

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM1136JF-S
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	532MHz
Co-Processors/DSP	Multimedia; GPU, IPU, VFP
RAM Controllers	LPDDR, DDR2
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, KPP, LCD
Ethernet	10/100Mbps (1)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.8V, 2.0V, 2.5V, 2.7V, 3.0V, 3.3V
Operating Temperature	-20°C ~ 70°C (TA)
Security Features	Secure Fusebox, Secure JTAG, Tamper Detection
Package / Case	400-LFBGA
Supplier Device Package	400-LFBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx353djq5cr2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SRAM. The devices can be connected to a variety of external devices such as USB 2.0 OTG, ATA, MMC/SDIO, and Compact Flash.

1.1 Features

It provides low-power solutions for applications demanding high-performance multimedia and graphics.

The i.MX35 is based on the ARM1136 platform, which has the following features:

- ARM1136JF-S processor, version r1p3
- 16-Kbyte L1 instruction cache
- 16-Kbyte L1 data cache
- 128-Kbyte L2 cache, version r0p4
- 128 Kbytes of internal SRAM
- Vector floating point unit (VFP11)

To boost multimedia performance, the following hardware accelerators are integrated:

- Image processing unit (IPU)
- OpenVG 1.1 graphics processing unit (GPU) (not available for the MCIMX351)

The MCIMX35 provides the following interfaces to external devices (some of these interfaces are muxed and not available simultaneously):

- 2 controller area network (CAN) interfaces
- 2 SDIO/MMC interfaces, 1 SDIO/CE-ATA interface (CE-ATA is not available for the MCIMX351)
- 32-bit mobile DDR, DDR2 (4-bank architecture), and SDRAM (up to 133 MHz)
- 2 configurable serial peripheral interfaces (CSPI) (up to 52 Mbps each)
- Enhanced serial audio interface (ESAI)
- 2 synchronous serial interfaces (SSI)
- Ethernet MAC 10/100 Mbps
- 1 USB 2.0 host with ULPI interface or internal full-speed PHY. Up to 480 Mbps if external HS PHY is used.
- 1 USB 2.0 OTG (up to 480 Mbps) controller with internal high-speed OTG PHY
- Flash controller—MLC/SLC NAND and NOR
- GPIO with interrupt capabilities
- 3 I²C modules (up to 400 Kbytes each)
- JTAG
- Key pin port
- Asynchronous sample rate converter (ASRC)
- 1-Wire
- Parallel camera sensor (4/8/10/16-bit data port for video color models: YCC, YUV, 30 Mpixels/s)
- Parallel display (primary up to 24-bit, 1024 x 1024)
- Parallel ATA (up to 66 Mbytes) (not available for the MCIMX351)

Block Mnemonic	Block Name	Domain ¹	Subsystem	Brief Description
I ² C(3)	I ² C module	ARM	ARM1136 platform peripherals	Inter-integrated circuit (I ² C) is an industry-standard, bidirectional serial bus that provides a simple, efficient method of data exchange, minimizing the interconnection between devices. I ² C is suitable for applications requiring occasional communications over a short distance among many devices. The interface operates at up to 100 kbps with maximum bus loading and timing. The I ² C system is a true multiple-master bus, with arbitration and collision detection that prevent data corruption if multiple devices attempt to control the bus simultaneously. This feature supports complex applications with multiprocessor control and can be used for rapid testing and alignment of end products through external connections to an assembly-line computer.
IIM	IC identification module	ARM	Security modules	The IIM provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, and various control signals requiring a fixed value.
IOMUX	External signals and pin multiplexing	ARM	Pins	 Each I/O multiplexer provides a flexible, scalable multiplexing solution with the following features: Up to eight output sources multiplexed per pin Up to four destinations for each input pin Unselected input paths held at constant levels for reduced power consumption
IPUv1	Image processing unit	ARM	Multimedia peripherals	 The IPU supports video and graphics processing functions. It also provides the interface for image sensors and displays. The IPU performs the following main functions: Preprocessing of data from the sensor or from the external system memory Postprocessing of data from the external system memory Post-filtering of data from the system memory with support of the MPEG-4 (both deblocking and deringing) and H.264 post-filtering algorithms Displaying video and graphics on a synchronous (dumb or memory-less) display Displaying video and graphics on an asynchronous (smart) display Transferring data between IPU sub-modules and to/from the system memory with flexible pixel reformatting
KPP	Keypin port	ARM	Connectivity peripherals	Can be used for either keypin matrix scanning or general purpose I/O.
OSCAUD	OSC audio reference oscillator	Analog	Clock	The OSCAUDIO oscillator provides a stable frequency reference for the PLLs. This oscillator is designed to work in conjunction with an external 24.576-MHz crystal.
OSC24M	OSC24M 24-MHz reference oscillator	Analog	Clock	The signal from the external 24-MHz crystal is the source of the CLK24M signal fed into USB PHY as the reference clock and to the real time clock (RTC).

Table 4. Digital and Analog Modules (continued)

Rating	Condition	Symbol	Value	Unit
Junction to ambient ¹ natural convection	Single layer board (1s)	R _{eJA}	53	ºC/W
Junction to ambient ¹ natural convection	Four layer board (2s2p)	R _{eJA}	30	ºC/W
Junction to ambient ¹ (at 200 ft/min)	Single layer board (1s)	R _{eJMA}	44	ºC/W
Junction to ambient ¹ (at 200 ft/min)	Four layer board (2s2p)	R _{eJMA}	27	ºC/W
Junction to boards ²	-	R _{eJB}	19	ºC/W
Junction to case (top) ³	-	R _{eJCtop}	10	ºC/W
Junction to package top ⁴	Natural convection	Ψ_{JT}	2	ºC/W

Table 12. Thermal Resistance Data

¹ Junction-to-ambient thermal resistance determined per JEDC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package.

² Junction-to-board thermal resistance determined per JEDC JESD51-8. Thermal test board meets JEDEC specification for this package.

³ Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.

⁴ Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, this thermal characterization parameter is written as Psi-JT.

4.7 I/O Pin DC Electrical Characteristics

I/O pins are of two types: GPIO and DDR. DDR pins can be configured in three different drive strength modes: mobile DDR, SDRAM, and DDR2. The SDRAM and mobile DDR modes can be further customized at three drive strength levels: normal, high, and max.

Table 13 shows currents for the different DDR pin drive strength modes.

Drive Mode	Normal	High	Max.
Mobile DDR (1.8 V)	3.6 mA	7.2 mA	10.8 mA
SDRAM (1.8 V)	_	_	6.5 mA
SDRAM (3.3 V)	4 mA	8 mA	12 mA
DDR2 (1.8 V)	_	—	13.4 mA

Table 13. DDR Pin Drive Strength Mode Current Levels

Parameter	Symbol	Test Condition	Min. Rise/Fall	Тур.	Max. Rise/Fall	Units
Duty cycle	Fduty	—	40	—	60	%
Output pin slew rate (max. drive)	tps	25 pF 50 pF	0.30/0.42 0.20/0.29	0.54/0.73 0.35/0.50	0.91/1.20 0.60/0.80	V/ns
Output pin slew rate (high drive)	tps	25 pF 50 pF	0.19/0.28 0.12/0.18	0.34/0.49 0.34/0.49	0.58/0/79 0.36/0.49	V/ns
Output pin slew rate (standard drive)	tps	25 pF 50 pF	0.12/0.18 0.07/0.11	0.20/0.30 0.11/0.17	0.34/0.47 0.20/0.27	V/ns
Output pin di/dt (max. drive)	tdit	25 pF 50 pF	7 7	21 22	56 58	mA/ns
Output pin di/dt (high drive)	tdit	25 pF 50 pF	5 5	14 15	38 40	mA/ns
Output pin di/dt (standard drive)	tdit	25 pF 50 pF	2 2	7 7	18 19	mA/ns

Table 17. AC Electrical Characteristics of GPIO Pins in Slow Slew Rate Mode [NVCC = 1.65 V-1.95 V]

Table 18. AC Electrical Characteristics of GPIO Pins in Fast Slew Rate Mode for [NVCC = 3.0 V-3.6 V]

Parameter	Symbol	Test Condition	Min. rise/fall	Тур.	Max. Rise/Fall	Units
Duty cycle	Fduty	_	40	—	60	%
Output pin slew rate (max. drive)	tps	25 pF 50 pF	0.96/1.40 0.54/0.83	1.54/2.10 0.85/1.24	2.30/3.00 1.26/1.70	V/ns
Output pin slew rate (high drive)	tps	25 pF 50 pF	0.76/1.10 0.41/0.64	1.19/1.71 0.63/0.95	1.78/2.39 0.95/1.30	V/ns
Output pin slew rate (standard drive)	tps	25 pF 50 pF	0.52/0.78 0.28/0.44	0.80/1.19 0.43/0.64	1.20/1.60 0.63/0.87	V/ns
Output pin di/dt (max. drive)	tdit	25 pF 50 pF	46 49	108 113	250 262	mA/ns
Output pin di/dt (high drive)	tdit	25 pF 50 pF	35 37	82 86	197 207	mA/ns
Output pin di/dt (standard drive)	tdit	25 pF 50 pF	22 23	52 55	116 121	mA/ns

Parameter	Symbol	Test Condition	Min. Rise/Fall	Тур.	Max. Rise/Fall	Units
Duty cycle	Fduty	—	40	—	60	%
Output pin slew rate (max. drive)	tps	25 pF 50 pF	0.40/0.57 0.25/0.36	0.72/0.97 0.43/0.61	1.2/1.5 0.72/0.95	V/ns
Output pin slew rate (high drive)	tps	25 pF 50 pF	0.38/0.48 0.20/0.30	0.59/0.81 0.34/0.50	0.98/1.27 0.56/0.72	V/ns
Output pin slew rate (standard drive)	tps	25 pF 50 pF	0.23/0.32 0.13/0.20	0.40/0.55 0.23/0.34	0.66/0.87 0.38/0.52	V/ns
Output pin di/dt (max. drive)	tdit	25 pF 50 pF	7 7	43 46	112 118	mA/ns
Output pin di/dt (high drive)	tdit	25 pF 50 pF	11 12	31 33	81 85	mA/ns
Output pin di/dt (standard drive)	tdit	25 pF 50 pF	9 10	27 28	71 74	mA/ns

Table 19. AC Electrical Characteristics, GPIO Pins in Fast Slew Rate Mode [NVCC = 1.65 V-1.95 V]

Table 20. AC Electrical Characteristics of GPIO Pins in Slow Slew Rate Mode [NVCC = 2.25 V–2.75 V]

Parameter	Symbol	Test Condition	Min. Rise/Fall	Тур.	Max. Rise/Fall	Units
Duty cycle	Fduty	—	40	—	60	%
Output pin slew rate (max. drive)	tps	25 pF 40 pF 50 pF	0.63/0.85 0.52/0.67 0.41/0.59	1.10/1.40 0.90/1.10 0.73/0.99	1.86/2.20 1.53/1.73 1.20/1.50	V/ns
Output pin slew rate (high drive)	tps	25 pF 40 pF 50 pF	0.40/0.58 0.33/0.43 0.25/0.37	0.71/0.98 0.56/0.70 0.43/0.60	1.16/1.40 0.93/1.07 0.68/0.90	V/ns
Output pin slew rate (standard drive)	tps	25 pF 40 pF 50 pF	0.24/0.36 0.19/0.25 0.13/0.21	0.41/0.59 0.32/0.35 0.23/0.33	0.66/0.87 0.51/0.59 0.36/0.48	V/ns
Output pin di/dt (max. drive)	tdit	25 pF 50 pF	22 23	62 65	148 151	mA/ns
Output pin di/dt (high drive)	tdit	25 pF 50 pF	15 16	42 44	102 107	mA/ns
Output pin di/dt (standard drive)	tdit	25 pF 50 pF	7 8	21 22	52 54	mA/ns

Figure 41 shows MII asynchronous input timings listed in Table 50.

Figure 41. MII Asynch Inputs Timing Diagram

4.9.8.5 MII Serial Management Channel Timing

Serial management channel timing is accomplished using FEC_MDIO and FEC_MDC. The FEC functions correctly with a maximum MDC frequency of 2.5 MHz. Table 51 lists MII serial management channel timings.

The MDC frequency should be equal to or less than 2.5 MHz to be compliant with the IEEE 802.3 MII specification. However the FEC can function correctly with a maximum MDC frequency of 15 MHz.

Num	Characteristic	Min.	Max.	Units
M10	FEC_MDC falling edge to FEC_MDIO output invalid (minimum propagation delay)	0		ns
M11	FEC_MDC falling edge to FEC_MDIO output valid (max. propagation delay)	—	5	ns
M12	FEC_MDIO (input) to FEC_MDC rising edge setup	18	_	ns
M13	FEC_MDIO (input) to FEC_MDC rising edge hold	0	_	ns
M14	FEC_MDC pulse width high	40%	60%	FEC_MDC period
M15	FEC_MDC pulse width low	40%	60%	FEC_MDC period

Table 51. MII Transmit Signal Timing

Figure 42 shows MII serial management channel timings listed in Table 51.

Figure 42. MII Serial Management Channel Timing Diagram

4.9.9 FIR Electrical Specifications

FIR implements asynchronous infrared protocols (FIR, MIR) defined by $IrDA^{\textcircled{R}}$ (Infrared Data Association). Refer to the $IrDA^{\textcircled{R}}$ website for details on FIR and MIR protocols.

4.9.10 FlexCAN Module AC Electrical Specifications

The electrical characteristics are related to the CAN transceiver outside the chip. The i.MX35 has two CAN modules available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. Refer to the IOMUX chapter of the *MCIMX35 Multimedia Applications Processor Reference Manual* to see which pins expose Tx and Rx pins; these ports are named TXCAN and RXCAN, respectively.

Figure 52. TV Encoder Interface Timing Diagram

Single access mode (all control signals are not active for one display interface clock after each display access)

Figure 54. Asynchronous Parallel System 80 Interface (Type 2) Burst Mode Timing Diagram

Single access mode (all control signals are not active for one display interface clock after each display access)

Figure 56. Asynchronous Parallel System 68k Interface (Type 2) Burst Mode Timing Diagram

Display read operation can be performed with wait states when each read access takes up to 4 display interface clock cycles according to the DISP0_RD_WAIT_ST parameter in the

Figure 59. Asynchronous Parallel System 80 Interface (Type 2) Timing Diagram

Figure 69. Transfer Operation Timing Diagram (Parallel)

NOTE

The memory stick host controller is designed to meet the timing requirements per Sony's *Memory Stick Pro Format Specifications*. Tables in this section detail the specifications' requirements for parallel and serial modes, and not the i.MX35 timing.

Signal	Parameter	Symbol	Stan	Unit	
Signal	Falameter	Symbol	Min.	Max.	Onit
MSHC_SCLK	Cycle	tSCLKc	50	_	ns
	H pulse length	tSCLKwh	15	_	ns
	L pulse length	tSCLKwl	15	_	ns
	Rise time	tSCLKr	_	10	ns
	Fall time	tSCLKf	_	10	ns
MSHC_BS	Setup time	tBSsu	5	_	ns
	Hold time	tBSh	5	_	ns

Table 60. Serial Interface Timing Parameters¹

	1	1				1
Parameter	Symbol	Min	Тур	Мах	Units	Comment
MLBCLK high time	t _{mckh}	9.7 9.3	10.6 10.2	_	ns	PLL unlocked
MLBCLK pulse width variation	t _{mpwv}	_	_	0.7	ns pp	Note ²
MLBSIG/MLBDAT input valid to MLBCLK falling	t _{dsmcf}	1	_	_	ns	_
MLBSIG/MLBDAT input hold from MLBCLK low	t _{dhmcf}	0	—		ns	_
MLBSIG/MLBDAT output high impedance from MLBCLK low	t _{mcfdz}	0	—	t _{mckl}	ns	_
Bus Hold Time	t _{mdzh}	2	—	—	ns	Note ³

Table 63. MLB Device 1024Fs Timing Parameters (continued)

¹ The MLB Controller can shut off MLBCLK to place MediaLB in a low-power state.

² Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other edge, measured in ns peak-to-peak (pp)

³ The board must be designed to insure that the high-impedance bus does not leave the logic state of the final driven bit for this time period. Therefore, coupling must be minimized while meeting the maximum capacitive load listed.

4.9.16 1-Wire Timing Specifications

Figure 70 depicts the RPP timing, and Table 64 lists the RPP timing parameters.

Figure 70. Reset and Presence Pulses (RPP) Timing Diagram

Table 64. RPP	Sequence	Delay	Comparisons	Timing	Parameters
---------------	----------	-------	-------------	--------	------------

ID	Parameters	Symbol	Min.	Тур.	Max.	Units
OW1	Reset time low	t _{RSTL}	480	511	_	μs
OW2	Presence detect high	t _{PDH}	15	_	60	μs
OW3	Presence detect low	t _{PDL}	60	_	240	μs
OW4	Reset time high	t _{RSTH}	480	512	_	μs

4.9.17 Parallel ATA Module AC Electrical Specifications

The parallel ATA module can work on PIO/multiword DMA/ultra-DMA transfer modes (not available for the MCIMX351). Each transfer mode has a different data transfer rate, Ultra DMA mode 4 data transfer rate is up to 100 MBps.

The parallel ATA module interface consists of a total of 29 pins. Some pins have different functions in different transfer modes. There are various requirements for timing relationships among the function pins, in compliance with the ATA/ATAPI-6 specification, and these requirements are configurable by the ATA module registers.

4.9.17.1 General Timing Requirements

Table 67 and Figure 74 define the AC characteristics of the interface signals on all data transfer modes.

ID	Parameter	Symbol	Min.	Max.	Unit
SI1	Rising edge slew rate for any signal on the ATA interface ¹	S _{rise} ¹	—	1.25	V/ns
SI2	Falling edge slew rate for any signal on the ATA interface ¹	S _{fall} ¹	—	1.25	V/ns
SI3	Host interface signal capacitance at the host connector	C _{host}	—	20	pF

Table 67. AC Characteristics of All Interface Signals

SRISE and SFALL meet this requirement when measured at the sender's connector from 10–90% of full signal amplitude with all capacitive loads from 15 pF through 40 pF, where all signals have the same capacitive load value.

ATA Interface Signals

Figure 74. ATA Interface Signals Timing Diagram

4.9.17.2 ATA Electrical Specifications (ATA Bus, Bus Buffers)

This section discusses ATA parameters. For a detailed description, refer to the ATA-6 specification.

Level shifters are required for 3.3-V or 5.0-V compatibility on the ATA interface.

The use of bus buffers introduces delays on the bus and introduces skew between signal lines. These factors make it difficult to operate the bus at the highest speed (UDMA-5) when bus buffers are used. Use of bus buffers is not recommended if fast UDMA mode is required.

The ATA specification imposes a slew rate limit on the ATA bus. According to this limit, any signal driven on the bus should have a slew rate between 0.4 and 1.2 V/ns with a 40 pF load. Few vendors of bus buffers specify the slew rate of the outgoing signals.

When bus buffers are used the ata_data bus buffer is bidirectional, and uses the direction control signal ata_buffer_en. When ata_buffer_en is asserted, the bus should drive from host to device. When

Figure 76 shows timing for PIO write, and Table 70 lists the timing parameters for PIO write.

Figure 76. PIO Write Timing Diagram

Table 70. PIO Write Timing Parameters

ATA Parameter	Parameter from Figure 76	Value	Controlling Variable
t1	t1	t1 (min.) = time_1 \times T – (tskew1 + tskew2 + tskew5)	time_1
t2	t2w	t2 (min.) = time_2w \times T – (tskew1 + tskew2 + tskew5)	time_2w
t9	t9	t9 (min.) = time_9 \times T – (tskew1 + tskew2 + tskew6)	time_9
t3	—	t3 (min.) = (time_2w - time_on) × T - (tskew1 + tskew2 +tskew5)	If not met, increase time_2w
t4	t4	t4 (min.) = time_4 \times T – tskew1	time_4
tA	tA	$tA = (1.5 + time_ax) \times T - (tco + tsui + tcable2 + tcable2 + 2*tbuf)$	time_ax
tO	—	$t0(min.) = (time_1 + time_2 + time_9) \times T$	time_1, time_2r, time_9
_	—	Avoid bus contention when switching buffer on by making ton long enough.	_
_	—	Avoid bus contention when switching buffer off by making toff long enough.	_

Figure 84. UDMA-Out Device Terminates Transfer Timing Diagram

Parameter from	
Figure 82,	Value

Figure 83, Figure 84	Value	Variable
tack	tack (min.) = (time_ack × T) – (tskew1 + tskew2)	time_ack
tenv	tenv (min.) = (time_env \times T) – (tskew1 + tskew2) tenv (max.) = (time_env \times T) + (tskew1 + tskew2)	time_env
tdvs	tdvs = (time_dvs ×T) - (tskew1 + tskew2)	time_dvs
tdvh	$tdvs = (time_dvh \times T) - (tskew1 + tskew2)$	time_dvh
tcyc	$tcyc = time_cyc \times T - (tskew1 + tskew2)$	time_cyc
_	$t2cyc = time_cyc \times 2 \times T$	time_cyc
trfs	$trfs = 1.6 \times T + tsui + tco + tbuf + tbuf$	—
tdzfs	$tdzfs = time_dzfs \times T - (tskew1)$	time_dzfs
tss	tss = time_ss × T – (tskew1 + tskew2)	time_ss
tdzfs_mli	tdzfs_mli = max. (time_dzfs, time_mli) × T – (tskew1 + tskew2)	—
tli1	tli1 > 0	—
tli2	tli2 > 0	—
tli3	tli3 > 0	—
tcvh	$tcvh = (time_cvh \times T) - (tskew1 + tskew2)$	time_cvh
ton toff	$ton = time_on \times T - tskew1$ toff = time_off $\times T - tskew1$	—
	Figure 83, Figure 84 tack tenv tdvs tdvh tcyc — trfs tdzfs tdzfs tdzfs_mli tli1 tli2 tli3 tcvh ton toff	Figure 83, Figure 84tacktack (min.) = (time_ack \times T) - (tskew1 + tskew2)tenvtenv (min.) = (time_env \times T) - (tskew1 + tskew2)tdvstdvs = (time_dvs \times T) - (tskew1 + tskew2)tdvhtdvs = (time_dvh \times T) - (tskew1 + tskew2)tdvctcyc = time_cyc \times T - (tskew1 + tskew2)tcyctcyc = time_cyc \times 2 \times Ttrfstrfs = 1.6 \times T + tsui + tco + tbuf + tbuftdzfstdzfs = time_dzfs \times T - (tskew1)tsstss = time_ss \times T - (tskew1 + tskew2)tdifstdzfs_mli = max. (time_dzfs, time_mli) \times T - (tskew1 + tskew2)tli1tli1 > 0tli2tli2 > 0tli3tli3 > 0tcvhtcvh = (time_cvh \times T) - (tskew1 + tskew2)tonton = time_on \times T - tskew1tofftoff = time_off \times T - tskew1

ID	Parameter	Min.	Max.	Unit	
	External Clock Operation				
SS22	(Tx/Rx) CK clock period	81.4	_	ns	
SS23	(Tx/Rx) CK clock high period	36.0	_	ns	
SS24	(Tx/Rx) CK clock rise time	—	6.0	ns	
SS25	(Tx/Rx) CK clock low period	36.0	_	ns	
SS26	(Tx/Rx) CK clock fall time	—	6.0	ns	
SS27	(Tx) CK high to FS (bl) high	-10.0	15.0	ns	
SS29	(Tx) CK high to FS (bl) low	10.0	_	ns	
SS31	(Tx) CK high to FS (wl) high	-10.0	15.0	ns	
SS33	(Tx) CK high to FS (wI) low	10.0		ns	
SS37	(Tx) CK high to STXD valid from high impedance	—	15.0	ns	
SS38	(Tx) CK high to STXD high/low	—	15.0	ns	
SS39	(Tx) CK high to STXD high impedance	—	15.0	ns	
Synchronous External Clock Operation					
SS44	SRXD setup before (Tx) CK falling	10.0	_	ns	
SS45	SRXD hold after (Tx) CK falling	2.0	_	ns	
SS46	SRXD rise/fall time	—	6.0	ns	

Table 80. SSI Transmitter with External Clock Timing Parameters

ID	Parameter	Symbol	Min.	Max.	Units
UA1	Transmit Bit Time	t _{Tbit}	1/F _{baud_rate} 1 – T _{ref_clk} 2	1/F _{baud_rate} + T _{ref_clk}	—

Table 82.	RS-232 Seria	al Mode Tra	ansmit Timing	Parameters

¹ F_{baud rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

² T_{ref clk}: The period of UART reference clock *ref_clk* (*ipg_perclk* after RFDIV divider).

4.9.23.1.12 UART Receiver

Figure 97 depicts the RS-232 serial mode receive timing, with 8 data bit/1 stop bit format. Table 83 lists serial mode receive timing characteristics.

Figure 97. UART RS-232 Serial Mode Receive Timing Diagram

Table 83.	RS-232 Serial	Mode Receive	Timing Parameters
-----------	----------------------	--------------	--------------------------

ID	Parameter	Symbol	Min.	Max.	Units
UA2	Receive Bit Time ¹	t _{Rbit}	1/F _{baud_rate} ² – 1/(16 × F _{baud_rate})	1/F _{baud_rate} + 1/(16 × F _{baud_rate})	_

The UART receiver can tolerate $1/(16 \times F_{baud_rate})$ tolerance in each bit. But accumulation tolerance in one frame must not exceed $3/(16 \times F_{baud_rate})$.

² F_{baud rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency) ÷ 16.

4.9.23.2 UART IrDA Mode Timing

The following subsections give the UART transmit and receive timings in IrDA mode.

4.9.23.2.13 UART IrDA Mode Transmitter

Figure 98 depicts the UART IrDA mode transmit timing, with 8 data bit/1 stop bit format. Table 84 lists the transmit timing characteristics.

Signal ID	Ball Location
FEC_MDIO	P1
FEC_RDATA0	P2
FEC_RDATA1	N2
FEC_RDATA2	M3
FEC_RDATA3	N1
FEC_RX_CLK	R2
FEC_RX_DV	T2
FEC_RX_ERR	N3
MA10	C4
MGND	N11
MLB_CLK	W13
MLB_DAT	Y13
MLB_SIG	W12
MVDD	P11
NF_CE0	G3
NFALE	F2
NFCLE	E1
NFRB	F3
NFRE_B	F1
NFWE_B	G2
NFWP_B	F4
NGND_ATA	M9
NGND_ATA	P9
NGND_ATA	L10
NGND_CRM	L11
NGND_CSI	N10
NGND_EMI1	H8
NGND_EMI1	H10
NGND_EMI1	J10
NGND_EMI2	J11
NGND_EMI3	J12
NGND_EMI3	K12
NGND_JTAG	M13
NGND_LCDC	K11
NGND_LCDC	L12
NGND_MISC	M7
NGND_MISC	K8
NGND_MLB	M10
NGND_NFC	K9
NGND_SDIO	N12
NVCC_ATA	N6
NVCC_ATA	P6
NVCC_ATA	P7
NVCC_ATA	P8
NVCC_CRM	R9
NVCC_CSI	R11

Signal ID	Ball Location
LD23 ¹	L19
LD3 ¹	G16
LD4 ¹	G19
LD5 ¹	H16
LD6 ¹	H18
LD7 ¹	G20
LD8 ¹	H17
LD9 ¹	H19
NVCC_EMI2	G12
NVCC_EMI2	F13
NVCC_EMI2	F14
NVCC_EMI3	G14
NVCC_JTAG	P16
NVCC_LCDC	H14
NVCC_LCDC	J14
NVCC_LCDC	L14
NVCC_LCDC	M14
NVCC_MISC	K6
NVCC_MISC	K7
NVCC_MISC	L8
NVCC_MLB	R10
NVCC_NFC	G6
NVCC_NFC	H6
NVCC_NFC	H7
NVCC_SDIO	P14
OE	E20
OSC_AUDIO_VDD	V20
OSC_AUDIO_VSS	U19
OSC24M_VDD	T19
OSC24M_VSS	T18
PGND	M12
PHY1_VDDA	M15
PHY1_VDDA	N20
PHY1_VSSA	N16
PHY1_VSSA	P20
PHY2_VDD	R13
PHY2_VSS	P12
POR_B	W11
POWER_FAIL	Y9
PVDD	N13
RAS	E15
RESET_IN_B	U10
RTCK	U18
RTS1	U1
RTS2	G1
BW	C20

Table 94. Silicon Revision 2.0 Signal Ball Map Locations (continued)

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

Document Number: MCIMX35SR2CEC Rev. 10 06/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM is the registered trademark of ARM Limited. ARM1136JF-S is the trademark of ARM Limited.

© 2012 Freescale Semiconductor, Inc.

