E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	2560
Number of I/O	202
Number of Gates	54000
Voltage - Supply	3V ~ 3.6V, 4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	240-BFQFP
Supplier Device Package	240-PQFP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a42mx36-pqg240m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figures

Figure 1	Ordering Information
Figure 2	42MX C-Module Implementation
Figure 3	42MX C-Module Implementation
Figure 4	42MX S-Module Implementation
Figure 5	A42MX24 and A42MX36 D-Module Implementation
Figure 6	A42MX36 Dual-Port SRAM Block
Figure 7	MX Routing Structure
Figure 8	Clock Networks of 42MX Devices
Figure 9	Quadrant Clock Network of A42MX36 Devices
Figure 10	42MX I/O Module
Figure 11	PCI Output Structure of A42MX24 and A42MX36 Devices
Figure 12	Silicon Explorer II Setup with 40MX
Figure 13	Silicon Explorer II Setup with 42MX
Figure 14	42MX IEEE 1149.1 Boundary Scan Circuitry
Figure 15	Device Selection Wizard
Figure 16	Typical Output Drive Characteristics (Based Upon Measured Data)
Figure 17	40MX Timing Model*
Figure 18	42MX Timing Model
Figure 19	42MX Timing Model (Logic Functions Using Quadrant Clocks)
Figure 20	42MX Timing Model (SRAM Functions)
Figure 21	Output Buffer Delays
Figure 22	AC Test Loads
Figure 23	Input Buffer Delays
Figure 24	Module Delays
Figure 25	Flip-Flops and Latches 34
Figure 26	Input Buffer Latches 34
Figure 27	Output Buffer Latches 35
Figure 28	Decode Module Timing 35
Figure 29	SRAM Timing Characteristics 35
Figure 30	42MX SRAM Write Operation 36
Figure 31	42MX SRAM Synchronous Read Operation 36
Figure 32	42MX SRAM Asynchronous Read Operation—Type 1 (Read Address Controlled)
Figure 33	42MX SRAM Asynchronous Read Operation—Type 2 (Write Address Controlled)
Figure 34	42MX Junction Temperature and Voltage Derating Curves
i iguio o i	(Normalized to $T_{L} = 25^{\circ}C$ VCCA = 5.0 V) 38
Figure 35	40MX Junction Temperature and Voltage Derating Curves
i iguio oo	(Normalized to $T_{L} = 25^{\circ}C$, VCC = 5.0 V) 39
Figure 36	42MX Junction Temperature and Voltage Derating Curves
i iguio oo	(Normalized to $T_{L} = 25^{\circ}C$ VCCA = 3.3 V) 39
Figure 37	40MX Junction Temperature and Voltage Derating Curves
i iguio or	(Normalized to $T_{L} = 25^{\circ}C$ VCC = 3.3 V) 40
Figure 38	PI 44
Figure 39	PI 68 88
Figure 40	PI 84 90
Figure 41	PQ100 93
Figure 42	PO144 97
Figure 43	PQ160 102
Figure 44	PQ208 107
Figure 45	PQ240 113
Figure 46	VQ80 120
Figure 47	VQ100 123
Figure 18	ΤΟ176
Figure 49	CO208 131
Figure 50	CQ256
99.0000	

3.2.3.3 Antifuse Structures

An antifuse is a "normally open" structure. The use of antifuses to implement a programmable logic device results in highly testable structures as well as efficient programming algorithms. There are no pre-existing connections; temporary connections can be made using pass transistors. These temporary connections can isolate individual antifuses to be programmed and individual circuit structures to be tested, which can be done before and after programming. For instance, all metal tracks can be tested for continuity and shorts between adjacent tracks, and the functionality of all logic modules can be verified.

Figure 7 • MX Routing Structure

3.2.4 Clock Networks

The 40MX devices have one global clock distribution network (CLK). A signal can be put on the CLK network by being routed through the CLKBUF buffer.

In 42MX devices, there are two low-skew, high-fanout clock distribution networks, referred to as CLKA and CLKB. Each network has a clock module (CLKMOD) that can select the source of the clock signal from any of the following (Figure 8, page 11):

- Externally from the CLKA pad, using CLKBUF buffer
- Externally from the CLKB pad, using CLKBUF buffer
- Internally from the CLKINTA input, using CLKINT buffer
- Internally from the CLKINTB input, using CLKINT buffer

The clock modules are located in the top row of I/O modules. Clock drivers and a dedicated horizontal clock track are located in each horizontal routing channel.

Clock input pads in both 40MX and 42MX devices can also be used as normal I/Os, bypassing the clock networks.

The A42MX36 device has four additional register control resources, called quadrant clock networks (Figure 9, page 11). Each quadrant clock provides a local, high-fanout resource to the contiguous logic modules within its quadrant of the device. Quadrant clock signals can originate from specific I/O pins or from the internal array and can be used as a secondary register clock, register clear, or output enable.

3.3.7 Low Power Mode

42MX devices have been designed with a Low Power Mode. This feature, activated with setting the special LP pin to HIGH for a period longer than 800 ns, is particularly useful for battery-operated systems where battery life is a primary concern. In this mode, the core of the device is turned off and the device consumes minimal power with low standby current. In addition, all input buffers are turned off, and all outputs and bidirectional buffers are tristated. Since the core of the device is turned off, the states of the registers are lost. The device must be re-initialized when exiting Low Power Mode. I/Os can be driven during LP mode, and clock pins should be driven HIGH or LOW and should not float to avoid drawing current. To exit LP mode, the LP pin must be pulled LOW for over 200 µs to allow for charge pumps to power up, and device initialization will begin.

3.4 **Power Dissipation**

The general power consumption of MX devices is made up of static and dynamic power and can be expressed with the following equation.

3.4.1 General Power Equation

P = [ICCstandby + ICCactive]*VCCI + IOL*VOL*N + IOH*(VCCI - VOH)*M

EQ 1

where:

- ICCstandby is the current flowing when no inputs or outputs are changing.
- ICCactive is the current flowing due to CMOS switching.
- IOL, IOH are TTL sink/source currents.
- VOL, VOH are TTL level output voltages.
- N equals the number of outputs driving TTL loads to VOL.
- M equals the number of outputs driving TTL loads to VOH.

Accurate values for N and M are difficult to determine because they depend on the family type, on design details, and on the system I/O. The power can be divided into two components: static and active.

3.4.2 Static Power Component

The static power due to standby current is typically a small component of the overall power consumption. Standby power is calculated for commercial, worst-case conditions. The static power dissipation by TTL loads depends on the number of outputs driving, and on the DC load current. For instance, a 32-bit bus sinking 4mA at 0.33V will generate 42mW with all outputs driving LOW, and 140mW with all outputs driving HIGH. The actual dissipation will average somewhere in between, as I/Os switch states with time.

3.4.3 Active Power Component

Power dissipation in CMOS devices is usually dominated by the dynamic power dissipation. Dynamic power consumption is frequency-dependent and is a function of the logic and the external I/O. Active power dissipation results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module inputs, and module outputs, plus external capacitances due to PC board traces and load device inputs. An additional component of the active power dissipation is the totem pole current in the CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent active power dissipation.

The power dissipated by a CMOS circuit can be expressed by the equation:

$$Power(\mu W) = C_{EO}^* VCCA2^* F(1)$$

where:

C_{EQ} = Equivalent capacitance expressed in picofarads (pF)

EQ 2

Figure 13 • Silicon Explorer II Setup with 42MX

Table 8 • Device Configuration Options for Probe Capability

Security Fuse(s) Programmed	Mode	PRA, PRB ¹	SDI, SDO, DCLK ¹
No	LOW	User I/Os ²	User I/Os ²
No	HIGH	Probe Circuit Outputs	Probe Circuit Inputs
Yes	_	Probe Circuit Secured	Probe Circuit Secured

1. Avoid using SDI, SDO, DCLK, PRA and PRB pins as input or bidirectional ports. Since these pins are active during probing, input signals will not pass through these pins and may cause contention.

2. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. See the Pin Descriptions, page 83 for information on unused I/O pins

3.4.7 Design Consideration

It is recommended to use a series 70Ω termination resistor on every probe connector (SDI, SDO, MODE, DCLK, PRA and PRB). The 70 Ω series termination is used to prevent data transmission corruption during probing and reading back the checksum.

3.4.8 IEEE Standard 1149.1 Boundary Scan Test (BST) Circuitry

42MX24 and 42MX36 devices are compatible with IEEE Standard 1149.1 (informally known as Joint Testing Action Group Standard or JTAG), which defines a set of hardware architecture and mechanisms for cost-effective board-level testing. The basic MX boundary-scan logic circuit is composed of the TAP (test access port), TAP controller, test data registers and instruction register (Figure 14, page 18). This circuit supports all mandatory IEEE 1149.1 instructions (EXTEST, SAMPLE/PRELOAD and BYPASS) and some optional instructions. Table 9, page 18 describes the ports that control JTAG testing, while Table 10, page 18 describes the test instructions supported by these MX devices.

Each test section is accessed through the TAP, which has four associated pins: TCK (test clock input), TDI and TDO (test data input and output), and TMS (test mode selector).

The TAP controller is a four-bit state machine. The '1's and '0's represent the values that must be present at TMS at a rising edge of TCK for the given state transition to occur. IR and DR indicate that the instruction register or the data register is operating in that state.

The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset state. To guarantee a reset of the controller from any of the possible states, TMS must remain high for five TCK cycles.

42MX24 and 42MX36 devices support three types of test data registers: bypass, device identification, and boundary scan. The bypass register is selected when no other register needs to be accessed in a device. This speeds up test data transfer to other devices in a test data path. The 32-bit device identification register is a shift register with four fields (lowest significant byte (LSB), ID number, part number and version). The boundary-scan register observes and controls the state of each I/O pin.

3.9.3 Output Drive Characteristics for 3.3 V PCI Signaling

			PCI		MX		
Symbol	Parameter	Condition	Min.	Max.	Min.	Max.	Units
VCCI	Supply Voltage for I/Os		3.0	3.6	3.0	3.6 ²	V
VIH	Input High Voltage		0.5	VCC + 0.5	0.5	VCCI + 0.3	V
VIL	Input Low Voltage		-0.5	0.8	-0.3	0.8	V
IIH	Input High Leakage Current	VIN = 2.7 V		70		10	μΑ
IIL	Input Leakage Current			-70		-10	μΑ
VOH	Output High Voltage	IOUT = -2 mA	0.9		3.3		V
VOL	Output Low Voltage	IOUT = 3 mA, 6 mA		0.1		0.1 VCCI	V
C _{IN}	Input Pin Capacitance			10		10	pF
C _{CLK}	CLK Pin Capacitance		5	12		10	pF
L _{PIN}	Pin Inductance			20		< 8 nH ³	nH

Table 25 • DC Specification (3.3 V PCI Signaling)¹

1. PCI Local Bus Specification, Version 2.1, Section 4.2.2.1.

2. Maximum rating for VCCI -0.5 V to 7.0V.

3. Dependent upon the chosen package. PCI recommends QFP and BGA packaging to reduce pin inductance and capacitance.

Table 26 • AC Specifications for (3.3 V PCI Signaling)*

		Condition	PCI	Ν	Unite		
Symbol	Parameter	Condition	Min.	Max.	Min.	Max.	- 01113
ICL	Low Clamp Current	$-5 < VIN \le -1$	-25 + (VIN +1) /0.015		-60	-10	mA
Slew (r)	Output Rise Slew Rate	0.2 V to 0.6 V load	1	4	1.8	2.8	V/ns
Slew (f)	Output Fall Slew Rate	0.6 V to 0.2 V load	1	4	2.8	4.0	V/ns

Note: *PCI Local Bus Specification, Version 2.1, Section 4.2.2.2.

Figure 30 • 42MX SRAM Write Operation

Note: Identical timing for falling edge clock

approximately a 3 ns to a 6 ns delay, which is represented statistically in higher fanout (FO=8) routing delays in the data sheet specifications section, shown in Table 34, page 41.

3.11.3 Timing Derating

MX devices are manufactured with a CMOS process. Therefore, device performance varies according to temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature and worst-case processing.

3.11.4 Temperature and Voltage Derating Factors

The following tables and figures show temperature and voltage derating factors for 40MX and 42MX FPGAs.

Table 28 • 42MX Temperature and Voltage Derating Factors (Normalized to $T_J = 25^{\circ}C$, VCCA = 5.0 V)

	Temperat	ure					
42MX Voltage	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C
4.50	0.93	0.95	1.05	1.09	1.25	1.29	1.41
4.75	0.88	0.90	1.00	1.03	1.18	1.22	1.34
5.00	0.85	0.87	0.96	1.00	1.15	1.18	1.29
5.25	0.84	0.86	0.95	0.97	1.12	1.14	1.28
5.50	0.83	0.85	0.94	0.96	1.10	1.13	1.26

Figure 34 • 42MX Junction Temperature and Voltage Derating Curves (Normalized to TJ = 25°C, VCCA = 5.0 V)

Note: This derating factor applies to all routing and propagation delays

Table 29 • 40MX Temperature and Voltage Derating Factors(Normalized to TJ = 25°C, VCC = 5.0 V)

	Temperature										
40MX Voltage	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C				
4.50	0.89	0.93	1.02	1.09	1.25	1.31	1.45				
4.75	0.84	0.88	0.97	1.03	1.18	1.24	1.37				
5.00	0.82	0.85	0.94	1.00	1.15	1.20	1.33				
5.25	0.80	0.82	0.91	0.97	1.12	1.16	1.29				
5.50	0.79	0.82	0.90	0.96	1.10	1.15	1.28				

Table 34 •A40MX02 Timing Characteristics (Nominal 5.0 V Operation) (continued)
(Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C)

			–3 Sp	beed	–2 Sp	beed	–1 Sp	eed	Std S	peed	–F Sp	eed	
Parame	eter / Description	-	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Input N	Iodule Propagation	Delays											
t _{INYH}	Pad-to-Y HIGH			0.7		0.8		0.9		1.1		1.5	ns
t _{INYL}	Pad-to-Y LOW			0.6		0.7		0.8		1.0		1.3	ns
Input M	Iodule Predicted Ro	outing Delay	ys ¹										
t _{IRD1}	FO = 1 Routing De	lay		2.1		2.4		2.2		3.2		4.5	ns
t _{IRD2}	FO = 2 Routing De	lay		2.6		3.0		3.4		4.0		5.6	ns
t _{IRD3}	FO = 3 Routing De	lay		3.1		3.6		4.1		4.8		6.7	ns
t _{IRD4}	FO = 4 Routing De	lay		3.6		4.2		4.8		5.6		7.8	ns
t _{IRD8}	FO = 8 Routing De	lay		5.7		6.6		7.5		8.8		12.4	ns
Global	Clock Network												
t _{CKH}	Input Low to HIGH	FO = 16 FO = 128		4.6 4.6		5.3 5.3		6.0 6.0		7.0 7.0		9.8 9.8	ns
t _{CKL}	Input High to LOW	FO = 16 FO = 128		4.8 4.8		5.6 5.6		6.3 6.3		7.4 7.4		10.4 10.4	ns
t _{PWH}	Minimum Pulse Width HIGH	FO = 16 FO = 128	2.2 2.4		2.6 2.7		2.9 3.1		3.4 3.6		4.8 5.1		ns
t _{PWL}	Minimum Pulse Width LOW	FO = 16 FO = 128	2.2 2.4		2.6 2.7		2.9 3.01		3.4 3.6		4.8 5.1		ns
t _{CKSW}	Maximum Skew	FO = 16 FO = 128		0.4 0.5		0.5 0.6		0.5 0.7		0.6 0.8		0.8 1.2	ns
t _P	Minimum Period	FO = 16 FO = 128	4.7 4.8		5.4 5.6		6.1 6.3		7.2 7.5		10.0 10.4		ns
f _{MAX}	Maximum Frequency	FO = 16 FO = 128		188 181		175 168		160 154		139 134		83 80	MHz

			–3 Sp	beed	–2 S	peed	–1 Sp	beed	Std S	Speed	–F S	peed	
Paramet	er / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Input Mo	odule Propagation Del	ays											
t _{INYH}	Pad-to-Y HIGH			1.0		1.2		1.3		1.6		2.2	ns
t _{INYL}	Pad-to-Y LOW			0.8		0.9		1.0		1.2		1.7	ns
t _{INGH}	G to Y HIGH			1.3		1.4		1.6		1.9		2.7	ns
t _{INGL}	G to Y LOW			1.3		1.4		1.6		1.9		2.7	ns
Input Mo	odule Predicted Routin	ng Delays ²											
t _{IRD1}	FO = 1 Routing Delay	,		2.0		2.2		2.5		3.0		4.2	ns
t _{IRD2}	FO = 2 Routing Delay	,		2.3		2.5		2.9		3.4		4.7	ns
t _{IRD3}	FO = 3 Routing Delay	,		2.5		2.8		3.2		3.7		5.2	ns
t _{IRD4}	FO = 4 Routing Delay	,		2.8		3.1		3.5		4.1		5.7	ns
t _{IRD8}	FO = 8 Routing Delay	,		3.7		4.1		4.7		5.5		7.7	ns
Global C	Clock Network												
t _{CKH}	Input LOW to HIGH	FO = 32		2.4		2.7		3.0		3.6		5.0	ns
		FO = 256		2.7		3.0		3.4		4.0		5.5	ns
t _{CKL}	Input HIGH to LOW	FO = 32		3.5		3.9		4.4		5.2		7.3	ns
	Minimum Dulas	FO = 250	10	3.9	4.4	4.3	4 5	4.9	4.0	5.7	25	0.0	115
ι _{ΡΜΗ}	Width HIGH	FO = 32 FO = 256	1.2 1.3		1.4 1.5		1.5 1.7		1.8 2.0		2.5 2.7		ns ns
t _{PWL}	Minimum Pulse	FO = 32	1.2		1.4		1.5		1.8		2.5		ns
	Width LOW	FO = 256	1.3		1.5		1.7		2.0		2.7		ns
t _{CKSW}	Maximum Skew	FO = 32		0.3		0.3		0.4		0.5		0.6	ns
		FO = 256		0.3		0.3		0.4		0.5		0.6	ns
t _{SUEXT}	Input Latch	FO = 32	0.0		0.0		0.0		0.0		0.0		ns
	External Set-Op	FU = 256	0.0		0.0		0.0		0.0		0.0		ns
t _{HEXT}	Input Latch	FO = 32	2.3		2.6		3.0		3.5		4.9 5.5		ns
		FU = 230	2.2		2.4		3.3		3.9		5.5		115
t _P	Minimum Period	FO = 32 FO = 256	3.4 3.7		3.7 1		4.0 4.5		4.7 5.2		7.8 8.6		ns ns
4		r = 200	5.7	206	- 1 .1	260	-1 .5	247	0.2	215	0.0	100	MLI-
^I MAX	waximum Frequency	FO = 32 FO = 256		296 268		269 244		∠47 224		∠15 195		129 117	MHz

Table 38 •A42MX09 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 4.75 V, T_J = 70°C)

			–3 S	peed	–2 S	peed	-1 Speed		Std Speed		d -F Speed		_
Paramet	ter / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
TTL Out	put Module Timing ⁵ (con	tinued)											
t _{LH}	I/O Latch Output Hold		0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O			7.7		8.5		9.6		11.3		15.9	ns
t _{ACO}	Array Latch Clock-to-Ou (Pad-to-Pad) 32 I/O	ut		14.8		16.5		18.7		22.0		30.8	ns
d _{TLH}	Capacitive Loading, LO	W to HIGH		0.05		0.05		0.06		0.07		0.10	ns/pF
d _{THL}	Capacitive Loading, HIC	GH to LOW		0.04		0.04		0.05		0.06		0.08	ns/pF
CMOS	Dutput Module Timing ⁵												
t _{DLH}	Data-to-Pad HIGH			4.8		5.3		5.5		6.4		9.0	ns
t _{DHL}	Data-to-Pad LOW			3.5		3.9		4.1		4.9		6.8	ns
t _{ENZH}	Enable Pad Z to HIGH			3.6		4.0		4.5		5.3		7.4	ns
t _{ENZL}	Enable Pad Z to LOW			3.4		4.0		5.0		5.8		8.2	ns
t _{ENHZ}	Enable Pad HIGH to Z			7.2		8.0		9.0		10.7		14.9	ns
t _{ENLZ}	Enable Pad LOW to Z			6.7		7.5		8.5		9.9		13.9	ns
t _{GLH}	G-to-Pad HIGH			6.8		7.6		8.6		10.1		14.2	ns
t _{GHL}	G-to-Pad LOW			6.8		7.6		8.6		10.1		14.2	ns
t _{LSU}	I/O Latch Set-Up		0.7		0.7		0.8		1.0		1.4		ns
t _{LH}	I/O Latch Hold		0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O			7.7		8.5		9.6		11.3		15.9	ns
t _{ACO}	Array Latch Clock-to-Ou (Pad-to-Pad) 32 I/O	ut		14.8		16.5		18.7		22.0		30.8	ns
d _{TLH}	Capacitive Loading, LO	W to HIGH		0.05		0.05		0.06		0.07		0.10	ns/pF
d _{THL}	Capacitive Loading, HIC	GH to LOW		0.04		0.04		0.05		0.06		0.08	ns/pF
t _{HEXT}	Input Latch External Hold	FO = 32 FO = 486	3.9 4.6		4.3 5.2		4.9 5.8		5.7 6.9		8.1 9.6		ns ns
t _P	Minimum Period (1/f _{MAX})	FO = 32 FO = 486	7.8 8.6		8.7 9.5		9.5 10.4		10.8 11.9		18.2 19.9		ns ns

Table 43 •A42MX24 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 3.0 V, T_J = 70°C)

1. For dual-module macros, use $t_{PD1} + t_{RD1} + t_{PDn}$, $t_{CO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility.

4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

5. Delays based on 35 pF loading.

Table 49 • PL84

Table 50 • PQ 100

PQ100				
Pin Number	A40MX02 Function	A40MX04 Function	A42MX09 Function	A42MX16 Function
1	NC	NC	I/O	I/O
2	NC	NC	DCLK, I/O	DCLK, I/O
3	NC	NC	I/O	I/O
4	NC	NC	MODE	MODE
5	NC	NC	I/O	I/O
6	PRB, I/O	PRB, I/O	I/O	I/O
7	I/O	I/O	I/O	I/O
8	I/O	I/O	I/O	I/O
9	I/O	I/O	GND	GND
10	I/O	I/O	I/O	I/O
11	I/O	I/O	I/O	I/O
12	I/O	I/O	I/O	I/O
13	GND	GND	I/O	I/O
14	I/O	I/O	I/O	I/O
15	I/O	I/O	I/O	I/O
16	I/O	I/O	VCCA	VCCA
17	I/O	I/O	VCCI	VCCA
18	I/O	I/O	I/O	I/O

Table 52 • PQ160

PQ160					
Pin Number	A42MX09 Function	A42MX16 Function	A42MX24 Function		
58	VCCI	VCCI	VCCI		
59	GND	GND	GND		
60	VCCA	VCCA	VCCA		
61	LP	LP	LP		
62	I/O	I/O	TCK, I/O		
63	I/O	I/O	I/O		
64	GND	GND	GND		
65	I/O	I/O	I/O		
66	I/O	I/O	I/O		
67	I/O	I/O	I/O		
68	I/O	I/O	I/O		
69	GND	GND	GND		
70	NC	I/O	I/O		
71	I/O	I/O	I/O		
72	I/O	I/O	I/O		
73	I/O	I/O	I/O		
74	I/O	I/O	I/O		
75	NC	I/O	I/O		
76	I/O	I/O	I/O		
77	NC	I/O	I/O		
78	I/O	I/O	I/O		
79	NC	I/O	I/O		
80	GND	GND	GND		
81	I/O	I/O	I/O		
82	SDO, I/O	SDO, I/O	SDO, TDO, I/O		
83	I/O	I/O	WD, I/O		
84	I/O	I/O	WD, I/O		
85	I/O	I/O	I/O		
86	NC	VCCI	VCCI		
87	I/O	I/O	I/O		
88	I/O	I/O	WD, I/O		
89	GND	GND	GND		
90	NC	I/O	I/O		
91	I/O	I/O	I/O		
92	I/O	I/O	I/O		
93	I/O	I/O	I/O		
94	I/O	I/O	I/O		

Table 57 • TQ176

TQ176			
Pin Number	A42MX09 Function	A42MX16 Function	A42MX24 Function
10	NC	I/O	I/O
11	NC	I/O	I/O
12	I/O	I/O	I/O
13	NC	VCCA	VCCA
14	I/O	I/O	I/O
15	I/O	I/O	I/O
16	I/O	I/O	I/O
17	I/O	I/O	I/O
18	GND	GND	GND
19	NC	I/O	I/O
20	NC	I/O	I/O
21	I/O	I/O	I/O
22	NC	I/O	I/O
23	GND	GND	GND
24	NC	VCCI	VCCI
25	VCCA	VCCA	VCCA
26	NC	I/O	I/O
27	NC	I/O	I/O
28	VCCI	VCCA	VCCA
29	NC	I/O	I/O
30	I/O	I/O	I/O
31	I/O	I/O	I/O
32	I/O	I/O	I/O
33	NC	NC	I/O
34	I/O	I/O	I/O
35	I/O	I/O	I/O
36	I/O	I/O	I/O
37	NC	I/O	I/O
38	NC	NC	I/O
39	I/O	I/O	I/O
40	I/O	I/O	I/O
41	I/O	I/O	I/O
42	I/O	I/O	I/O
43	I/O	I/O	I/O
44	I/O	I/O	I/O
45	GND	GND	GND
46	I/O	I/O	TMS, I/O

Table 57 • TQ176

TQ176			
Pin Number	A42MX09 Function	A42MX16 Function	A42MX24 Function
84	I/O	I/O	WD, I/O
85	I/O	I/O	WD, I/O
86	NC	I/O	I/O
87	SDO, I/O	SDO, I/O	SDO, TDO, I/O
88	I/O	I/O	I/O
89	GND	GND	GND
90	I/O	I/O	I/O
91	I/O	I/O	I/O
92	I/O	I/O	I/O
93	I/O	I/O	I/O
94	I/O	I/O	I/O
95	I/O	I/O	I/O
96	NC	I/O	I/O
97	NC	I/O	I/O
98	I/O	I/O	I/O
99	I/O	I/O	I/O
100	I/O	I/O	I/O
101	NC	NC	I/O
102	I/O	I/O	I/O
103	NC	I/O	I/O
104	I/O	I/O	I/O
105	I/O	I/O	I/O
106	GND	GND	GND
107	NC	I/O	I/O
108	NC	I/O	TCK, I/O
109	LP	LP	LP
110	VCCA	VCCA	VCCA
111	GND	GND	GND
112	VCCI	VCCI	VCCI
113	VCCA	VCCA	VCCA
114	NC	I/O	I/O
115	NC	I/O	I/O
116	NC	VCCA	VCCA
117	I/O	I/O	I/O
118	I/O	I/O	I/O
119	I/O	I/O	I/O
120	I/O	I/O	I/O

Table	57•	TQ176
	-	

TQ176			
Pin Number	A42MX09 Function	A42MX16 Function	A42MX24 Function
158	CLKB, I/O	CLKB, I/O	CLKB, I/O
159	I/O	I/O	I/O
160	PRB, I/O	PRB, I/O	PRB, I/O
161	NC	I/O	WD, I/O
162	I/O	I/O	WD, I/O
163	I/O	I/O	I/O
164	I/O	I/O	I/O
165	NC	NC	WD, I/O
166	NC	I/O	WD, I/O
167	I/O	I/O	I/O
168	NC	I/O	I/O
169	I/O	I/O	I/O
170	NC	VCCI	VCCI
171	I/O	I/O	WD, I/O
172	I/O	I/O	WD, I/O
173	NC	I/O	I/O
174	I/O	I/O	I/O
175	DCLK, I/O	DCLK, I/O	DCLK, I/O
176	I/O	I/O	I/O

Figure 49 • CQ208

CQ208	
Pin Number	A42MX36 Function
111	I/O
112	I/O
113	I/O
114	I/O
115	I/O
116	I/O
117	I/O
118	I/O
119	I/O
120	I/O
121	I/O
122	I/O
123	I/O
124	I/O
125	I/O
126	GND
127	I/O
128	TCK, I/O
29	LP
130	VCCA
131	GND
132	VCCI
133	VCCA
134	I/O
135	I/O
136	VCCA
137	I/O
138	I/O
139	I/O
140	I/O
141	I/O
142	
143	
	1/0
145	1/0
146	
147	1/0
14/	1/0

CQ256		
Pin Number	A42MX36 Function	
59	I/O	
60	VCCA	
61	GND	
62	GND	
63	NC	
64	NC	
65	NC	
66	I/O	
67	SDO, TDO, I/O	
68	I/O	
69	WD, I/O	
70	WD, I/O	
71	I/O	
72	VCCI	
73	I/O	
74	I/O	
75	I/O	
76	WD, I/O	
77	GND	
78	WD, I/O	
79	I/O	
80	QCLKB, I/O	
81	I/O	
82	I/O	
83	I/O	
84	I/O	
85	I/O	
86	I/O	
87	WD, I/O	
88	WD, I/O	
89	I/O	
90	I/O	
91	I/O	
92	I/O	
93	I/O	
94	I/O	
95	VCCI	

Table 60 • BG272 BG272		
D20	I/O	
E1	I/O	
E2	I/O	
E3	I/O	
E4	VCCA	
E17	VCCI	
E18	I/O	
E19	I/O	
E20	I/O	
F1	I/O	
F2	I/O	
F3	I/O	
F4	VCCI	
F17	I/O	
F18	I/O	
F19	I/O	
F20	I/O	
G1	I/O	
G2	I/O	
G3	I/O	
G4	VCCI	
G17	VCCI	
G18	I/O	
G19	I/O	
G20	I/O	
H1	I/O	
H2	I/O	
H3	I/O	
H4	VCCA	
H17	I/O	
H18	I/O	
H19	I/O	
H20	I/O	
J1	I/O	
J2	I/O	
J3	I/O	
J4	VCCI	

Table 60 • BG272 BG272		
J9	GND	
J10	GND	
J11	GND	
J12	GND	
J17	VCCA	
J18	I/O	
J19	I/O	
J20	I/O	
K1	I/O	
K2	I/O	
К3	I/O	
K4	VCCI	
К9	GND	
K10	GND	
K11	GND	
K12	GND	
K17	I/O	
K18	VCCA	
K19	VCCA	
K20	LP	
L1	I/O	
L2	I/O	
L3	VCCA	
L4	VCCA	
L9	GND	
L10	GND	
L11	GND	
L12	GND	
L17	VCCI	
L18	I/O	
L19	I/O	
L20	TCK, I/O	
M1	I/O	
M2	I/O	
M3	I/O	
M4	VCCI	
M9	GND	

Table 60 • BG272 BG272		
T19	I/O	
T20	I/O	
U1	I/O	
U2	I/O	
U3	I/O	
U4	I/O	
U5	VCCI	
U6	WD, I/O	
U7	I/O	
U8	I/O	
U9	WD, I/O	
U10	VCCA	
U11	VCCI	
U12	I/O	
U13	I/O	
U14	QCLKB, I/O	
U15	I/O	
U16	VCCI	
U17	I/O	
U18	GND	
U19	I/O	
U20	I/O	
V1	I/O	
V2	I/O	
V3	GND	
V4	GND	
V5	I/O	
V6	I/O	
V7	I/O	
V8	WD, I/O	
V9	I/O	
V10	I/O	
V11	I/O	
V12	I/O	
V13	WD, I/O	
V14	I/O	
V15	WD, I/O	