E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM1136JF-S
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	532MHz
Co-Processors/DSP	Multimedia; GPU, IPU, VFP
RAM Controllers	LPDDR, DDR2
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, KPP, LCD
Ethernet	10/100Mbps (1)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.8V, 2.0V, 2.5V, 2.7V, 3.0V, 3.3V
Operating Temperature	-20°C ~ 70°C (TA)
Security Features	Secure Fusebox, Secure JTAG, Tamper Detection
Package / Case	400-LFBGA
Supplier Device Package	400-LFBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx353djq5c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- PWM
- SPDIF transceiver
- 3 UART (up to 4.0 Mbps each)

1.2 Ordering Information

Table 1 provides the ordering information for the i.MX35 processors for consumer and industrial applications.

Description	Part Number	Silicon Revision	Package ¹	Speed	Operating Temperature Range (°C)	Signal Ball Map Locations	Ball Map
i.MX353	MCIMX353CVM5B	2.0	5284	532 MHz	-40 to 85	Table 94	Table 96
i.MX353	MCIMX353DVM5B	2.0	5284	532 MHz	-20 to 70	Table 94	Table 96
i.MX357	MCIMX357CVM5B	2.0	5284	532 MHz	-40 to 85	Table 94	Table 96
i.MX357	MCIMX357DVM5B	2.0	5284	532 MHz	-20 to 70	Table 94	Table 96
i.MX353	MCIMX353CJQ5C	2.1	5284	532MHz	-40 to 85	Table 95	Table 97
i.MX353	MCIMX353DJQ5C	2.1	5284	532MHz	-20 to 70	Table 95	Table 97
i.MX357	MCIMX357CJQ5C	2.1	5284	532MHz	-40 to 85	Table 95	Table 97
i.MX357	MCIMX357DJQ5C	2.1	5284	532MHz	-20 to 70	Table 95	Table 97

Table 1. Ordering Information

¹ Case 5284 is RoHS-compliant, lead-free, MSL = 3, 1.

The ball map for silicon revision 2.1 is different than the ballmap for silicon revision 2.0. The layout for each revision is not compatible, so it is important that the correct ballmap be used to implement the layout. See Section 5, "Package Information and Pinout."

Table 2 shows the functional differences between the different parts in the i.MX35 family.

Module	MCIMX351	MCIMX353	MCIMX355	MCIMX356	MCIMX357
I2C (3)	Yes	Yes	Yes	Yes	Yes
CSPI (2)	Yes	Yes	Yes	Yes	Yes
SSI/I2S (2)	Yes	Yes	Yes	Yes	Yes
ESAI	Yes	Yes	Yes	Yes	Yes
SPDIF I/O	Yes	Yes	Yes	Yes	Yes
USB HS Host	Yes	Yes	Yes	Yes	Yes
USB OTG	Yes	Yes	Yes	Yes	Yes
FlexCAN (2)	Yes	Yes	Yes	Yes	Yes
MLB	Yes	Yes	Yes	Yes	Yes

Table 2. Functional Differences in the i.MX35 Parts

Block Mnemonic	Block Name	Domain ¹	Subsystem	Brief Description
ESAI	Enhanced serial audio interface	SDMA	Connectivity peripherals	The enhanced serial audio interface (ESAI) provides a full-duplex serial port for serial communication with a variety of serial devices, including industry-standard codecs, SPDIF transceivers, and other DSPs. The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator.
eSDHCv2 (3)	Enhanced secure digital host controller	ARM	Connectivity peripherals	The eSDHCv2 consists of four main modules: CE-ATA, MMC, SD and SDIO. CE-ATA is a hard drive interface that is optimized for embedded applications of storage. The MultiMediaCard (MMC) is a universal, low-cost, data storage and communication media to applications such as electronic toys, organizers, PDAs, and smart phones. The secure digital (SD) card is an evolution of MMC and is specifically designed to meet the security, capacity, performance, and environment requirements inherent in emerging audio and video consumer electronic devices. SD cards are categorized into Memory and I/O. A memory card enables a copyright protection mechanism that complies with the SDMI security standard. SDIO cards provide high-speed data I/O (such as wireless LAN via SDIO interface) with low power consumption. Note: CE-ATA is not available for the MCIMX351.
FEC	Ethernet	SDMA	Connectivity peripherals	The Ethernet media access controller (MAC) is designed to support both 10 and 100 Mbps Ethernet/IEEE 802.3 networks. An external transceiver interface and transceiver function are required to complete the interface to the media
GPIO(3)	General purpose I/O modules	ARM	Pins	Used for general purpose input/output to external ICs. Each GPIO module supports 32 bits of I/O.
GPT	General purpose timers	ARM	Timer peripherals	Each GPT is a 32-bit free-running or set-and-forget mode timer with a programmable prescaler and compare and capture registers. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in set-and-forget mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock.
GPU2D	Graphics processing unit 2Dv1	ARM	Multimedia peripherals	This module accelerates OpenVG and GDI graphics. Note: Not available for the MCIMX351.

Table 4. Digital and Analog Modules (continued)

Block Mnemonic	Block Name	Domain ¹	Subsystem	Brief Description
l ² C(3)	I ² C module	ARM	ARM1136 platform peripherals	Inter-integrated circuit (I ² C) is an industry-standard, bidirectional serial bus that provides a simple, efficient method of data exchange, minimizing the interconnection between devices. I ² C is suitable for applications requiring occasional communications over a short distance among many devices. The interface operates at up to 100 kbps with maximum bus loading and timing. The I ² C system is a true multiple-master bus, with arbitration and collision detection that prevent data corruption if multiple devices attempt to control the bus simultaneously. This feature supports complex applications with multiprocessor control and can be used for rapid testing and alignment of end products through external connections to an assembly-line computer.
IIM	IC identification module	ARM	Security modules	The IIM provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, and various control signals requiring a fixed value.
IOMUX	External signals and pin multiplexing	ARM	Pins	 Each I/O multiplexer provides a flexible, scalable multiplexing solution with the following features: Up to eight output sources multiplexed per pin Up to four destinations for each input pin Unselected input paths held at constant levels for reduced power consumption
IPUv1	Image processing unit	ARM	Multimedia peripherals	 The IPU supports video and graphics processing functions. It also provides the interface for image sensors and displays. The IPU performs the following main functions: Preprocessing of data from the sensor or from the external system memory Postprocessing of data from the external system memory Post-filtering of data from the system memory with support of the MPEG-4 (both deblocking and deringing) and H.264 post-filtering algorithms Displaying video and graphics on a synchronous (dumb or memory-less) display Displaying video and graphics on an asynchronous (smart) display Transferring data between IPU sub-modules and to/from the system memory with flexible pixel reformatting
KPP	Keypin port	ARM	Connectivity peripherals	Can be used for either keypin matrix scanning or general purpose I/O.
OSCAUD	OSC audio reference oscillator	Analog	Clock	The OSCAUDIO oscillator provides a stable frequency reference for the PLLs. This oscillator is designed to work in conjunction with an external 24.576-MHz crystal.
OSC24M	OSC24M 24-MHz reference oscillator	Analog	Clock	The signal from the external 24-MHz crystal is the source of the CLK24M signal fed into USB PHY as the reference clock and to the real time clock (RTC).

Table 4. Digital and Analog Modules (continued)

Parameter	Symbol	Test Condition	Min. Rise/Fall	Тур.	Max. Rise/Fall	Units	Notes
Duty cycle	Fduty	—	40	—	60	%	_
Output pin slew rate (max. drive)	tps	25 pF 40 pF 50 pF	0.84/1.10 0.68/0.83 0.58/0.72	1.14/1.34	1.88/2.06	V/ns	2
Output pin slew rate (high drive)	tps	25 pF 40 pF 50 pF	0.69/0.96 0.55/0.69 0.40/0.59	0.92/1.10		V/ns	
Output pin slew rate (standard drive)	tps	25 pF 40 pF 50 pF	0.37/0.47	0.80/1.00 0.62/0.76 0.45/0.65		V/ns	
Output pin di/dt (max. drive)	tdit	25 pF 50 pF	46 49	124 131	310 324	mA/ns	3
Output pin di/dt (high drive)	tdit	25 pF 50 pF	33 35	89 94	290 304	mA/ns	
Output pin di/dt (standard drive)	tdit	25 pF 50 pF	28 29	75 79	188 198	mA/ns	

Table 21. AC Electrical Characteristics of GPIO Pins in Fast Slew Rate Mode [NVCC = 2.25 V–2.75 V]

4.8.2 AC Electrical Characteristics for DDR Pins (DDR2, Mobile DDR, and SDRAM Modes)

Table 22. AC Electrical Characteristics of DDR Type IO Pins in DDR2 Mode

Parameter	Symbol	Test Condition	Min. Rise/Fall	Тур.	Max. Rise/Fall	Units
Duty cycle	Fduty	—	45	50	55	%
Clock frequency	f	—	_	133	—	MHz
Output pin slew rate	tps	25 pF 50 pF	0.86/0.98 0.46/054	1.35/1.5 0.72/0.81	2.15/2.19 1.12/1.16	V/ns
Output pin di/dt	tdit	25 pF 50 pF	65 70	157 167	373 396	mA/ns

Table 23. AC Requirements of DDR2 Pins

Parameter ¹	Symbol	Min.	Max.	Units
AC input logic high	VIH(ac)	NVCC ÷ 2 + 0.25	NVCC + 0.3	V
AC input logic low	VIL(ac)	-0.3	NVCC ÷ 2 – 0.25	V
AC differential cross point voltage for output ²	Vox(ac)	NVCC ÷ 2 – 0.125	NVCC ÷ 2 + 0.125	V

¹ The Jedec SSTL_18 specification (JESD8-15a) for an SSTL interface for class II operation supersedes any specification in this document.

² The typical value of Vox(ac) is expected to be about $0.5 \times$ NVCC and Vox(ac) is expected to track variation in NVCC. Vox(ac) indicates the voltage at which the differential output signal must cross. Cload = 25 pF.

Parameter	Symbol	Test Condition	Min. Rise/Fall	Тур.	Max. Rise/Fall	Units
Duty cycle	Fduty	—	45	50	55	%
Clock frequency	f	—	_	133	—	MHz
Output pin slew rate (max. drive)	tps	25 pF 50 pF	0.80/0.92 0.43/0.50	1.35/1.50 0.72/0.81	2.23/2.27 1.66/1.68	V/ns
Output pin slew rate (high drive)	tps	25 pF 50 pF	0.37/0.43 0.19/0.23	0.62/0.70 0.33/0.37	1.03/1.05 0.75/0.77	V/ns
Output pin slew rate (standard drive)	tps	25 pF 50 pF	0.18/0.22 0.10/0.12	0.31/0.35 0.16/0.18	0.51/0.53 0.38/0.39	V/ns
Output pin di/dt (max. drive)	tdit	25 pF 50 pF	64 69	171 183	407 432	mA/ns
Output pin di/dt (high drive)	tdit	25 pF 50 pF	37 39	100 106	232 246	mA/ns
Output pin di/dt (standard drive)	tdit	25 pF 50 pF	18 20	50 52	116 123	mA/ns

Table 24. AC Electrical Characteristics of DDR Type IO Pins in mDDR Mode

Table 25. AC Electrical Characteristics of DDR Type IO Pins in SDRAM Mode

Parameter	Symbol	Test Condition	Min. Rise/Fall	Min. Clock Frequency	Max. Rise/Fall	Units
Clock frequency	f	—	_	125	_	MHz
Output pin slew rate (max. drive)	tps	25 pF 50 pF	1.11/1.20 0.97/0.65	1.74/1.75 0.92/0.94	2.42/2.46 1.39/1.30	V/ns
Output pin slew rate (high drive)	tps	25 pF 50 pF	0.76/0.80 0.40/0.43	1.16/1.19 0.61/0.63	1.76/1.66 0.93/0.87	V/ns
Output pin slew rate (standard drive)	tps	25 pF 50 pF	0.38/0.41 0.20/0.22	0.59/0.60 0.31/0.32	0.89/0.82 0.47/0.43	V/ns
Output pin di/dt (max. drive)	tdit	25 pF 50 pF	89 94	198 209	398 421	mA/ns
Output pin di/dt (high drive)	tdit	25 pF 50 pF	59 62	132 139	265 279	mA/ns
Output pin di/dt (standard drive)	tdit	25 pF 50 pF	29 31	65 69	132 139	mA/ns

4.9.4 Embedded Trace Macrocell (ETM) Electrical Specifications

ETM is an ARM protocol. The timing specifications in this section are given as a guide for a test point access (TPA) that supports TRACECLK frequencies up to 133 MHz.

Figure 9 depicts the TRACECLK timings of ETM, and Table 30 lists the timing parameters.

Figure 9. ETM TRACECLK Timing Diagram

Table 30. ETM TRACECLK Timing Parameters

ID	Parameter	Min.	Max.	Unit
T _{cyc}	Clock period	Frequency dependent	_	ns
T _{wl}	Low pulse width	2	_	ns
T _{wh}	High pulse width	2	_	ns
T _r	Clock and data rise time	—	3	ns
T _f	Clock and data fall time	_	3	ns

Figure 10 depicts the setup and hold requirements of the trace data pins with respect to TRACECLK, and Table 31 lists the timing parameters.

Figure 10. Trace Data Timing Diagram

Table 31. ETM Trace Data Timing Parameters

ID	Parameter	Min.	Max.	Unit
T _s	Data setup	2	—	ns
T _h	Data hold	1	—	ns

4.9.4.1 Half-Rate Clocking Mode

When half-rate clocking is used, the trace data signals are sampled by the TPA on both the rising and falling edges of TRACECLK, where TRACECLK is half the frequency of the clock shown in Figure 10. The same T_s and T_h parameters from Table 31 still apply with respect to the falling edge of the TRACECLK signal.

ID	PARAMETER	Symbol	DDR2-4	00	Unit
			Min	Max	Omt
DDR5	CS, RAS, CAS, CKE, WE hold time	tıH1	1.25	_	ns
DDR6	Address output setup time	tis ¹	1.5	_	ns
DDR7	Address output hold time	tıн ¹	1.5	_	ns

Table 39. DDR2 SDRAM Timing Parameter Table

NOTE

These values are for command/address slew rate of 1 V/ns and SDCLK, SDCLK_B differential slew rate of 2 V/ns. For different values, use the derating table.

Table 40. Derating Values for DDR2-400, DDR2-533

4.9.6 Enhanced Serial Audio Interface (ESAI) Timing Specifications

The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. Table 46 shows the interface timing values. The number field in the table refers to timing signals found in Figure 36 and Figure 37.

No.	Characteristics ^{1,2}	Symbol	Expression ²	Min.	Max.	Condition ³	Unit
62	Clock cycle ⁴	t _{SSICC}	$4 \times T_c$ $4 \times T_c$	30.0 30.0	_	i ck i ck	ns
63	Clock high period • For internal clock	_	$2 \times T_{C} - 9.0$	6	_	_	ns
	For external clock	—	$2 \times T_{C}$	15	_	—	
64	Clock low period • For internal clock	_	$2 \times T_{C} - 9.0$	6		_	ns
	For external clock	_	$2 \times T_{C}$	15	_	—	
65	SCKR rising edge to FSR out (bl) high		_		17.0 7.0	x ck i ck a	ns
66	SCKR rising edge to FSR out (bl) low	-			17.0 7.0	x ck i ck a	ns
67	SCKR rising edge to FSR out (wr) high ⁵	_	_		19.0 9.0	x ck i ck a	ns
68	SCKR rising edge to FSR out (wr) low ⁵		—		19.0 9.0	x ck i ck a	ns
69	SCKR rising edge to FSR out (wl) high				16.0 6.0	x ck i ck a	ns
70	SCKR rising edge to FSR out (wl) low		—		17.0 7.0	x ck i ck a	ns
71	Data in setup time before SCKR (SCK in synchronous mode) falling edge	—	—	12.0 19.0	_	x ck i ck	ns
72	Data in hold time after SCKR falling edge		—	3.5 9.0	_	x ck i ck	ns
73	FSR input (bl, wr) high before SCKR falling edge ⁵		—	2.0 12.0	_	x ck i ck a	ns
74	FSR input (wl) high before SCKR falling edge		—	2.0 12.0	_	x ck i ck a	ns
75	FSR input hold time after SCKR falling edge		—	2.5 8.5	_	x ck i ck a	ns
78	SCKT rising edge to FST out (bl) high		—		18.0 8.0	x ck i ck	ns
79	SCKT rising edge to FST out (bl) low				20.0 10.0	x ck i ck	ns

Table 46. Enhanced Serial Audio Interface Timing

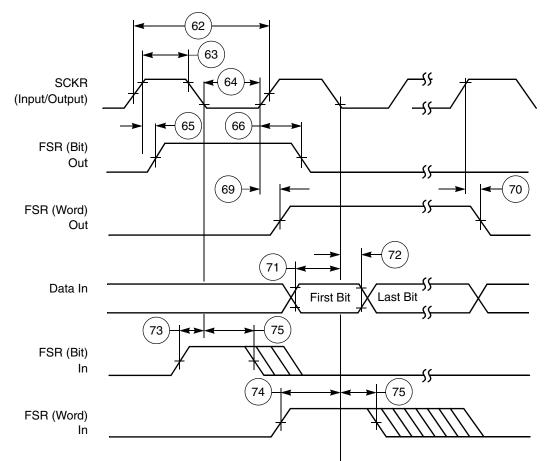
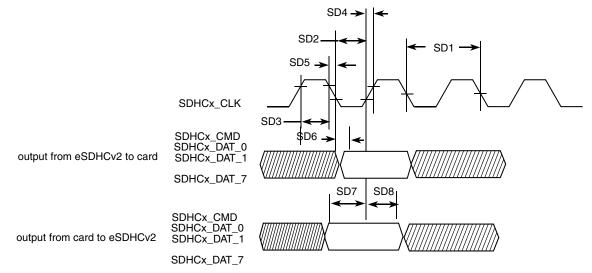



Figure 37. ESAI Receiver Timing

4.9.7 eSDHCv2 AC Electrical Specifications

Figure 38 depicts the timing of eSDHCv2, and Table 47 lists the eSDHCv2 timing characteristics. The following definitions apply to values and signals described in Table 47:

- LS: low-speed mode. Low-speed card can tolerate a clock up to 400 kHz.
- FS: full-speed mode. For a full-speed MMC card, the card clock can reach 20 MHz; a full-speed SD/SDIO card can reach 25 MHz.
- HS: high-speed mode. For a high-speed MMC card, the card clock can reach 52 MHz; SD/SDIO can reach 50 MHz.

Figure 38. eSDHCv2 Timing

Table 47. eSDHCv2 Interface Timing Specification

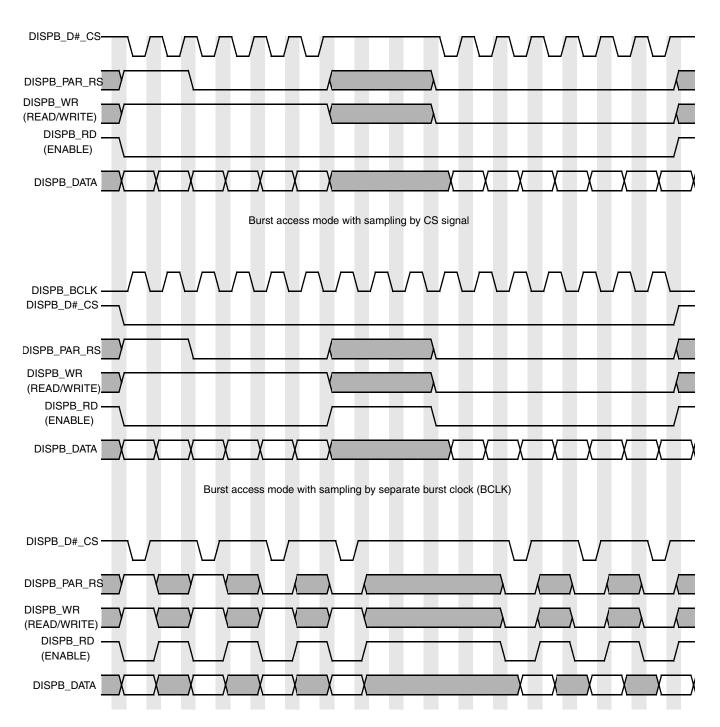
ID	Parameter	Symbols	Min.	Max.	Unit
Card	Input Clock	1	1	1	1
SD1	Clock frequency (Low Speed)	f _{PP} ¹	0	400	kHz
	Clock frequency (SD/SDIO Full Speed/High Speed)	f _{PP} ²	0	25/50	MHz
	Clock frequency (MMC Full Speed/High Speed)	f _{PP} ³	0	20/52	MHz
	Clock frequency (Identification Mode)	f _{OD}	100	400	kHz
SD2	Clock Low time	t _{WL}	7	—	ns
SD3	Clock high time	t _{WH}	7	—	ns
SD4	Clock rise time	t _{TLH}	—	3	ns
SD5	Clock fall time	t _{THL}	—	3	ns
eSDł	IC Output/Card Inputs CMD, DAT (Reference to CLK)				
SD6	eSDHC output delay	t _{OD}	-3	3	ns
eSDł	IC Input/Card Outputs CMD, DAT (Reference to CLK)		•		•
SD7	eSDHC input setup time	t _{ISU}	5		ns
SD8	eSDHC input hold time	t _{IH} 4	2.5	—	ns
				•	

¹ In low-speed mode, the card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.

² In normal-speed mode for the SD/SDIO card, clock frequency can be any value between 0–25 MHz. In high-speed mode, clock frequency can be any value between 0–50 MHz.

³ In normal-speed mode for MMC card, clock frequency can be any value between 0 and 20 MHz. In high-speed mode, clock frequency can be any value between 0–52 MHz.

⁴ To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.


4.9.13.3 Synchronous Interface to Dual-Port Smart Displays

Functionality and electrical characteristics of the synchronous interface to dual-port smart displays are identical to parameters of the synchronous interface. See Section 4.9.13.1.5, "Interface to Active Matrix TFT LCD Panels, Electrical Characteristics."

4.9.13.3.6 Interface to a TV Encoder—Functional Description

The interface has an 8-bit data bus, transferring a single 8-bit value (Y/U/V) in each cycle. The bits D7–D0 of the value are mapped to bits LD17–LD10 of the data bus, respectively. Figure 52 depicts the interface timing.

- The frequency of the clock DISPB_D3_CLK is 27 MHz.
- The DISPB_D3_HSYNC, DISPB_D3_VSYNC and DISPB_D3_DRDY signals are active low.
- The transition to the next row is marked by the negative edge of the DISPB_D3_HSYNC signal. It remains low for a single clock cycle.
- The transition to the next field/frame is marked by the negative edge of the DISPB_D3_VSYNC signal. It remains low for at least one clock cycle.
 - At a transition to an odd field (of the next frame), the negative edges of DISPB_D3_VSYNC and DISPB_D3_HSYNC coincide.
 - At a transition to an even field (of the same frame), they do not coincide.
- The active intervals—during which data is transferred—are marked by the DISPB_D3_HSYNC signal being high.

Single access mode (all control signals are not active for one display interface clock after each display access)

Figure 55. Asynchronous Parallel System 68k Interface (Type 1) Burst Mode Timing Diagram

Figure 65 depicts timing of the 5-wire serial interface (Type 2). For this interface, a separate RS line is added. When a burst is transmitted within a single active chip select interval, the RS can be changed at boundaries of words.

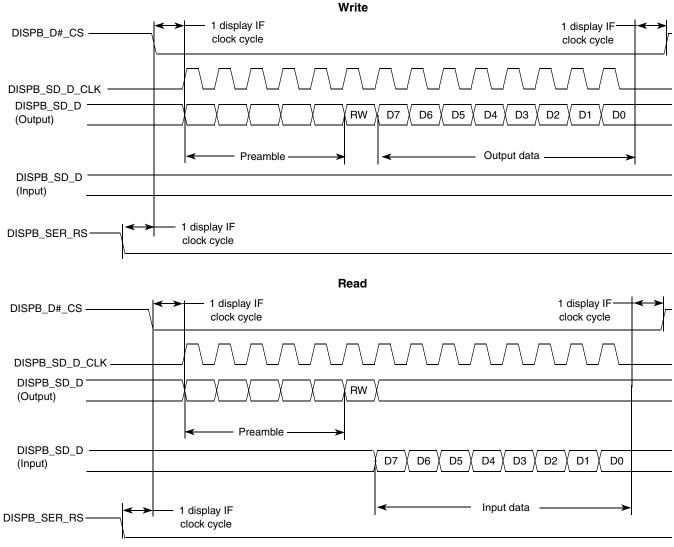


Figure 65. 5-Wire Serial Interface (Type 2) Timing Diagram

4.9.13.5.10 Serial Interfaces, Electrical Characteristics

Figure 66 depicts timing of the serial interface. Table 59 lists the timing parameters at display access level.

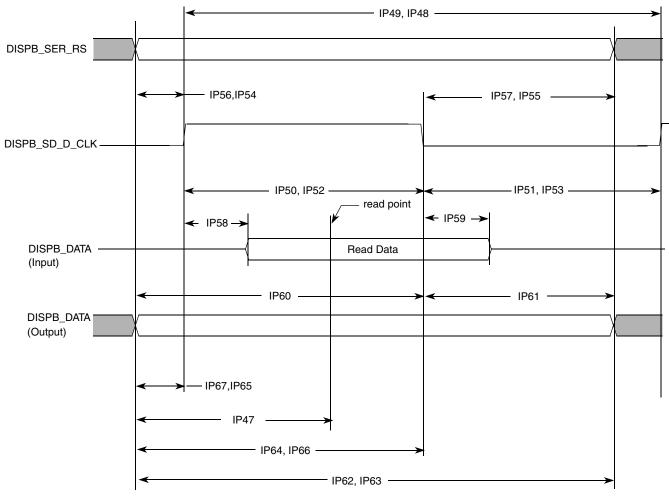


Figure 66. Asynchronous Serial Interface Timing Diagram

Table 50 Act		Covial	Interfees	T:	Devenetere	A	
Table 59. Asy	ynchronous	Serial	Interface	IIming	Parameters-	-Access	Levei

ID	Parameter	Symbol	Min.	Typ. ¹	Max.	Units
IP48	Read system cycle time	Tcycr	Tdicpr – 1.5	Tdicpr ²	Tdicpr + 1.5	ns
IP49	Write system cycle time	Tcycw	Tdicpw – 1.5	Tdicpw ³	Tdicpw + 1.5	ns
IP50	Read clock low pulse width	Trl	Tdicdr – Tdicur – 1.5	Tdicdr ⁴ – Tdicur ⁵	Tdicdr – Tdicur + 1.5	ns
IP51	Read clock high pulse width	Trh	Tdicpr – Tdicdr + Tdicur – 1.5	Tdicpr – Tdicdr + Tdicur	Tdicpr – Tdicdr + Tdicur + 1.5	ns
IP52	Write clock low pulse width	Twl	Tdicdw – Tdicuw – 1.5	Tdicdw ⁶ – Tdicuw ⁷	Tdicdw – Tdicuw + 1.5	ns
IP53	Write clock high pulse width	Twh	Tdicpw – Tdicdw + Tdicuw – 1.5	Tdicpw – Tdicdw + Tdicuw	Tdicpw – Tdicdw + Tdicuw + 1.5	ns
IP54	Controls setup time for read	Tdcsr	Tdicur – 1.5	Tdicur	_	ns

ID	Parameter	Symbol	Min.	Typ. ¹	Max.	Units
IP55	Controls hold time for read	Tdchr	Tdicpr – Tdicdr – 1.5	Tdicpr – Tdicdr	—	ns
IP56	Controls setup time for write	Tdcsw	Tdicuw – 1.5	Tdicuw	—	ns
IP57	Controls hold time for write	Tdchw	Tdicpw – Tdicdw – 1.5	Tdicpw – Tdicdw	—	ns
IP58	Slave device data delay ⁸	Tracc	0	_	Tdrp ⁹ – Tlbd ¹⁰ – Tdicur – 1.5	ns
IP59	Slave device data hold time ⁸	Troh	Tdrp – Tlbd – Tdicdr + 1.5	_	Tdicpr – Tdicdr – 1.5	ns
IP60	Write data setup time	Tds	Tdicdw – 1.5	Tdicdw	—	ns
IP61	Write data hold time	Tdh	Tdicpw – Tdicdw – 1.5	Tdicpw – Tdicdw	—	ns
IP62	Read period ²	Tdicpr	Tdicpr – 1.5	Tdicpr	Tdicpr + 1.5	ns
IP63	Write period ³	Tdicpw	Tdicpw – 1.5	Tdicpw	Tdicpw + 1.5	ns
IP64	Read down time ⁴	Tdicdr	Tdicdr – 1.5	Tdicdr	Tdicdr + 1.5	ns
IP65	Read up time ⁵	Tdicur	Tdicur – 1.5	Tdicur	Tdicur + 1.5	ns
IP66	Write down time ⁶	Tdicdw	Tdicdw – 1.5	Tdicdw	Tdicdw + 1.5	ns
IP67	Write up time ⁷	Tdicuw	Tdicuw – 1.5	Tdicuw	Tdicuw + 1.5	ns
IP68	Read time point ⁹	Tdrp	Tdrp – 1.5	Tdrp	Tdrp + 1.5	ns

Table 59. Asynchronous Serial Interface Timing Parameters—Access Level (continued)

¹ The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display. These conditions may be device specific.

² Display interface clock period value for read:

 $Tdicpr = T_{HSP_CLK} \cdot ceil \left[\frac{DISP\#_IF_CLK_PER_RD}{HSP_CLK_PERIOD}\right]$

³ Display interface clock period value for write:

 $Tdicpw = T_{HSP_CLK} \cdot ceil \left[\frac{DISP\#_IF_CLK_PER_WR}{HSP_CLK_PERIOD} \right]$

⁴ Display interface clock down time for read:

 $Tdicdr = \frac{1}{2}T_{HSP_CLK} \cdot ceil \left[\frac{2 \cdot DISP\#_IF_CLK_DOWN_RD}{HSP_CLK_PERIOD}\right]$

⁵ Display interface clock up time for read:

 $Tdicur = \frac{1}{2}T_{HSP_CLK} \cdot ceil \left[\frac{2 \cdot DISP\#_IF_CLK_UP_RD}{HSP_CLK_PERIOD}\right]$

⁶ Display interface clock down time for write:

 $Tdicdw = \frac{1}{2}T_{HSP_CLK} \cdot ceil \left[\frac{2 \cdot DISP\#_IF_CLK_DOWN_WR}{HSP_CLK_PERIOD}\right]$

⁷ Display interface clock up time for write:

 $Tdicuw = \frac{1}{2}T_{HSP_CLK} \cdot ceil \left[\frac{2 \cdot DISP\#_IF_CLK_UP_WR}{HSP_CLK_PERIOD}\right]$

⁸ This parameter is a requirement to the display connected to the IPU.

Signal	Parameter	Symbol	Stan	dards	Unit	
Signal	Falameter	Symbol	Min.	Max.	onne	
MSHC_DATA	Setup time	tDsu	5	—	ns	
	Hold time	tDh	5	—	ns	
	Output delay time	tDd	—	15	ns	

Table 60. Serial Interface Timing Parameters¹ (continued)

¹ Timing is guaranteed for NVCC from 2.7 V through 3.1 V and up to a maximum overdrive NVCC of 3.3 V. See NVCC restrictions described in Table 61.

Signal	Parameter	Symbol	Stand	ards	Unit
Signal	Parameter Symbol		Min.	Max.	Unit
MSHC_SCLK	Cycle	tSCLKc	25	_	ns
	H pulse length	tSCLKwh	5	_	ns
	L pulse length	tSCLKwl	5		ns
	Rise time	tSCLKr	—	10	ns
	Fall time	tSCLKf	—	10	ns
MSHC_BS	Setup time	tBSsu	8		ns
	Hold time	tBSh	1		ns
MSHC_DATA	Setup time	tDsu	8	_	ns
	Hold time	tDh	1	_	ns
	Output delay time	tDd	—	15	ns

Table 61. Parallel Interface Timing Parameters¹

¹ Timing is guaranteed for NVCC from 2.7 V through 3.1 V and up to a maximum overdrive NVCC of 3.3 V. See the NVCC restrictions described in Table 8.

4.9.15 MediaLB Controller Electrical Specifications

This section describes the electrical information of the MediaLB Controller module.

Table 62. MLB 256/512 Fs Timing Parameters

Parameter	Symbol	Min	Тур	Max	Units	Comment
MLBCLK operating frequency ¹	f _{mck}	11.264	12.288 24.576	24.6272 25.600	MHz	Min: $256 \times$ Fs at 44.0 kHz Typ: $256 \times$ Fs at 48.0 kHz Typ: $512 \times$ Fs at 48.0 kHz Max: $512 \times$ Fs at 48.1 kHz Max: $512 \times$ Fs PLL unlocked
MLBCLK rise time	t _{mckr}	_	—	3	ns	V _{IL} TO V _{IH}

Parameter	Symbol	Min	Тур	Мах	Units	Comment
MLBCLK high time	t _{mckh}	9.7 9.3	10.6 10.2		ns	PLL unlocked
MLBCLK pulse width variation	t _{mpwv}		—	0.7	ns pp	Note ²
MLBSIG/MLBDAT input valid to MLBCLK falling	t _{dsmcf}	1	—	—	ns	_
MLBSIG/MLBDAT input hold from MLBCLK low	t _{dhmcf}	0	—	—	ns	_
MLBSIG/MLBDAT output high impedance from MLBCLK low	t _{mcfdz}	0	_	t _{mckl}	ns	_
Bus Hold Time	t _{mdzh}	2	—	_	ns	Note ³

Table 63. MLB Device 1024Fs Timing Parameters (continued)

¹ The MLB Controller can shut off MLBCLK to place MediaLB in a low-power state.

² Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other edge, measured in ns peak-to-peak (pp)

³ The board must be designed to insure that the high-impedance bus does not leave the logic state of the final driven bit for this time period. Therefore, coupling must be minimized while meeting the maximum capacitive load listed.

4.9.16 1-Wire Timing Specifications

Figure 70 depicts the RPP timing, and Table 64 lists the RPP timing parameters.

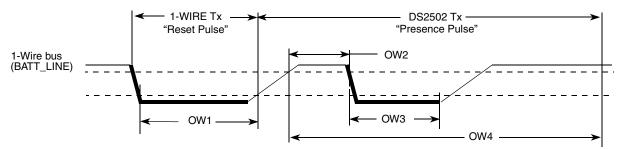


Figure 70. Reset and Presence Pulses (RPP) Timing Diagram

ID	Parameters	Symbol	Min.	Тур.	Max.	Units
OW1	Reset time low	t _{RSTL}	480	511	_	μs
OW2	Presence detect high	t _{PDH}	15		60	μs
OW3	Presence detect low	t _{PDL}	60		240	μs
OW4	Reset time high	t _{RSTH}	480	512	_	μs

Figure 81. UDMA-In Device Terminates Transfer Timing Diagram

ATA Parameter	Parameters from Figure 79, Figure 80, Figure 81	Description	Controlling Variable
tack	tack	tack (min.) = (time_ack × T) – (tskew1 + tskew2)	time_ack
tenv	tenv	tenv (min.) = (time_env × T) – (tskew1 + tskew2) tenv (max.) = (time_env × T) + (tskew1 + tskew2)	time_env
tds	tds1	$tds - (tskew3) - ti_ds > 0$	tskew3, ti_ds, ti_dh should be low enough
tdh	tdh1	$tdh - (tskew3) - ti_dh > 0$	
tcyc	tc1	(tcyc – tskew > T	T big enough
trp	trp	trp (min.) = time_rp × T – (tskew1 + tskew2 + tskew6)	time_rp
_	tx1 ¹	$(time_rp \times T) - (tco + tsu + 3T + 2 \times tbuf + 2 \times tcable2) > trfs (drive)$	time_rp
tmli	tmli1	tmli1 (min.) = (time_mlix + 0.4) × T	time_mlix
tzah	tzah	tzah (min.) = (time_zah + 0.4) \times T	time_zah
tdzfs	tdzfs	$tdzfs = (time_dzfs \times T) - (tskew1 + tskew2)$	time_dzfs
tcvh	tcvh	$tcvh = (time_cvh \times T) - (tskew1 + tskew2)$	time_cvh
_	ton toff	$ton = time_on \times T - tskew1$ toff = time_off $\times T - tskew1$	_

Table 72. UDMA-In Burst Timing Parameters

¹ There is a special timing requirement in the ATA host that requires the internal DIOW to go high three clocks after the last active edge on the DSTROBE signal. The equation given on this line tries to capture this constraint.

2. Make ton and toff large enough to avoid bus contention.

Signal ID	Ball Location
CTS2	G5
D0	A2
D1	D4
D10	D2
D11	E6
D12	E3
D13	F5
D14	D1
D15	E2
D2	B2
D3	E5
D3_CLS	L17
D3_DRDY	L20
D3_FPSHIFT	L15
D3_HSYNC	L18
D3_REV	M17
D3_SPL	M18
D3_VSYNC	M19
D4	C3
D5	B1
D6	D3
D7	C2
D8	C1
D9	E4
DE_B	W19
DQM0	B19
SDCKE1	D17
DQM2	D16
DQM3	C18
EB0	F18
EB1	F16
ECB	D19
EXT_ARMCLK	V8
EXTAL_AUDIO	W20
EXTAL24M	T20
FEC_COL	P3
FEC_CRS	N5
FEC_MDC	R1
FEC_MDIO	P1
FEC_RDATA0	P2
FEC_RDATA1	N2
FEC_RDATA2	M3
FEC_RDATA3	N1
FEC_RX_CLK	R2
FEC_RX_DV	T2
FEC_RX_ERR	N3

Signal IDBall LocationFEC_TDATA0P5FEC_TDATA1M4FEC_TDATA2M5FEC_TDATA3L6FEC_TX_CLKP4FEC_TX_ENT1FEC_TX_ERN4FSRK5FSTJ1FUSE_VDDP13FUSE_VSSM11	
FEC_TDATA1M4FEC_TDATA2M5FEC_TDATA3L6FEC_TX_CLKP4FEC_TX_ENT1FEC_TX_ERRN4FSRK5FSTJ1FUSE_VDDP13	
FEC_TDATA2M5FEC_TDATA3L6FEC_TX_CLKP4FEC_TX_ENT1FEC_TX_ERRN4FSRK5FSTJ1FUSE_VDDP13	
FEC_TDATA3L6FEC_TX_CLKP4FEC_TX_ENT1FEC_TX_ERRN4FSRK5FSTJ1FUSE_VDDP13	
FEC_TX_CLKP4FEC_TX_ENT1FEC_TX_ERRN4FSRK5FSTJ1FUSE_VDDP13	
FEC_TX_ENT1FEC_TX_ERRN4FSRK5FSTJ1FUSE_VDDP13	
FEC_TX_ERRN4FSRK5FSTJ1FUSE_VDDP13	
FSR K5 FST J1 FUSE_VDD P13	
FUSE_VDD P13	
FUSE_VDD P13	
FUSE VSS M11	
GPIO1_0 T11	
GPIO1_1 Y11	
GPIO2_0 U11	
GPIO3_0 V11	
HCKR K2	
HCKT J5	
I2C1_CLK M20	
I2C1_DAT N17	
I2C2_CLK L3	
I2C2_DAT M1	
LBA D20	
LD0 F20	
LD1 G18	
LD10 H20	
LD11 J18	
LD12 J16	
LD13 J19	
LD14 J17	
LD15 J20	
LD16 K14	
LD17 K19	
LD18 K18	
LD19 K20	
LD2 G17	
LD20 K16	
LD21 K17	
LD22 K15	
LD23 L19	
LD3 G16	
LD4 G19	
LD5 H16	
LD6 H18	
LD7 G20	
LD8 H17	
LD9 H19	

Table 95. Silicon Revision 2.1 Signal Ball Map Locations (continued)

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

Document Number: MCIMX35SR2CEC Rev. 10 06/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM is the registered trademark of ARM Limited. ARM1136JF-S is the trademark of ARM Limited.

© 2012 Freescale Semiconductor, Inc.

