E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM1136JF-S
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	532MHz
Co-Processors/DSP	Multimedia; GPU, IPU, VFP
RAM Controllers	LPDDR, DDR2
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, KPP, LCD
Ethernet	10/100Mbps (1)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.8V, 2.0V, 2.5V, 2.7V, 3.0V, 3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	Secure Fusebox, Secure JTAG, Tamper Detection
Package / Case	400-LFBGA
Supplier Device Package	400-LFBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx357cjq5c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Module	MCIMX351	MCIMX353	MCIMX355	MCIMX356	MCIMX357
Ethernet	Yes	Yes	Yes	Yes	Yes
1-Wire	Yes	Yes	Yes	Yes	Yes
КРР	Yes	Yes	Yes	Yes	Yes
SDIO/MMC (2)	Yes	Yes	Yes	Yes	Yes
SDIO/Memory Stick	Yes	Yes	Yes	Yes	Yes
External Memory Controller (EMC)	Yes	Yes	Yes	Yes	Yes
JTAG	Yes	Yes	Yes	Yes	Yes
PATA	—	Yes	Yes	Yes	Yes
CE-ATA	—	Yes	Yes	Yes	Yes
Image Processing Unit (IPU) (inversion and rotation, pre- and post-processing, camera interface, blending, display controller)	—	Yes	Yes	Yes	Yes
Open VG graphics acceleration (GPU)	—	Yes	—	Yes	Yes

Table 2. Functional Differences in the i.MX35 Parts (continued)

The i.MX35 core is intended to operate at a maximum frequency of 532 MHz to support the required multimedia use cases. Furthermore, an image processing unit (IPU) is integrated into the AP domain to offload the ARM11 core from performing functions such as color space conversion, image rotation and scaling, graphics overlay, and pre- and post-processing.

The functionality of AP Domain peripherals includes the user interface; the connectivity, display, security, and memory interfaces; and 128 Kbytes of multipurpose SRAM.

2.2 Shared Domain Overview

The shared domain is composed of the shared peripherals, a smart DMA engine (SDMA) and a number of miscellaneous modules. For maximum flexibility, some peripherals are directly accessible by the SDMA engine.

The i.MX35 has a hierarchical memory architecture including L1 caches and a unified L2 cache. This reduces the bandwidth demands for the external bus and external memory. The external memory subsystem supports a flexible external memory system, including support for SDRAM (SDR, DDR2 and mobile DDR) and NAND Flash.

2.3 Advanced Power Management Overview

To address the continuing need to reduce power consumption, the following techniques are incorporated in the i.MX35:

- Clock gating
- Power gating
- Power-optimized synthesis
- Well biasing

The insertion of gating into the clock paths allows unused portions of the chip to be disabled. Because static CMOS logic consumes only leakage power, significant power savings can be realized.

"Well biasing" is applying a voltage that is greater than V_{DD} to the nwells, and one that is lower than V_{SS} to the pwells. The effect of applying this well back bias voltage reduces the subthreshold channel leakage. For the 90-nm digital process, it is estimated that the subthreshold leakage is reduced by a factor of ten over the nominal leakage. Additionally, the supply voltage for internal logic can be reduced from 1.4 V to 1.22 V.

2.4 ARM11 Microprocessor Core

The CPU of the i.MX35 is the ARM1136JF-S core, based on the ARM v6 architecture. This core supports the ARM Thumb[®] instruction sets, features Jazelle[®] technology (which enables direct execution of Java byte codes) and a range of SIMD DSP instructions that operate on 16-bit or 8-bit data values in 32-bit registers.

The ARM1136JF-S processor core features are as follows:

- Integer unit with integral $EmbeddedICE^{TM}$ logic
- Eight-stage pipeline

Block Mnemonic	Block Name	Domain ¹	Subsystem	Brief Description
ESAI	Enhanced serial audio interface	SDMA	Connectivity peripherals	The enhanced serial audio interface (ESAI) provides a full-duplex serial port for serial communication with a variety of serial devices, including industry-standard codecs, SPDIF transceivers, and other DSPs. The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator.
eSDHCv2 (3)	Enhanced secure digital host controller	ARM	Connectivity peripherals	The eSDHCv2 consists of four main modules: CE-ATA, MMC, SD and SDIO. CE-ATA is a hard drive interface that is optimized for embedded applications of storage. The MultiMediaCard (MMC) is a universal, low-cost, data storage and communication media to applications such as electronic toys, organizers, PDAs, and smart phones. The secure digital (SD) card is an evolution of MMC and is specifically designed to meet the security, capacity, performance, and environment requirements inherent in emerging audio and video consumer electronic devices. SD cards are categorized into Memory and I/O. A memory card enables a copyright protection mechanism that complies with the SDMI security standard. SDIO cards provide high-speed data I/O (such as wireless LAN via SDIO interface) with low power consumption. Note: CE-ATA is not available for the MCIMX351.
FEC	Ethernet	SDMA	Connectivity peripherals	The Ethernet media access controller (MAC) is designed to support both 10 and 100 Mbps Ethernet/IEEE 802.3 networks. An external transceiver interface and transceiver function are required to complete the interface to the media
GPIO(3)	General purpose I/O modules	ARM	Pins	Used for general purpose input/output to external ICs. Each GPIO module supports 32 bits of I/O.
GPT	General purpose timers	ARM	Timer peripherals	Each GPT is a 32-bit free-running or set-and-forget mode timer with a programmable prescaler and compare and capture registers. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in set-and-forget mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock.
GPU2D	Graphics processing unit 2Dv1	ARM	Multimedia peripherals	This module accelerates OpenVG and GDI graphics. Note: Not available for the MCIMX351.

Table 4. Digital and Analog Modules (continued)

Stresses beyond those listed in Table 7 may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in Table 8 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Parameter	Symbol	Min.	Max.	Units
Supply voltage (core)	VDD _{max} ¹	-0.5	1.47	V
Supply voltage (I/O)	NVCC _{max}	-0.5	3.6	V
Input voltage range	V _{Imax}	-0.5	3.6	V
Storage temperature	T _{storage}	-40	125	°C
ESD damage immunity:	V _{esd}			V
Human Body Model (HBM)		—	2000 ²	
Charge Device Model (CDM)		—	500 ³	

Table 7. Absolute	Maximum	Ratings
-------------------	---------	---------

¹ VDD is also known as QVCC.

² HBM ESD classification level according to the AEC-Q100-002 standard

³ Corner pins max. 750 V

4.1.1 i.MX35 Operating Ranges

Table 8 provides the recommended operating ranges. The term NVCC in this section refers to the associated supply rail of an input or output.

Table 8.	i.MX35	Operating	Ranges
----------	--------	-----------	--------

Parameter	Symbol	Min.	Typical	Max.	Units
Core Operating Voltage	V _{DD}	1.22	_	1.47	V
0 < farm < 400 MHz					
Core Operating Voltage		1.33		1.47	V
0 < farm < 532 MHz					
State Retention Voltage		1	_	—	V
EMI ¹	NVCC_EMI1,2,3	1.7	_	3.6	V
WTDG, Timer, CCM, CSPI1	NVCC_CRM	1.75	_	3.6	V
NANDF	NVCC_NANDF	1.75		3.6	V
ATA, USB generic	NVCC_ATA	1.75	—	3.6	V
eSDHC1	NVCC_SDIO	1.75	_	3.6	V
CSI, SDIO2	NVCC_CSI	1.75	_	3.6	V
JTAG	NVCC_JTAG	1.75	—	3.6	V
LCDC, TTM, I2C1	NVCC_LCDC	1.75	—	3.6	V

ID	Parameter	Symbol	Timing T = NFC Clock	c Cycle ²	Example NFC Cloc T =	Timing for k $pprox$ 33 MHz 30 ns	Unit
			Min.	Max.	Min.	Max.	
NF5	NF_WP pulse width	tWP	T – 1.0 r	IS	1	29	ns
NF6	NFALE setup time	tALS	T – 4.0 ns	—	26	—	ns
NF7	NFALE hold time	tALH	T – 4.5 ns	—	25.5	—	ns
NF8	Data setup time	tDS	T – 2.0 ns	—	28	—	ns
NF9	Data hold time	tDH	T – 5.0 ns	—	25	—	ns
NF10	Write cycle time	tWC	2T – 3.0	ns	57		ns
NF11	NFWE hold time	tWH	T – 5.0 ns 25		25	ns	
NF12	Ready to NFRE low	tRR	6T	—	180	—	ns
NF13	NFRE pulse width	tRP	1.5T – 1.0 ns	—	44	—	ns
NF14	READ cycle time	tRC	2T – 5.5 ns	—	54.5	—	ns
NF15	NFRE high hold time	tREH	0.5T – 4.0 ns		11	—	ns
NF16	Data setup on READ	tDSR	N/A		9	—	ns
NF17	Data hold on READ	tDHR	N/A		0	—	ns

Table 32. NFC Timing Parameters¹ (continued)

¹ The flash clock maximum frequency is 50 MHz.

² Subject to DPLL jitter specification listed in Table 28, "DPLL Specifications," on page 31.

NOTE

High is defined as 80% of signal value and low is defined as 20% of signal value.

Timing for HCLK is 133 MHz and internal NFC clock (flash clock) is approximately 33 MHz (30 ns). All timings are listed according to this NFC clock frequency (multiples of NFC clock phases), except NF16 and NF17, which are not NFC clock related.

4.9.5.2 Wireless External Interface Module (WEIM)

All WEIM output control signals may be asserted and deasserted by internal clocks related to the BCLK rising edge or falling edge according to the corresponding assertion or negation control fields. The address always begins related to BCLK falling edge but may be ended both on rising and falling edge in muxed mode according to control register configuration. Output data begins related to BCLK rising edge except in muxed mode where both rising and falling edge may be used according to control register configuration.

Recommended drive strength for all controls, address and BCLK is set to maximum drive.

Figure 16 through Figure 21 depict some examples of basic WEIM accesses to external memory devices with the timing parameters mentioned in Table 33 for specific control parameter settings.

ID	Parameter	Symbol	Min.	Max.	Unit
SD7	Address hold time	tAH	1.8	_	ns
SD8	SDRAM access time	tAC	—	6.47	ns
SD9	Data out hold time ¹	tOH	1.2		ns
SD10	Active to read/write command period	tRC	10	_	clock

Table 35. DDR/SDR SDRAM Read Cycle Timing Parameters (continued)

¹ Timing parameters are relevant only to SDR SDRAM. For the specific DDR SDRAM data related timing parameters, see Table 44 and Table 45.

NOTE

SDR SDRAM CLK parameters are measured from the 50% point—that is, high is defined as 50% of signal value and low is defined as 50% of signal value. SD1 + SD2 does not exceed 7.5 ns for 133 MHz.

The timing parameters are similar to the ones used in SDRAM data sheets—that is, Table 35 indicates SDRAM requirements. All output signals are driven by the ESDCTL at the negative edge of SDCLK and the parameters are measured at maximum memory frequency.

ID	PARAMETER	Symbol	DDR2-4	Unit	
		Symbol	Min	Max	
DDR5	CS, RAS, CAS, CKE, WE hold time	tıH ¹	1.25	—	ns
DDR6	Address output setup time	tis ¹	1.5	—	ns
DDR7	Address output hold time	tıн ¹	1.5	_	ns

Table 39. DDR2 SDRAM Timing Parameter Table

NOTE

These values are for command/address slew rate of 1 V/ns and SDCLK, SDCLK_B differential slew rate of 2 V/ns. For different values, use the derating table.

Table 40. Derating Values for DDR2-400, DDR2-533

NOTE

SDR SDRAM CLK parameters are measured from the 50% point—that is, "high" is defined as 50% of signal value and "low" is defined as 50% of signal value. DDR SDRAM CLK parameters are measured at the crossing point of SDCLK and SDCLK (inverted clock).

Test conditions are: Capacitance 15 pF for DDR PADS. Recommended drive strength is Medium for SDCLK and High for Address and controls.

Figure 33. DDR2 SDRAM DQ vs. DQS and SDCLK READ Cycle Timing Diagram

4.9.6 Enhanced Serial Audio Interface (ESAI) Timing Specifications

The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. Table 46 shows the interface timing values. The number field in the table refers to timing signals found in Figure 36 and Figure 37.

No.	Characteristics ^{1,2}	Symbol	Expression ²	Min.	Max.	Condition ³	Unit
62	Clock cycle ⁴	t _{SSICC}	$\begin{array}{c} 4 \times T_{C} \\ 4 \times T_{C} \end{array}$	30.0 30.0	_	i ck i ck	ns
63	Clock high period • For internal clock	_	$2 \times T_{c} - 9.0$	6	_	_	ns
	For external clock	—	$2 \times T_{C}$	15	—	—	
64	Clock low period • For internal clock	_	$2 \times T_{C} - 9.0$	6	_	_	ns
	For external clock	—	$2 \times T_{c}$	15	—	—	
65	SCKR rising edge to FSR out (bl) high	_			17.0 7.0	x ck i ck a	ns
66	SCKR rising edge to FSR out (bl) low	-	_		17.0 7.0	x ck i ck a	ns
67	SCKR rising edge to FSR out (wr) high ⁵	_	_		19.0 9.0	x ck i ck a	ns
68	SCKR rising edge to FSR out (wr) low ⁵	_	_		19.0 9.0	x ck i ck a	ns
69	SCKR rising edge to FSR out (wl) high	_	_		16.0 6.0	x ck i ck a	ns
70	SCKR rising edge to FSR out (wl) low	_	_		17.0 7.0	x ck i ck a	ns
71	Data in setup time before SCKR (SCK in synchronous mode) falling edge	_	_	12.0 19.0	_	x ck i ck	ns
72	Data in hold time after SCKR falling edge			3.5 9.0	_	x ck i ck	ns
73	FSR input (bl, wr) high before SCKR falling edge ⁵	_		2.0 12.0	_	x ck i ck a	ns
74	FSR input (wl) high before SCKR falling edge	_	_	2.0 12.0	_	x ck i ck a	ns
75	FSR input hold time after SCKR falling edge	—	—	2.5 8.5	—	x ck i ck a	ns
78	SCKT rising edge to FST out (bl) high	—	—		18.0 8.0	x ck i ck	ns
79	SCKT rising edge to FST out (bl) low		—		20.0 10.0	x ck i ck	ns

Table 46. Enhanced Serial Audio Interface Timing

Figure 38. eSDHCv2 Timing

Table 47. eSDHCv2 Interface Timing Specification

ID	Parameter	Symbols	Min.	Max.	Unit			
Card	Card Input Clock							
SD1	Clock frequency (Low Speed)	f _{PP} ¹	0	400	kHz			
	Clock frequency (SD/SDIO Full Speed/High Speed)	f _{PP} ²	0	25/50	MHz			
	Clock frequency (MMC Full Speed/High Speed)	f _{PP} ³	0	20/52	MHz			
	Clock frequency (Identification Mode)	f _{OD}	100	400	kHz			
SD2	Clock Low time	t _{WL}	7	_	ns			
SD3	Clock high time	t _{WH}	7	_	ns			
SD4	Clock rise time	t _{TLH}	_	3	ns			
SD5	Clock fall time	t _{THL}	_	3	ns			
eSDH	IC Output/Card Inputs CMD, DAT (Reference to CLK)							
SD6	eSDHC output delay	t _{OD}	-3	3	ns			
eSDł	eSDHC Input/Card Outputs CMD, DAT (Reference to CLK)							
SD7	eSDHC input setup time	t _{ISU}	5		ns			
SD8	eSDHC input hold time	t _{IH} ⁴	2.5	_	ns			

¹ In low-speed mode, the card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.

² In normal-speed mode for the SD/SDIO card, clock frequency can be any value between 0–25 MHz. In high-speed mode, clock frequency can be any value between 0–50 MHz.

³ In normal-speed mode for MMC card, clock frequency can be any value between 0 and 20 MHz. In high-speed mode, clock frequency can be any value between 0–52 MHz.

⁴ To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.

ID	Parameter	Symbol	Value	Units
IP9	Horizontal blank interval 1	Thbi1	BGXP × Tdpcp	ns
IP10	Horizontal blank interval 2	Thbi2	(SCREEN_WIDTH – BGXP – FW) × Tdpcp	ns
IP11	HSYNC delay	Thsd	H_SYNC_DELAY × Tdpcp	ns
IP12	Screen height	Tsh	(SCREEN_HEIGHT + 1) × Tsw	ns
IP13	VSYNC width	Tvsw	if V_SYNC_WIDTH_L = 0 than (V_SYNC_WIDTH + 1) × Tdpcp else (V_SYNC_WIDTH + 1) × Tsw	ns
IP14	Vertical blank interval 1	Tvbi1	BGYP × Tsw	ns
IP15	Vertical blank interval 2	Tvbi2	(SCREEN_HEIGHT – BGYP – FH) × Tsw	ns

Table 55. Synchronous Display Interface Timing Parameters—Pixel Level (continued)

¹ Display interface clock period immediate value

Display interface clock period average value.

 $\overline{T}dicp = T_{HSP_CLK} \cdot \frac{DISP3_IF_CLK_PER_WR}{HSP_CLK_PERIOD}$

Figure 50 depicts the synchronous display interface timing for access level, and Table 56 lists the timing parameters. The DISP3_IF_CLK_DOWN_WR and DISP3_IF_CLK_UP_WR parameters are set via the DI_DISP3_TIME_CONF Register.

4.9.13.3.7 Interface to a TV Encoder, Electrical Characteristics

The timing characteristics of the TV encoder interface are identical to the synchronous display characteristics. See Section 4.9.13.1.5, "Interface to Active Matrix TFT LCD Panels, Electrical Characteristics."

4.9.13.4 Asynchronous Interfaces

This section discusses the asynchronous parallel and serial interfaces.

4.9.13.4.8 Parallel Interfaces, Functional Description

The IPU supports the following asynchronous parallel interfaces:

- System 80 interface
 - Type 1 (sampling with the chip select signal) with and without byte enable signals.
 - Type 2 (sampling with the read and write signals) with and without byte enable signals.
- System 68k interface
 - Type 1 (sampling with the chip select signal) with or without byte enable signals.
 - Type 2 (sampling with the read and write signals) with or without byte enable signals.

For each of four system interfaces, there are three burst modes:

- 1. Burst mode without a separate clock—The burst length is defined by the corresponding parameters of the IDMAC (when data is transferred from the system memory) or by the HBURST signal (when the MCU directly accesses the display via the slave AHB bus). For system 80 and system 68k type 1 interfaces, data is sampled by the CS signal and other control signals change only when transfer direction is changed during the burst. For type 2 interfaces, data is sampled by the WR/RD signals (system 80) or by the ENABLE signal (system 68k), and the CS signal stays active during the whole burst.
- 2. Burst mode with the separate clock DISPB_BCLK—In this mode, data is sampled with the DISPB_BCLK clock. The CS signal stays active during whole burst transfer. Other controls are changed simultaneously with data when the bus state (read, write or wait) is altered. The CS signals and other controls move to non-active state after burst has been completed.
- 3. Single access mode—In this mode, slave AHB and DMA burst are broken to single accesses. The data is sampled with CS or other controls according to the interface type as described above. All controls (including CS) become non-active for one display interface clock after each access. This mode corresponds to the ATI single access mode.

Both system 80 and system 68k interfaces are supported for all described modes as depicted in Figure 53, Figure 54, Figure 55, and Figure 56. These timing images correspond to active-low DISPB_D*n*_CS, DISPB_D*n*_WR and DISPB_D*n*_RD signals.

4.9.17.4 PIO Mode Timing

Figure 75 shows timing for PIO read, and Table 69 lists the timing parameters for PIO read.

Figure 75. PIO Read Timing Diagram

Table 69. PIO Read Timing Parameters

ATA Parameter	Parameter from Figure 75	Value	Controlling Variable
t1	t1	t1 (min.) = time_1 \times T – (tskew1 + tskew2 + tskew5)	time_1
t2	t2r	t2 min.) = time_2r \times T – (tskew1 + tskew2 + tskew5)	time_2r
t9	t9	t9 (min.) = time_9 × T – (tskew1 + tskew2 + tskew6)	time_3
t5	t5	t5 (min.) = tco + tsu + tbuf + tbuf + tcable1 + tcable2	If not met, increase time_2
t6	t6	0	—
tA	tA	tA (min.) = $(1.5 + time_ax) \times T - (tco + tsui + tcable2 + tcable2 + 2 \times tbuf)$	time_ax
trd	trd1	$ \begin{array}{l} trd1 \ (max.) = (-trd) + (tskew3 + tskew4) \\ trd1 \ (min.) = (time_pio_rdx - 0.5) \times T - (tsu + thi) \\ (time_pio_rdx - 0.5) \times T > tsu + thi + tskew3 + tskew4 \\ \end{array} $	time_pio_rdx
tO	_	t0 (min.) = (time_1 + time_2 + time_9) \times T	time_1, time_2r, time_9

Figure 77 shows timing for MDMA read, and Figure 78 shows timing for MDMA write. Table 71 lists the timing parameters for MDMA read and write.

Figure 77. MDMA Read Timing Diagram

Figure 78. MDMA Write Timing Diagram

Table 71. MDMA Read and Write Timing Parameter
--

ATA Parameter	Parameter from Figure 77, Figure 78	Value	Controlling Variable
tm, ti	tm	tm (min.) = ti (min.) = time_m × T – (tskew1 + tskew2 + tskew5)	time_m
td	td, td1	$td1.(min.) = td (min.) = time_d \times T - (tskew1 + tskew2 + tskew6)$	time_d
tk	tk	tk.(min.) = time_k \times T – (tskew1 + tskew2 + tskew6)	time_k
tO	_	t0 (min.) = (time_d + time_k) \times T	time_d, time_k
tg(read)	tgr	tgr (min. – read) = tco + tsu + tbuf + tbuf + tcable1 + tcable2 tgr.(min. – drive) = td – te(drive)	time_d
tf(read)	tfr	tfr (min. – drive) = 0	—
tg(write)	_	tg (min. – write) = time_d × T – (tskew1 + tskew2 + tskew5)	time_d
tf(write)	—	tf (min. – write) = time_k \times T – (tskew1 + tskew2 + tskew6)	time_k
tL	—	tL (max.) = (time_d + time_k-2) \times T - (tsu + tco + 2 \times tbuf + 2 \times tcable2)	time_d, time_k

	Parameter	All Freq	Unit		
	Falancici	Min.	Max.	Cim	
SJ1	TCK cycle time	100 ¹	—	ns	
SJ2	TCK clock pulse width measured at V_M^2	40	—	ns	
SJ3	TCK rise and fall times	-	3	ns	
SJ4	Boundary scan input data set-up time	10	—	ns	
SJ5	Boundary scan input data hold time	50	—	ns	
SJ6	TCK low to output data valid		50	ns	
SJ7	TCK low to output high impedance		50	ns	
SJ8	TMS, TDI data set-up time	10	—	ns	
SJ9	TMS, TDI data hold time	50		ns	
SJ10	TCK low to TDO data valid	_	44	ns	

Figure 103. USB Receive Waveform in DAT_SE0 Unidirectional Mode

Table 89 describes the port timing specification in DAT_SE0 unidirectional mode.

No.	Parameter	Signal Name	Signal Source	Min.	Max.	Unit	Condition/ Reference Signal
US9	Tx rise/fall time	USB_DAT_VP	Out	_	5.0	ns	50 pF
US10	Tx rise/fall time	USB_SE0_VM	Out	_	5.0	ns	50 pF
US11	Tx rise/fall time	USB_TXOE_B	Out	_	5.0	ns	50 pF
US12	Tx duty cycle	USB_DAT_VP	Out	49.0	51.0	%	_
US15	Rx rise/fall time	USB_VP1	In	_	3.0	ns	35 pF
US16	Rx rise/fall time	USB_VM1	In	_	3.0	ns	35 pF
US17	Rx rise/fall time	USB_RCV	In	_	3.0	ns	35 pF

Table 89. USB Port Timing Specification in DAT_SE0 Unidirectional Mode

4.9.24.3 VP_VM Bidirectional Mode

Table 90 defines the signals for VP_VM bidirectional mode. Figure 104 and Figure 105 show the transmit and receive waveforms respectively.

Name	Direction	Signal Description
USB_TXOE_B	Out	Transmit enable, active low
USB_DAT_VP	Out (Tx) In (Rx)	Tx VP data when USB_TXOE_B is low Rx VP data when USB_TXOE_B is high
USB_SE0_VM	Out (Tx) In (Rx)	Tx VM data when USB_TXOE_B low Rx VM data when USB_TXOE_B high
USB_RCV	In	Differential Rx data

Signal ID	Ball Location
CTS2	G5
D0	A2
D1	D4
D10	D2
D11	E6
D12	E3
D13	F5
D14	D1
D15	E2
D2	B2
D3	E5
D3_CLS	L17
D3_DRDY	L20
D3_FPSHIFT	L15
D3_HSYNC	L18
D3_REV	M17
D3_SPL	M18
D3_VSYNC	M19
D4	C3
D5	B1
D6	D3
D7	C2
D8	C1
D9	E4
DE_B	W19
DQM0	B19
SDCKE1	D17
DQM2	D16
DQM3	C18
EB0	F18
EB1	F16
ECB	D19
EXT_ARMCLK	V8
EXTAL AUDIO	W20
EXTAL24M	T20
FEC COL	P3
FEC CRS	N5
FEC MDC	R1
FEC MDIO	P1
FEC RDATA0	P2
FEC RDATA1	N2
FEC RDATA2	M3
FEC RDATA3	N1
FEC RX CLK	R2
FEC RX DV	T2
FFC BX FBB	N3
1 20_10/_0101	1.0

Signal ID	Ball Location
FEC_TDATA0	P5
FEC_TDATA1	M4
FEC_TDATA2	M5
FEC_TDATA3	L6
FEC_TX_CLK	P4
FEC_TX_EN	T1
FEC_TX_ERR	N4
FSR	K5
FST	J1
FUSE_VDD	P13
FUSE_VSS	M11
GPIO1_0	T11
GPIO1_1	Y11
GPIO2_0	U11
GPIO3_0	V11
HCKR	K2
HCKT	J5
I2C1_CLK	M20
I2C1_DAT	N17
I2C2_CLK	L3
I2C2_DAT	M1
LBA	D20
LD0	F20
LD1	G18
LD10	H20
LD11	J18
LD12	J16
LD13	J19
LD14	J17
LD15	J20
LD16	K14
LD17	K19
LD18	K18
LDI9	K20
LD2	
LD20	K10
	N1/
	C16
	G10
	620
	Ц17
	H10
LD3	1113

Table 95. Silicon Revision 2.1 Signal Ball Map Locations (continued)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
Ρ	FEC _MDI O	FEC _RD ATA0	FEC _CO L	FEC _TX_ CLK	FEC _TDA TA0	NVC C_AT A	NVC C_AT A	NVC C_AT A	GND	GND	MVD D	PHY 2_VS S	FUS E_V DD	NVC C_S DIO	TDI	NVC C_JT AG	USB PHY 1_UP LLVD D	USB PHY 1_VB US	USB PHY 1_DP	PHY 1_VS SA	P
R	FEC _MD C	FEC _RX_ CLK	CTS 1	ATA_ DA0	ATA_ DA2	TXD 1	VDD 3	VDD 3	NVC C_C RM	NVC C_M LB	NVC C_C SI	VDD 4	PHY 2_VD D	SD1_ DATA 0	TDO	TMS	тск	USB PHY 1_VS SA_ BIAS	USB PHY 1_R REF	USB PHY 1_VD DA_ BIAS	R
т	FEC _TX_ EN	FEC _RX_ DV	ATA_ DMA RQ	ATA_ DATA 15	ATA_ BUF F_E N	ATA_ RES ET_B	ATA_ CS1	CSPI 1_SP I_RD Y	VST BY	CLK_ MOD E1	GPIO 1_0	COM PAR E	SD2_ DATA 1	CSI_ VSY NC	CSI_ D11	TRS TB	GND	OSC 24M_ VSS	OSC 24M_ VDD	EXTA L24M	Т
U	RTS 1	RXD 1	ATA_ DATA 12	ATA_ DATA 8	ATA_ DATA 3	ATA_ IORD Y	USB OTG _OC	CSPI 1_SS 1	BOO T_M ODE 1	RES ET_I N_B	GPIO 2_0	SD2_ DATA 3	SD2_ CMD	CSI_ D14	CSI_ D8	SD1_ DATA 1	SJC_ MOD	RTC K	OSC _AU DIO_ VSS	XTAL 24M	U
V	ATA_ DA1	ATA_ INTR Q	ATA_ DATA 10	ATA_ DATA 6	ATA_ DATA 2	ATA_ DMA CK	ATA_ CS0	EXT_ ARM CLK	CSPI 1_MI SO	CLK O	GPIO 3_0	CAP TUR E	SD2_ DATA 0	CSI_ HSY NC	CSI_ D13	CSI_ D10	SD1_ DATA 3	SD1_ CLK	XTAL _AU DIO	OSC _AU DIO_ VDD	V
W	ATA_ DATA 14	ATA_ DATA 13	ATA_ DATA 9	ATA_ DATA 5	ATA_ DATA 1	ATA_ DIO W	USB OTG _PW R	CSPI 1_SC LK	CSPI 1_M OSI	BOO T_M ODE 0	POR _B	MLB _SIG	MLB _CLK	SD2_ CLK	CSI_ MCL K	CSI_ D12	CSI_ D9	SD1_ DATA 2	DE_ B	EXTA L_AU DIO	w
Y	GND	ATA_ DATA 11	ATA_ DATA 7	ATA_ DATA 4	ATA_ DATA 0	ata_ Dior	TES T_M ODE	CSPI 1_SS 0	POW ER_ FAIL	CLK_ MOD E0	GPIO 1_1	WDO G_R ST	MLB _DAT	SD2_ DATA 2	CSI_ PIXC LK	CSI_ D15	USB PHY 2_D M	USB PHY 2_DP	SD1_ CMD	GND	Y
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	

Table 97. Silicon Revision 2.1 Ball Map—17 x 17, 0.8 mm Pitch (continued)

6 Product Documentation

All related product documentation for the i.MX35 processor is located at http://www.freescale.com/imx.

7 Revision History

Table 98 shows the revision history of this document. Note: There were no revisions of this document between revision 1 and revision 4 or between revision 6 and revision 7.

Revision Number	Date	Substantive Change(s)
10	06/2012	 In Table 2, "Functional Differences in the i.MX35 Parts," on page 3, added two columns for part numbers MCIMX353 and MCIMX357. Added Table 29, "Clock Input Tolerance," on page 31 in Section 4.9.3, "DPLL Electrical Specifications." Updated Table 39, "DDR2 SDRAM Timing Parameter Table," on page 50 for DDR2-400 values. Updated Table 41, "DDR2 SDRAM Write Cycle Parameters," on page 52 for DDR2-400 values. Added Table 15, "AC Requirements of I/O Pins," on page 24. Updated WE4 parameter in Table 33, "WEIM Bus Timing Parameters," on page 37.
9	08/2010	 Updated Table 32, "NFC Timing Parameters." Updated Table 33, "WEIM Bus Timing Parameters."
8	04/2010	Updated Table 14, "I/O Pin DC Electrical Characteristics."
7	12/18/2009	Updated Table 1, "Ordering Information."
6	10/21/2009	 Added information for silicon rev. 2.1 Updated Table 1, "Ordering Information." Added Table 95, "Silicon Revision 2.1 Signal Ball Map Locations." Added Table 97, "Silicon Revision 2.1 Ball Map—17 x 17, 0.8 mm Pitch."
5	08/06/2009	 Added a line for T_A = -40 to 85 °C in Table 14, "I/O Pin DC Electrical Characteristics" Filled in TBDs in Table 14. Revised Figure 15 and Table 33 by removing FCE = 0 and FCE = 1. Added footnote 3 to the table. Added Table 26, "AC Electrical Characteristics of DDR Type IO Pins in SDRAM Mode Max Drive (1.8 V)."
4	04/30/2009	 Note: There were no revisions of this document between revision 1 and revision 4. In Section 4.3.1, "Powering Up," reverse positions of steps 5 and 6. Updated values in Table 10, "i.MX35 Power Modes." Added Section 4.4, "Reset Timing." In Section 4.8.2, "AC Electrical Characteristics for DDR Pins (DDR2, Mobile DDR, and SDRAM Modes)," removed Slow Slew rate tables, relabeled Table 24, "AC Electrical Characteristics of DDR Type IO Pins in mDDR Mode," and Table 25, "AC Electrical Characteristics of DDR Type IO Pins in mDDR Mode," and Table 25, "AC Electrical Characteristics of DDR Type IO Pins in SDRAM Mode," to exclude mention of slew rate. In Section 4.9.5.2, "Wireless External Interface Module (WEIM)," modified Figure 16, "Synchronous Memory Timing Diagram for Read Access—WSC = 1," through Figure 21, "Muxed A/D Mode Timing Diagram for Synchronous Read Access—WSC = 7, LBA = 1, LBN = 1, LAH = 1, OEA = 7." In Section 4.9.6, "Enhanced Serial Audio Interface (ESAI) Timing Specifications," modified Figure 36, "ESAI Transmitter Timing," and Figure 37, "ESAI Receiver Timing," to remove extraneous signals. Removed a note from Figure 36, "ESAI Transmitter Timing."
3	03/2009	• In Section 4.3.1, "Powering Up," reverse positions of steps 5 and 6.
2	02/2009	 Added the following parts to Table 1, "Ordering Information": PCIMX357CVM5B, MCIMX353CVM5B, MCIMX353DVM5B, MCIMX357CVM5B, and MCIMX357DVM5B. Throughout consumer data sheet: Removed or updated information related to Media Local Bus interface.Updated Section 4.3.1, "Powering Up." Updated values in Table 10, "i.MX35 Power Modes."

Table 98. i.MX35 Data Sheet Revision History