Negative current injection)	-5	_		
	 V_{IN} > V_{DD}+0.3V (Positive current injection) 	_	+5		
I _{ICcont}	Contiguous pin DC injection current —regional limit,				
	includes sum of negative injection currents or sum of				
	Negative current injection	-25	—	mA	
		_	+25		
	Positive current injection				
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	4
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	—	V	
V _{RFVBAT}	V_{BAT} voltage required to retain the VBAT register file	V _{POR_VBAT}	_	V	

- All 5 V tolerant digital I/O pins are internally clamped to V_{SS} through an ESD protection diode. There is no diode connection to V_{DD}. If V_{IN} is less than V_{DIO_MIN}, a current limiting resistor is required. If V_{IN} greater than V_{DIO_MIN} (=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at the pads. The negative DC injection current limiting resistor is calculated as R=(V_{DIO_MIN}-V_{IN})/II_{ICDIO}I.
- 2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL and XTAL are analog pins.
- 3. All analog pins are internally clamped to V_{SS} and V_{DD} through ESD protection diodes. If V_{IN} is less than V_{AIO_MIN} or greater than V_{AIO_MAX}, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{AIO_MIN}-V_{IN})/II_{ICAIO}I. The positive injection current limiting resistor is calculated as R=(V_{IN}-V_{AIO_MAX})/II_{ICAIO}I. Select the larger of these two calculated resistances if the pin is exposed to positive and negative injection currents.
- 4. Open drain outputs must be pulled to VDD.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• @ -40 to 25°C	—	5.8	10.48	μA	
	• @ 70°C	_	26.7	47.99	μA	
	• @ 105°C	_	114.9	196.49	μA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at 3.0 V					
	 @ -40 to 25°C 	—	4.4	5.54	μA	
	• @ 70°C	—	21	36.46	μA	
	• @ 105°C	_	90.2	150.17	μA	
I _{DD_VLLS2}	Very low-leakage stop mode 2 current at 3.0 V					
	 @ -40 to 25°C 	_	2.1	2.34	μA	
	• @ 70°C	_	6.84	10.36	μA	
	• @ 105°C	_	29.4	46.74	μA	
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at 3.0 V					
	• @ -40 to 25°C	_	0.817	0.86	μA	
	• @ 70°C	_	3.97	5.77	μA	
	• @ 105°C	_	21.3	33.99	μA	
I _{DD_VLLS0}	Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit enabled					
	• @ -40 to 25°C	_	0.52	0.62	μA	
	• @ 70°C	—	3.67	5.7	μA	
	• @ 105°C	_	21.20	34.9	μA	
I _{DD_VLLS0}	Very low-leakage stop mode 0 current at 3.0 V with POB detect circuit disabled					
	• @ -40 to 25°C	_	0.339	0.412	μA	
	• @ 70°C	_	3.36	4.2	μA	
	• @ 105°C	_	20.3	29.9	μA	
I _{DD_VBAT}	Average current with RTC and 32 kHz disabled					
	• @ 1.8 V					
	• @ -40 to 25°C	_	0.16	0.19		
	• @ 70°C		0.55	0.79		
	• @ 105°C		25	3.69		
	• @ 3.0 V		2.0	0.00	μ <u>μ</u> μης	
	• @ -40 to 25°C	—	0.18	0.21	μΑ	
	• @ 70°C	_	0.66	0.86	μΑ	
	• @ 105°C	—	2.92	4.30	μA	

 Table 6. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Max.	Unit	Notes
f _{LPTMR}	LPTMR clock	_	25	MHz	
	VLPR mode ¹		·		
f _{SYS}	System and core clock	_	4	MHz	
f _{BUS}	Bus clock	_	4	MHz	
FB_CLK	FlexBus clock	_	4	MHz	
f _{FLASH}	Flash clock	_	0.8	MHz	
f _{ERCLK}	External reference clock	_	16	MHz	
f _{LPTMR_pin}	LPTMR clock	_	25	MHz	
f _{LPTMR_ERCLK}	LPTMR external reference clock	_	16	MHz	
f _{FlexCAN_ERCLK}	FlexCAN external reference clock	_	8	MHz	
f _{I2S_MCLK}	I2S master clock	_	12.5	MHz	
f _{I2S_BCLK}	I2S bit clock	_	4	MHz	

Table 10. Device clock specifications (continued)

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

2.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, CAN, CMT, IEEE 1588 timer, timers, and I²C signals.

 Table 11. General switching specifications

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	—	Bus clock cycles	1, 2
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path	100	_	ns	3
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path	50	—	ns	3
	External reset pulse width (digital glitch filter disabled)	100	—	ns	3
	Mode select (EZP_CS) hold time after reset deassertion	2	_	Bus clock cycles	
	Port rise and fall time (high drive strength) - 3 V				4
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	_	8	ns	
	• $2.7 \le V_{DD} \le 3.6V$	_	6	ns	
	Slew enabled				
		—	18	ns	

Figure 6. Trace data specifications

3.1.2 JTAG electricals

able 15. JTA	G limited	voltage	range	electricals
--------------	-----------	---------	-------	-------------

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	25	
	Serial Wire Debug	0	50	
J2	TCLK cycle period	1/J1	_	ns
J3	TCLK clock pulse width			
	Boundary Scan	50	_	ns
	JTAG and CJTAG	20	_	ns
	Serial Wire Debug	10	_	ns
J4	TCLK rise and fall times	_	3	ns
J5	Boundary scan input data setup time to TCLK rise	20	_	ns
J6	Boundary scan input data hold time after TCLK rise	2.6	_	ns
J7	TCLK low to boundary scan output data valid		25	ns
J8	TCLK low to boundary scan output high-Z		25	ns
J9	TMS, TDI input data setup time to TCLK rise	8		ns
J10	TMS, TDI input data hold time after TCLK rise	1		ns

Figure 10. TRST timing

3.2 System modules

There are no specifications necessary for the device's system modules.

3.3 Clock modules

3.3.1 MCG specifications

Table [•]	17.	MCG	specifications
--------------------	-----	-----	----------------

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C	—	32.768	_	kHz	
f _{ints_t}	Internal reference frequency (slow clock) — user trimmed	31.25		39.0625	kHz	
I _{ints}	Internal reference (slow clock) current	—	20	—	μA	
$\Delta_{fdco_res_t}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
$\Delta f_{dco_res_t}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM only	_	± 0.2	± 0.5	%f _{dco}	1
Δf_{dco_t}	Total deviation of trimmed average DCO output frequency over voltage and temperature	_	± 0.5	± 2	%f _{dco}	1,2
∆f _{dco_t}	Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C	_	± 0.3	± 1	%f _{dco}	1
f _{intf_ft}	Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C	—	4	_	MHz	
f _{intf_t}	Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C	3	—	5	MHz	
l _{intf}	Internal reference (fast clock) current		25	_	μA	

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{eewr8bers}	Byte-write to erased FlexRAM location execution time	_	175	275	μs	3
	Byte-write to FlexRAM execution time:					
t _{eewr8b32k}	32 KB EEPROM backup	—	385	1700	μs	
t _{eewr8b64k}	64 KB EEPROM backup	—	475	2000	μs	
t _{eewr8b128k}	128 KB EEPROM backup	_	650	2350	μs	
t _{eewr16bers}	16-bit write to erased FlexRAM location execution time		175	275	μs	
	16-bit write to FlexRAM execution time:					
t _{eewr16b32k}	32 KB EEPROM backup	_	385	1700	μs	
t _{eewr16b64k}	64 KB EEPROM backup	_	475	2000	μs	
t _{eewr16b128k}	• 128 KB EEPROM backup		650	2350	μs	
t _{eewr32bers}	32-bit write to erased FlexRAM location execution time		360	550	μs	
	32-bit write to FlexRAM execution time:					
t _{eewr32b32k}	32 KB EEPROM backup	_	630	2000	μs	
t _{eewr32b64k}	64 KB EEPROM backup	_	810	2250	μs	
t _{eewr32b128k}	• 128 KB EEPROM backup	_	1200	2650	μs	

Table 24.	Flash comma	and timing sp	pecifications (continued)

1. Assumes 25MHz or greater flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.

3.4.1.3 Flash high voltage current behaviors Table 25. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	_	3.5	7.5	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation	_	1.5	4.0	mA

3.4.1.4 Reliability specifications Table 26. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes		
Program Flash								
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50		years			

Peripheral operating requirements and behaviors

Figure 13. FlexBus read timing diagram

Figure 14. FlexBus write timing diagram

3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

3.6 Analog

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
TUE	Total unadjusted	12-bit modes	—	±4	±6.8	LSB ⁴	5
	error	 <12-bit modes 	_	±1.4	±2.1		
DNL	Differential non- linearity	12-bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5
		 <12-bit modes 	_	±0.2	–0.3 to 0.5		
INL	Integral non-linearity	12-bit modes	—	±1.0	-2.7 to +1.9	LSB ⁴	5
		 <12-bit modes 	_	±0.5	-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	—	-4	-5.4	LSB ⁴	$V_{ADIN} = V_{DDA}^{5}$
		 <12-bit modes 	_	-1.4	-1.8		
EQ	Quantization error	16-bit modes	—	-1 to 0	—	LSB ⁴	
		• ≤13-bit modes	_	_	±0.5		
ENOB	Effective number of	16-bit differential mode					6
	bits	• Avg = 32	12.8	14.5	_	bits	
		• Avg = 4	11.9	13.8	_	bits	
		16-bit single-ended mode					
		• Avg = 32	12.2	13.9	—	bits	
		• Avg = 4	11.4	13.1		bits	
SINAD	Signal-to-noise plus distortion	See ENOB	6.02 ×	ENOB +	1.76	dB	
THD	Total harmonic	16-bit differential mode				dB	7
	distortion	• Avg = 32	-	-94	—	٩D	
		16-bit single-ended mode • Avg = 32	_	-85	_	uв	
SFDR	Spurious free dynamic range	16-bit differential mode	82	95		dB	7
		//// U			_	dB	
		16-bit single-ended mode • Avg = 32	78	90			
E _{IL}	Input leakage error		In × R _{AS}			mV	I _{In} = leakage current
							(refer to the MCU's voltage and

Table 31. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Typical ADC 16-bit Single-Ended ENOB vs ADC Clock

Figure 17. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

3.6.2 CMP and 6-bit DAC electrical specifications Table 32. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	_	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	_	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	_	20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3	_	V _{DD}	V
V _{AIO}	Analog input offset voltage	_	_	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	 CR0[HYSTCTR] = 11 	_	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5		_	V
V _{CMPOI}	Output low	_	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	_	μA
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	_	0.3	LSB

- 1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} -0.6 V.
- Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.

Figure 18. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)

3. 1 LSB = V_{reference}/64

Peripheral operating requirements and behaviors

V_{DDA} = 3.0 V, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

Figure 20. Typical INL error vs. digital code

Peripheral operating requirements and behaviors

2. C_b = total capacitance of the one bus line in pF.

Figure 29. Timing definition for devices on the I²C bus

3.8.9 UART switching specifications

See General switching specifications.

3.8.10 SDHC specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

Table 50.	SDHC switching	specifications
-----------	----------------	----------------

Num	Symbol	Description	Min.	Max.	Unit
		Operating voltage	1.71	3.6	V
		Card input clock		•	
SD1	fpp	Clock frequency (low speed)	0	400	kHz
	fpp	Clock frequency (SD\SDIO full speed\high speed)	0	25\50	MHz
	fpp	Clock frequency (MMC full speed\high speed)	0	20\50	MHz
	f _{OD}	Clock frequency (identification mode)	0	400	kHz
SD2	t _{WL}	Clock low time	7	—	ns
SD3	t _{WH}	Clock high time	7	—	ns
SD4	t _{TLH}	Clock rise time	—	3	ns
SD5	t _{THL}	Clock fall time	—	3	ns
		SDHC output / card inputs SDHC_CMD, SDHC_DAT	(reference to	SDHC_CLK)	
SD6	t _{OD}	SDHC output delay (output valid)	-5	8.3	ns
		SDHC input / card inputs SDHC_CMD, SDHC_DAT	(reference to	SDHC_CLK)	•
SD7	t _{ISU}	SDHC input setup time	5.5	—	ns
SD8	t _{IH}	SDHC input hold time	0	—	ns

Figure 30. SDHC timing

3.8.11 I²S switching specifications

This section provides the AC timings for the I²S in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame sync (I2S_FS) shown in the figures below.

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
S1	I2S_MCLK cycle time	40	—	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_BCLK cycle time	80	—	ns
S4	I2S_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_BCLK to I2S_FS output valid	_	15	ns
S6	I2S_BCLK to I2S_FS output invalid	0	—	ns
S7	I2S_BCLK to I2S_TXD valid	_	15	ns
S8	I2S_BCLK to I2S_TXD invalid	0	—	ns
S9	I2S_RXD/I2S_FS input setup before I2S_BCLK	17		ns
S10	I2S_RXD/I2S_FS input hold after I2S_BCLK	0		ns

Table 51. I²S master mode timing

144 QFP	144 Map Bga	100 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	ALT8	ALT9
45	M4	31	ADC0_ SE17	ADC0_ SE17	PTE24		UART4_TX		I2C0_SCL	EWM_ OUT_b				
46	K5	32	ADC0_ SE18	ADC0_ SE18	PTE25/ x_LLWU_ P21		UART4_ RX		I2C0_SDA	EWM_IN			x_LLWU_ P21	
47	K4	33	DISABLED		PTE26	ENET_ 1588_ CLKIN	UART4_ CTS_b			RTC_ CLKOUT	USB_ CLKIN			
48	J4	—	DISABLED		PTE27		UART4_ RTS_b							
49	H4	_	DISABLED		PTE28									
50	J5	34	JTAG_ TCLK/ SWD_CLK/ EZP_CLK		PTA0	UART0_ CTS_b/ UART0_ COL_b	FTM0_CH5				JTAG_ TCLK/ SWD_CLK			EZP_CLK
51	J6	35	JTAG_TDI/ EZP_DI		PTA1	UART0_ RX	FTM0_CH6				JTAG_TDI			EZP_DI
52	K6	36	JTAG_ TDO/ TRACE_ SWO/ EZP_DO		PTA2	UART0_TX	FTM0_CH7				JTAG_ TDO/ TRACE_ SWO			EZP_DO
53	K7	37	JTAG_ TMS/ SWD_DIO		PTA3	UART0_ RTS_b	FTM0_CH0				JTAG_ TMS/ SWD_DIO			
54	L7	38	NMI_b/ EZP_CS_b		PTA4/ LLWU_P3		FTM0_CH1				NMI_b		LLWU_P3	EZP_CS_b
55	M8	39	DISABLED		PTA5	USB_ CLKIN	FTM0_CH2	RMII0_ RXER/ MII0_ RXER	CMP2_ OUT	I2S0_TX_ BCLK	JTAG_ TRST_b			
56	E7	40	VDD	VDD										
57	G7	41	VSS	VSS										
58	J7	_	DISABLED		PTA6		FTM0_CH3		CLKOUT		TRACE_ CLKOUT			
59	J8	-	ADC0_ SE10	ADC0_ SE10	PTA7		FTM0_CH4				TRACE_ D3			
60	K8	_	ADC0_ SE11	ADC0_ SE11	PTA8		FTM1_CH0			FTM1_ QD_PHA	TRACE_ D2			
61	L8	-	DISABLED		PTA9		FTM1_CH1	MIIO_RXD3		FTM1_ QD_PHB	TRACE_ D1			
62	M9	_	DISABLED		PTA10/ x_LLWU_ P22		FTM2_CH0	MII0_RXD2		FTM2_ QD_PHA	TRACE_ D0		x_LLWU_ P22	
63	L9	—	DISABLED		PTA11/ x_LLWU_ P23		FTM2_CH1	MIIO_ RXCLK	I2C2_SDA	FTM2_ QD_PHB			x_LLWU_ P23	

144 QFP	144 Map Bga	100 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	ALT8	ALT9
							UART0_ COL_b							
85	G10	-	ADC1_ SE10	ADC1_ SE10	PTB4			ENET0_ 1588_ TMR2		FTM1_ FLT0				
86	G9	-	ADC1_ SE11	ADC1_ SE11	PTB5			ENET0_ 1588_ TMR3		FTM2_ FLT0				
87	F12	_	ADC1_ SE12	ADC1_ SE12	PTB6				FB_AD23					
88	F11	_	ADC1_ SE13	ADC1_ SE13	PTB7				FB_AD22					
89	F10	-	DISABLED		PTB8		UART3_ RTS_b		FB_AD21					
90	F9	57	DISABLED		PTB9	SPI1_ PCS1	UART3_ CTS_b		FB_AD20					
91	E12	58	ADC1_ SE14	ADC1_ SE14	PTB10	SPI1_ PCS0	UART3_ RX		FB_AD19	FTM0_ FLT1				
92	E11	59	ADC1_ SE15	ADC1_ SE15	PTB11	SPI1_SCK	UART3_TX		FB_AD18	FTM0_ FLT2				
93	H7	60	VSS	VSS										
94	F5	61	VDD	VDD										
95	E10	62	DISABLED		PTB16	SPI1_ SOUT	UART0_ RX	FTM_ CLKIN0	FB_AD17	EWM_IN				
96	E9	63	DISABLED		PTB17	SPI1_SIN	UART0_TX	FTM_ CLKIN1	FB_AD16	EWM_ OUT_b				
97	D12	64	DISABLED		PTB18	CAN0_TX	FTM2_CH0	I2S0_TX_ BCLK	FB_AD15	FTM2_ QD_PHA				
98	D11	65	DISABLED		PTB19	CAN0_RX	FTM2_CH1	I2S0_TX_ FS	FB_OE_b	FTM2_ QD_PHB				
99	D10	66	DISABLED		PTB20	SPI2_ PCS0			FB_AD31	CMP0_ OUT				
100	D9	67	DISABLED		PTB21	SPI2_SCK			FB_AD30	CMP1_ OUT				
101	C12	68	DISABLED		PTB22	SPI2_ SOUT			FB_AD29	CMP2_ OUT				
102	C11	69	DISABLED		PTB23	SPI2_SIN	SPI0_ PCS5		FB_AD28					
103	B12	70	ADC0_ SE14	ADC0_ SE14	PTC0	SPI0_ PCS4	PDB0_ EXTRG	USB_ SOF_OUT	FB_AD14	I2S0_TXD1				
104	B11	71	ADC0_ SE15	ADC0_ SE15	PTC1/ LLWU_P6	SPI0_ PCS3	UART1_ RTS_b	FTM0_CH0	FB_AD13	I2S0_TXD0			LLWU_P6	
105	A12	72	ADC0_ SE4b/ CMP1_IN0	ADC0_ SE4b/ CMP1_IN0	PTC2	SPI0_ PCS2	UART1_ CTS_b	FTM0_CH1	FB_AD12	I2S0_TX_ FS				

144 QFP	144 Map	100 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	ALT8	ALT9
	BGA													
									8_BLS23_ 16_b					
126	B5	_	DISABLED		PTC19		UART3_ CTS_b	ENET0_ 1588_ TMR3	FB_CS3_b/ FB_BE7_ 0_BLS31_ 24_b	FB_TA_b				
127	A5	93	DISABLED		PTD0/ LLWU_P12	SPIO_ PCS0	UART2_ RTS_b	FTM3_CH0	FB_ALE/ FB_CS1_b/ FB_TS_b				LLWU_P12	
128	D4	94	ADC0_ SE5b	ADC0_ SE5b	PTD1	SPI0_SCK	UART2_ CTS_b	FTM3_CH1	FB_CS0_b					
129	C4	95	DISABLED		PTD2/ LLWU_P13	SPI0_ SOUT	UART2_ RX	FTM3_CH2	FB_AD4		I2C0_SCL		LLWU_P13	
130	B4	96	DISABLED		PTD3	SPI0_SIN	UART2_TX	FTM3_CH3	FB_AD3		I2C0_SDA			
131	A4	97	DISABLED		PTD4/ LLWU_P14	SPI0_ PCS1	UART0_ RTS_b	FTM0_CH4	FB_AD2	EWM_IN	SPI1_ PCS0		LLWU_P14	
132	A3	98	ADC0_ SE6b	ADC0_ SE6b	PTD5	SPI0_ PCS2	UART0_ CTS_b/ UART0_ COL_b	FTM0_CH5	FB_AD1	EWM_ OUT_b	SPI1_SCK			
133	A2	99	ADC0_ SE7b	ADC0_ SE7b	PTD6/ LLWU_P15	SPI0_ PCS3	UART0_ RX	FTM0_CH6	FB_AD0	FTM0_ FLT0	SPI1_ SOUT		LLWU_P15	
134	M10	_	VSS	VSS										
135	F8	_	VDD	VDD										

5.2 Unused analog interfaces

Table 57. Unused analog interfaces

Module name	Pins	Recommendation if unused		
ADC	ADC0_DP1, ADC0_DM1, ADC1_DP1, ADC1_DM1, ADC0_DP0/ADC1_DP3, ADC0_DM0/ADC1_DM3, ADC1_DP0/ ADC0_DP3, ADC1_DM0/ADC0_DM3, ADC1_SE16/ADC0_SE22, ADC0_SE16/ADC0_SE21, ADC1_SE18	Ground		
DAC ¹	DAC0_OUT, DAC1_OUT	Float		
USB	VREGIN, USB0_GND, VOUT33 ²	Connect VREGIN and VOUT33 together and tie to ground through a 10 $k\Omega$ resistor. Do not tie directly to ground, as this causes a latch-up risk.		
	USB0_DM, USB0_DP	Float		

1. Unused DAC signals do not apply to all parts. See the Pinout section for details.

2. USB0_VBUS and USB0_GND are board level signals

5.3 K64 Pinouts

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

8.3 Typical-value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	٥°C
V _{DD}	Supply voltage	3.3	V

8.4 Relationship between ratings and operating requirements

8.5 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.