
Freescale Semiconductor - MCF5280CVM66J Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor Coldfire V2

Core Size 32-Bit Single-Core

Speed 66MHz

Connectivity CANbus, EBI/EMI, Ethernet, I²C, SPI, UART/USART

Peripherals DMA, LVD, POR, PWM, WDT

Number of I/O 150

Program Memory Size -

Program Memory Type ROMless

EEPROM Size -

RAM Size 64K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 3.6V

Data Converters A/D 8x10b

Oscillator Type External

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 256-LBGA

Supplier Device Package 256-MAPBGA (17x17)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf5280cvm66j

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mcf5280cvm66j-4384507
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ColdFire Core
• The 8-bit vector number, vector[7:0], defines the exception type and is calculated by the processor
for all internal faults and represents the value supplied by the interrupt controller in case of an
interrupt. See Table 2-5.

2.3.4 Processor Exceptions

2.3.4.1 Access Error Exception

The exact processor response to an access error depends on the memory reference being performed. For
an instruction fetch, the processor postpones the error reporting until the faulted reference is needed by an
instruction for execution. Therefore, faults during instruction prefetches followed by a change of
instruction flow do not generate an exception. When the processor attempts to execute an instruction with
a faulted opword and/or extension words, the access error is signaled and the instruction aborted. For this
type of exception, the programming model has not been altered by the instruction generating the access
error.

If the access error occurs on an operand read, the processor immediately aborts the current instruction’s
execution and initiates exception processing. In this situation, any address register updates attributable to
the auto-addressing modes, (for example, (An)+,-(An)), have already been performed, so the programming
model contains the updated An value. In addition, if an access error occurs during a MOVEM instruction
loading from memory, any registers already updated before the fault occurs contain the operands from
memory.

The V2 ColdFire processor uses an imprecise reporting mechanism for access errors on operand writes.
Because the actual write cycle may be decoupled from the processor’s issuing of the operation, the
signaling of an access error appears to be decoupled from the instruction that generated the write.
Accordingly, the PC contained in the exception stack frame merely represents the location in the program
when the access error was signaled. All programming model updates associated with the write instruction
are completed. The NOP instruction can collect access errors for writes. This instruction delays its

Table 2-7. Fault Status Encodings

FS[3:0] Definition

00xx Reserved

0100 Error on instruction fetch

0101 Reserved

011x Reserved

1000 Error on operand write

1001 Attempted write to write-protected space

101x Reserved

1100 Error on operand read

1101 Reserved

111x Reserved
2-18 Freescale Semiconductor

MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3

ColdFire Flash Module (CFM)
6.3 Memory Map
Figure 6-2 shows the memory map for the CFM array. The CFM array can reside anywhere in the memory
space of the MCU. The starting address of the array is determined by the CFM array base address which
must reside on a natural size boundary; that is, the CFM array base address must be an integer multiple of
the array size. The CFM register space must reside on a 64 byte boundary as determined by the CFM
register base address. Figure 6-2 shows how multiple 32,768 by 16-bit Flash physical blocks interleave to
form a contiguous non-volatile memory space. Each pair of 32-bit blocks (even and odd) interleave every
4 bytes to form a 256-Kbyte section of memory.

NOTE
The CFM on the MCF5281 and MCF5214 is constructed with four banks of
32K x 16-bit Flash arrays to generate 256 Kbytes of 32-bit Flash memory.

Figure 6-2. CFM Array Memory Map

The CFM module has hardware interlocks to protect data from accidental corruption. The <<BLOCK
NAME>> memory array is logically divided into 16-Kbyte sectors for the purpose of data protection and
access control. A flexible scheme allows the protection of any combination of logical sectors (see
Section 6.3.4.4, “CFM Protection Register (CFMPROT)”). A similar mechanism is available to control
supervisor/user and program/data space access to these sectors.

0x0007 FFFF

0x0004 000C

0x0000 0000

0x0000 0004

0x0000 0008

0x0000 000C

0x0003 FFFF

0x0004 0000

0x0004 0004

0x0004 0008

3H[1] 3L[1]

2H[1] 2L[1]

3H[0] 3L[0]

2H[0] 2L[0]

1H[1] 1L[1]

0H[1] 0L[1]

1H[1] 1L[1]

0H[0] 0L[0]

Logical Block 1 (256 Kbytes)

Memory
Array 2H

2H[31] 2L[31]

Memory
Array 2L

2H[0] 2L[0]

Flash Physical Block 2 Flash Physical Block 3
3H[31] 3L[31]

3H[0] 3L[0]

Memory
Array 3H

Memory
Array 3L

Logical Block 0 (256 Kbytes)

Memory
Array 0H

0H[31] 0L[31]

Memory
Array 0L

0H[0] 0L[0]

Flash Physical Block 0 Flash Physical Block 1
1H[31] 1L[31]

1H[0] 1L[0]

Memory
Array 1H

Memory
Array 1L

Each memory array = 64 Kbytes
(16 bits wide × 32K)

Each physical block = 128 Kbytes
(32 bits wide × 32K)

Configuration Field
(0x0000_0400–
0x0000_0417)

1 The MCF5281 and MCF5214 support only Logical Block 0.
6-4 Freescale Semiconductor

MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3

Power Management
4 The BDM logic is clocked by a separate TCLK clock. Entering halt mode via the BDM port exits any low-power mode.
Upon exit from halt mode, the previous low-power mode will be re-entered and changes made in halt mode will remain
in effect.
Freescale Semiconductor 7-15

MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3

Clock Module
NRM 0 0 0 Off On 0 Lose lock Regain NRM ‘LK 1 ‘LC Block LOCKS
from being
cleared

Lose reference
clock or no lock
regain

Stuck — — —

Lose reference
clock,
regain

NRM ‘LK 1 ‘LC Block LOCKS
from being
cleared

NRM 0 0 0 Off On 1 Lose lock No lock regain Unstable
NRM

0–>‘L
K

0–>
1

‘LC Block LOCKS
until lock
regained

Lose reference
clock or no f.b.
clock regain

Stuck — — —

Lose reference
clock, regain

Unstable
NRM

0–>‘L
K

0–>
1

‘LC LOCS not set
because
LOCEN = 0

NRM 0 0 0 On On 0 — — NRM ‘LK 1 ‘LC

Lose lock or clock Stuck — — —

Lose lock, regain NRM 0 1 ‘LC

Lose clock and
lock, regain

NRM 0 1 ‘LC LOCS not set
because
LOCEN = 0

NRM 0 0 0 On On 1 — — NRM ‘LK 1 ‘LC

Lose lock Unstable
NRM

0 0–>
1

‘LC

Lose lock, regain NRM 0 1 ‘LC

Lose clock Stuck — — —

Lose clock, regain
without lock

Unstable
NRM

0 0–>
1

‘LC

Lose clock, regain
with lock

NRM 0 1 ‘LC

NRM X X 1 Off X X Lose lock,
f.b. clock,
reference
clock

RESET RESET — — — Reset
immediately

Table 9-10. Stop Mode Operation (Sheet 2 of 5)

MODE
In

L
O

C
E

N
L

O
C

R
E

L
O

L
R

E
P

L
L

O
S

C

F
W

K
U

P Expected
PLL

Action at
Stop

PLL Action
During Stop

MODE
Out

L
O

C
K

S
S

L
O

C
K

L
O

C
S

Comments
Freescale Semiconductor 9-17

MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3

Chip Select Module
Table 12-5. Chip Select Registers

IPSBAR
Offset

[31:24] [23:16] [15:8] [7:0]

0x00_0080 Chip select address register—bank 0 (CSAR0)
[p. 12-6]

Reserved1

1 Addresses not assigned to a register and undefined register bits are reserved for expansion. Write accesses to
these reserved address spaces and reserved register bits have no effect.

0x00_0084 Chip select mask register—bank 0 (CSMR0) [p. 12-6]

0x00_0088 Reserved1 Chip select control register—bank 0
(CSCR0) [p. 12-7]

0x00_008C Chip select address register—bank 1 (CSAR1)
[p. 12-6]

Reserved1

0x00_0090 Chip select mask register—bank 1 (CSMR1) [p. 12-6]

0x00_0094 Reserved1 Chip select control register—bank 1
(CSCR1) [p. 12-7]

0x00_0098 Chip select address register—bank 2 (CSAR2)
[p. 12-6]

Reserved1

0x00_009C Chip select mask register—bank 2 (CSMR2) [p. 12-6]

0x00_00A0 Reserved1 Chip select control register—bank 2
(CSCR2) [p. 12-7]

0x00_00A4 Chip select address register—bank 3 (CSAR3)
[p. 12-6]

Reserved1

0x00_00A8 Chip select mask register—bank 3 (CSMR3) [p. 12-6]

0x00_00AC Reserved1 Chip select control register—bank 3
(CSCR3) [p. 12-7]

0x00_00B0 Chip select address register—bank 4 (CSAR4)
[p. 12-6]

Reserved1

0x00_00B4 Chip select mask register—bank 4 (CSMR4) [p. 12-6]

0x00_00B8 Reserved1 Chip select control register—bank 4
(CSCR4) [p. 12-7]

0x00_00BC Chip select address register—bank 5 (CSAR5)
[p. 12-6]

Reserved1

0x00_00C0 Chip select mask register—bank 5 (CSMR5) [p. 12-6]

0x00_00C4 Reserved1 Chip select control register—bank 5
(CSCR5) [p. 12-7]

0x00_00C8 Chip select address register—bank 6 (CSAR6)
[p. 12-6]

Reserved1

0x00_00CC Chip select mask register—bank 6 (CSMR6) [p. 12-6]

0x00_00D0 Reserved1 Chip select control register—bank 6
(CSCR6) [p. 12-7]
Freescale Semiconductor 12-5

MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3

DMA Controller Module
NOTE
Throughout this chapter “external request” and DREQ are used to refer to a
DMA request from one of the on-chip UARTS or DMA timers. For details
on the connections associated with DMA request inputs, see Section 16.2,
“DMA Request Control (DMAREQC).”

16.1.1 DMA Module Features

The DMA controller module features are as follows:
• Four independently programmable DMA controller channels
• Auto-alignment feature for source or destination accesses
• Dual-address transfers
• Channel arbitration on transfer boundaries
• Data transfers in 8-, 16-, 32-, or 128-bit blocks using a 16-byte buffer
• Continuous-mode or cycle-steal transfers
• Independent transfer widths for source and destination
• Independent source and destination address registers

16.2 DMA Request Control (DMAREQC)
The DMAREQC register provides a software-controlled connection matrix for DMA requests. It logically
routes DMA requests from the DMA timers and UARTs to the four channels of the DMA controller.
Writing to this register determines the exact routing of the DMA request to the four channels of the DMA
modules. If DCRn[EEXT] is set and the channel is idle, the assertion of the appropriate DREQn activates
channel n.

31 20 19 16

Field — —

Reset 0000_0000_0000_0000

R/W R/W

15 12 11 8 7 4 3 0

Field DMAC3 DMAC2 DMAC1 DMAC0

Reset 0000_0000_0000_0000

R/W R/W

IPSBAR + 0x014

Figure 16-2. DMA Request Control Register (DMAREQC)

Table 16-1. DMAREQC Field Description

Bits Name Description
16-2 Freescale Semiconductor

MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3

DMA Controller Module
peripheral device or memory, the source address is the starting address of the data block. This can be any
aligned byte address.
The DARn should contain the destination (write) address. If the transfer is from a peripheral device to
memory, or from memory to memory, the DARn is loaded with the starting address of the data block to be
written. If the transfer is from memory to a peripheral device, DARn is loaded with the address of the
peripheral data register. This address can be any aligned byte address.
SARn and DARn change after each cycle depending on DCRn[SSIZE,DSIZE, SINC,DINC] and on the
starting address. Increment values can be 1, 2, 4, or 16 for byte, word, longword, or 16-byte line transfers,
respectively. If the address register is programmed to remain unchanged (no count), the register is not
incremented after the data transfer.
BCRn[BCR] must be loaded with the number of byte transfers to occur. It is decremented by 1, 2, 4, or 16
at the end of each transfer, depending on the transfer size. DSRn[DONE] must be cleared for channel
startup.
As soon as the channel has been initialized, it is started by writing a one to DCRn[START] or asserting
DREQn, depending on the status of DCRn[EEXT]. Programming the channel for internal requests causes
the channel to request the bus and start transferring data immediately. If the channel is programmed for
external request, DREQn must be asserted before the channel requests the bus.
Changes to DCRn are effective immediately while the channel is active. To avoid problems with changing
a DMA channel setup, write a one to DSRn[DONE] to stop the DMA channel.

16.5.4 Data Transfer

This section describes auto-alignment and bandwidth control for DMA transfers.

16.5.4.1 Auto-Alignment

Auto-alignment allows block transfers to occur at the optimal size based on the address, byte count, and
programmed size. To use this feature, DCRn[AA] must be set. The source is auto-aligned if DCRn[SSIZE]
indicates a transfer size larger than DCRn[DSIZE]. Source alignment takes precedence over the
destination when the source and destination sizes are equal. Otherwise, the destination is auto-aligned. The
address register chosen for alignment increments regardless of the increment value. Configuration error
checking is performed on registers not chosen for alignment.
If BCRn is greater than 16, the address determines transfer size. Bytes, words, or longwords are transferred
until the address is aligned to the programmed size boundary, at which time accesses begin using the
programmed size.
If BCRn is less than 16 at the start of a transfer, the number of bytes remaining dictates transfer size. For
example, AA = 1, SARn = 0x0001, BCRn = 0x00F0, SSIZE = 00 (longword), and DSIZE = 01 (byte).
Because SSIZE > DSIZE, the source is auto-aligned. Error checking is performed on destination registers.
The access sequence is as follows:

1. Read byte from 0x0001—write 1 byte, increment SARn.
2. Read word from 0x0002—write 2 bytes, increment SARn.
3. Read longword from 0x0004—write 4 bytes, increment SARn.
4. Repeat longwords until SARn = 0x00F0.
5. Read byte from 0x00F0—write byte, increment SARn.
Freescale Semiconductor 16-13

MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3

Fast Ethernet Controller (FEC)
17.4.15 Descriptor Individual Upper Address Register (IAUR)

IAUR contains the upper 32 bits of the 64-bit individual address hash table. The address recognition
process uses this table to check for a possible match with the destination address (DA) field of receive
frames with an individual DA. This register is not reset and you must initialize it.

17.4.16 Descriptor Individual Lower Address Register (IALR)

IALR contains the lower 32 bits of the 64-bit individual address hash table. The address recognition
process uses this table to check for a possible match with the DA field of receive frames with an individual
DA. This register is not reset and you must initialize it.

IPSBAR
Offset:

0x10EC Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R OPCODE
PAUSE_DUR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 — — — — — — — — — — — — — — — —

Figure 17-14. Opcode/Pause Duration Register (OPD)

Table 17-18. OPD Field Descriptions

Field Description

31–16
OPCODE

Opcode field used in PAUSE frames. These read-only bits are a constant, 0x0001.

15–0
PAUSE_DUR

Pause Duration field used in PAUSE frames.

IPSBAR
Offset:

0x1118 Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
IADDR1

W

Reset —

Figure 17-15. Descriptor Individual Upper Address Register (IAUR)

Table 17-19. IAUR Field Descriptions

Field Description

31–0
IADDR1

The upper 32 bits of the 64-bit hash table used in the address recognition process for receive frames with a unicast
address. Bit 31 of IADDR1 contains hash index bit 63. Bit 0 of IADDR1 contains hash index bit 32.
17-20 Freescale Semiconductor

MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3

General Purpose Timer Modules (GPTA and GPTB)
Note: When the fast flag clear all bit, GPTSCR1[TFFCA], is set, any access to the GPT counter registers clears GPT flag register
2.

20.5.14 GPT Channel Registers (GPTCn)

Table 20-16. GPTFLG2 Field Descriptions

Bit(s) Name Description

7 TOF Timer overflow flag. Set when the GPT counter rolls over from 0xFFFF to 0x0000. If
the TOI bit in GPTSCR2 is also set, TOF generates an interrupt request. This bit is
read anytime, write anytime (writing 1 clears the flag, and writing 0 has no effect).
1 Timer overflow
0 No timer overflow
Note: When the GPT channel 3 registers contain 0xFFFF and TCRE is set, TOF does
not get set even though the GPT counter registers go from 0xFFFF to 0x0000. When
TOF is set, it does not inhibit subsequent overflow events.

6–0 — Reserved, should be cleared.

15 0

Field CCNT

Reset 0000_0000_0000_0000

R/W R/W

Address IPSBAR + 0x1A_0010, 0x1A_0012, 0x1A_0014, 0x1A_0016,
0x1B_0010, 0x1B_0012, 0x1B_0014, 0x1B_0016

Figure 20-16. GPT Channel[0:3] Register (GPTCn)

Table 20-17. GPTCn Field Descriptions

Bit(s) Name Description

15–0 CCNT When a channel is configured for input capture (IOSn = 0), the GPT channel registers
latch the value of the free-running counter when a defined transition occurs on the
corresponding input capture pin.
When a channel is configured for output compare (IOSn = 1), the GPT channel
registers contain the output compare value.
To ensure coherent reading of the GPT counter, such that a timer rollover does not
occur between back-to-back 8-bit reads, it is recommended that only word (16-bit)
accesses be used. These bits are read anytime, write anytime (for the output compare
channel); writing to the input capture channel has no effect.
Freescale Semiconductor 20-13

MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3

General Purpose Timer Modules (GPTA and GPTB)
20.5.16 Pulse Accumulator Flag Register (GPTPAFLG)

NOTE
When the fast flag clear all enable bit, GPTSCR1[TFFCA], is set, any access
to the pulse accumulator counter registers clears all the flags in GPTPAFLG.

1 PAOVI Pulse accumulator overflow interrupt enable. Enables the PAOVF flag to generate
interrupt requests.
1 PAOVF interrupt requests enabled
0 PAOVF interrupt requests disabled

0 PAI Pulse accumulator input interrupt enable. Enables the PAIF flag to generate interrupt
requests.
1 PAIF interrupt requests enabled
0 PAIF interrupt requests disabled

7 2 1 0

Field — PAOVF PAIF

Reset 0000_0000

R/W R/W

Address IPSBAR + 0x1A_0019, 0x1B_0019

Figure 20-18. Pulse Accumulator Flag Register (GPTPAFLG)

Table 20-19. GPTPAFLG Field Descriptions

Bit(s) Name Description

7–2 — Reserved, should be cleared.

1 PAOVF Pulse accumulator overflow flag. Set when the 16-bit pulse accumulator rolls over from
0xFFFF to 0x0000. If the GPTPACTL[PAOVI] bit is also set, PAOVF generates an
interrupt request. Clear PAOVF by writing a 1 to it. This bit is read anytime, write
anytime. (Writing 1 clears the flag; writing 0 has no effect.)
1 Pulse accumulator overflow
0 No pulse accumulator overflow

0 PAIF Pulse accumulator input flag. Set when the selected edge is detected at the PAI pin.
In event counter mode, the event edge sets PAIF. In gated time accumulation mode,
the trailing edge of the gate signal at the PAI pin sets PAIF. If the PAI bit in GPTPACTL
is also set, PAIF generates an interrupt request. Clear PAIF by writing a 1 to it.
1 Active PAI input
0 No active PAI input

Table 20-18. GPTPACTL Field Descriptions (continued)

Bit(s) Name Description
Freescale Semiconductor 20-15

MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3

DMA Timers (DTIM0–DTIM3)
For example, if a 80-MHz timer clock is divided by 16, DTMRn[PS] equals 0x7F, and the timer is
referenced at 0x1312C (78,124 decimal), the time-out period is:

Eqn. 21-2Timeout period 1
80 106×
-------------------- 16 127 1+() 78124 1+()××× 2.00 seconds= =
Freescale Semiconductor 21-11

MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3

UART Modules
23.3.2 UART Mode Register 2 (UMR2n)

The UMR2n registers control UART module configuration. UMR2n can be read or written when the mode
register pointer points to it, which occurs after any access to UMR1n. UMR2n accesses do not update the
pointer.

2
PT

Parity type. PM and PT together select parity type (PM = 0x) or determine whether a data or address character is
transmitted (PM = 11).

1–0
B/C

Bits per character. Selects the number of data bits per character to be sent. The values shown do not include start,
parity, or stop bits.
00 5 bits
01 6 bits
10 7 bits
11 8 bits

IPSBAR
Offset:

0x00_0200 (UMR20)
0x00_0240 (UMR21)
0x00_0280 (UMR22)

Access: User read/write1

7 6 5 4 3 2 1 0

R
CM TXRTS TXCTS SB

W

Reset: 0 0 0 0 0 0 0 0

1 After UMR1n is read or written, the pointer points to UMR2n

Figure 23-4. UART Mode Registers 2 (UMR2n)

Table 23-3. UMR1n Field Descriptions (continued)

Field Description

PM Parity Mode Parity Type (PT= 0) Parity Type (PT= 1)

00 With parity Even parity Odd parity

01 Force parity Low parity High parity

10 No parity N/A

11 Multidrop mode Data character Address character
23-6 Freescale Semiconductor

MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3

I2C Interface
24.3.7 Clock Synchronization and Arbitration

I2C is a true multi-master bus that allows more than one master connected to it. If two or more master
devices simultaneously request control of the bus, a clock synchronization procedure determines the bus
clock. Because wire-AND logic is performed on the I2C_SCL line, a high-to-low transition on the
I2C_SCL line affects all the devices connected on the bus. The devices start counting their low period and
after a device’s clock has gone low, it holds the I2C_SCL line low until the clock high state is reached.
However, change of low to high in this device’s clock may not change the state of the I2C_SCL line if
another device clock remains within its low period. Therefore, synchronized clock I2C_SCL is held low
by the device with the longest low period.

Devices with shorter low periods enter a high wait state during this time (see Figure 24-12). When all
devices concerned have counted off their low period, the synchronized clock (I2C_SCL) line is released
and pulled high. At this point, the device clocks and the I2C_SCL line are synchronized, and the devices
start counting their high periods. The first device to complete its high period pulls the I2C_SCL line low
again.

Figure 24-12. Clock Synchronization

A data arbitration procedure determines the relative priority of the contending masters. A bus master loses
arbitration if it transmits logic 1 while another master transmits logic 0. The losing masters immediately
switch over to slave receive mode and stop driving I2C_SDA output (see Figure 24-13). In this case,
transition from master to slave mode does not generate a STOP condition. Meanwhile, hardware sets
I2SR[IAL] to indicate loss of arbitration.

Figure 24-13. Arbitration Procedure

Internal Counter Reset

Wait Start counting high period

I2C_SCL1

I2C_SCL2

I2C_SCL

Master 2 Loses Arbitration,
and becomes slave-receiver

I2C_SCL

I2C_SDA by
Master1

I2C_SDA by
Master2

I2C_SDA
Freescale Semiconductor 24-11

MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3

I2C Interface
Figure 24-14. Flow-Chart of Typical I2C Interrupt Routine

Clear

Master
Mode?

TX/Rx
?

Last Byte
Transmitted

?

RXAK= 0
?

End of
ADDR Cycle
(Master RX)

?

Write Next
Byte to I2DR

Switch to
Rx Mode

Dummy Read
from I2DR

Generate
STOP Signal

Read Data
from I2DR
And Store

Set TXAK =1 Generate
STOP Signal

2nd Last
Byte to be

Last
Byte to be

?

Arbitration
Lost?

Clear IAL

IAAS=1
?

IAAS=1
?

SRW=1
?

Tx/Rx
?

Set TX
Mode

Write Data
to I2DR

Set RX
Mode

Dummy Read
from I2DR

ACK from
Receiver

?

Tx Next
Byte

Read Data
from I2DR
and Store

Switch to
Rx Mode

Dummy Read
from I2DR

RTE

Y N

Y

Y
Y

Y

Y

Y

Y

Y

Y

N

N

N

NN

N

N

N

N

Y

TX RX

RX

TX(WRITE)

(Read)

N

IIF

Address
Cycle

Data
Cycle

Read

Read?
Freescale Semiconductor 24-15

MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3

Chapter 25
FlexCAN
The FlexCAN module is a communication controller implementing the controller area network (CAN)
protocol, an asynchronous communications protocol used in automotive and industrial control systems. It
is a high speed (1 Mbit/sec), short distance, priority based protocol which can communicate using a variety
of mediums (for example, fiber optic cable or an unshielded twisted pair of wires). The FlexCAN supports
both the standard and extended identifier (ID) message formats specified in the CAN protocol
specification, revision 2.0, part B.
The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting
the specific requirements of this field: real-time processing, reliable operation in the EMI environment of
a vehicle, cost-effectiveness and required bandwidth. A general working knowledge of the CAN protocol
revision 2.0 is assumed in this document. For details, refer to the CAN protocol revision 2.0 specification.

25.1 Features
• Based on and includes all existing Freescale TouCAN module features
• Freescale IP interface architecture
• Full implementation of the CAN protocol specification version 2.0

— Standard data and remote frames (up to 109 bits long)
— Extended data and remote frames (up to 127 bits long)
— 0–8 bytes data length
— Programmable bit rate up to 1Mbit/sec

• Up to 16 flexible message buffers of 0–8 bytes data length, each configurable as Rx or Tx, all
supporting standard and extended messages

• Listen-only mode capability
• Content-related addressing
• No read/write semaphores
• Three programmable mask registers: global (for MBs 0-13), special for MB14, and special for

MB15
• Programmable transmit-first scheme: lowest ID or lowest buffer number
• “Time Stamp”, based on 16-bit free-running timer
• Global network time, synchronized by a specific message
• Programmable I/O modes
• Maskable interrupts
• Independent of the transmission medium (external transceiver is assumed)
• Open network architecture
• Multimaster bus
• High immunity to EMI
• Short latency time for high-priority messages
• Low-power “sleep” mode, with programmable “wake up” on bus activity
Freescale Semiconductor 25-1

MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3

FlexCAN
The FlexCAN responds to any bus state as described in the protocol, e.g. transmit error active or error
passive flag, delay its transmission start time (Error Passive) and avoid any influence on the bus when in
Bus Off state. The following are the basic rules for FlexCAN bus state transitions:

• If the value of TXCTR or RXCTR increases to be greater than or equal to 128, the FCS field in the
error status register is updated to reflect it (set Error Passive state).

• If the FlexCAN state is Error Passive, and either TXCTR counter or RXCTR then decrements to a
value less than or equal to 127 while the other already satisfies this condition, the ESTAT[FCS]
field is updated to reflect it (set Error Active state).

• If the value of the TXCTR increases to be greater than 255, the ESTAT[FCS] field is updated to
reflect it (set Bus Off state) and an interrupt may be issued. The value of TXCTR is then reset to
zero.

• If the FlexCAN state is Bus_Off, then TXCTR, together with an internal counter are cascaded to
count the 128 occurrences of 11 consecutive recessive bits on the bus. Hence, TXCTR is reset to
zero, and counts in a manner where the internal counter counts 11 such bits and then wraps around
while incrementing the TXCTR. When TXCTR reaches the value of 128, ESTAT[FCS] is updated
to be Error Active, and both error counters are reset to zero. At any instance of dominant bit
following a stream of less than 11 consecutive recessive bits, the internal counter resets itself to
zero, but does NOT affect the TXCTR value.

• If during system start-up, only one node is operating, then its TXCTR increases with each message
it’s trying to transmit as a result of ACK_ERROR. A transition to bus state Error Passive should
be executed as described, while this device never enters the Bus_Off state.

• If the RXCTR increases to a value greater than 127, it is no longer incremented, even if more errors
are detected while being a receiver. At the next successful message reception, the counter is set to
a value between 119 and 127, in order to return to Error Active state.

25.4.10 FlexCAN Initialization Sequence

Initialization of the FlexCAN includes the initial configuration of the message buffers and configuration
of the CAN communication parameters following a reset, as well as any reconfiguration which may be
required during operation. The following is a generic initialization sequence for the FlexCAN:

1. Initialize all operation modes
a) Initialize the transmit and receive pin modes in control register 0 (CANCTRL0).
b) Initialize the bit timing parameters PROPSEG, PSEGS1, PSEG2, and RJW

in control registers 1 and 2 (CANCTRL[1:2]).
c) Select the S-clock rate by programming the PRESDIV register.
d) Select the internal arbitration mode (LBUF bit in CANCTRL1).

2. Initialize message buffers
a) The control/status word of all message buffers must be written either as an active or inactive

message buffer.
b) All other entries in each message buffer should be initialized as required.

3. Initialize mask registers for acceptance mask as needed
4. Initialize FlexCAN interrupt handler

a) Initialize the interrupt configuration register (ICRn) with a specific request level and vector
base address.

b) Set the required mask bits in the IMASK register (for all message buffer interrupts), in
CANCTRL0 (for bus off and error interrupts), and in CANMCR for the WAKE interrupt.
25-14 Freescale Semiconductor

MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3

Queued Analog-to-Digital Converter (QADC)
28.4.2.2 Port QB Digital I/O Signals

Port QB signals are referred to as PQB[3:0] when used as a 4-bit digital input/output port. In addition to
functioning as analog input signals, the port QB signals are also connected to the input of a synchronizer
during reads and may be used as general-purpose digital inputs when the applied voltages meet VIH and
VIL requirements.
Each port QB signal is configured as an input or output by programming the port data direction register
(DDRQB). The digital input signal states are read from the port QB data register (PORTQB) when
DDRQB specifies that the signals are inputs. The digital data in PORTQB is driven onto the port QB
signals when the corresponding bits in DDRQB specify output. See Section 28.6.4, “Port QA and QB Data
Direction Register (DDRQA & DDRQB).

28.4.3 External Trigger Input Signals

The QADC has two external trigger signals, ETRIG2 and ETRIG1. Each external trigger input is
associated with one of the scan queues, queue 1 or queue 2. The assignment of ETRIG[2:1] to a queue is
made by the TRG bit in QADC control register 0 (QACR0). When TRG = 0, ETRIG1 triggers queue 1 and
ETRIG2 triggers queue 2. When TRG = 1, ETRIG1 triggers queue 2 and ETRIG2 triggers queue 1. See
Section 28.6.5, “Control Registers “Control Registers.”

28.4.4 Multiplexed Address Output Signals

In non-multiplexed mode, the QADC analog input signals are connected to an internal multiplexer which
routes the analog signals into the internal A/D converter.
In externally multiplexed mode, the QADC allows automatic channel selection through up to four external
4-to-1 multiplexer chips. The QADC provides a 2-bit multiplexed address output to the external
multiplexer chips to allow selection of one of four inputs. The multiplexed address output signals, MA1
and MA0, can be used as multiplexed address output bits or as general-purpose I/O when external
multiplexed mode is not being used.
MA[1:0] are used as the address inputs for up to four 4-channel multiplexer chips. Because the MA[1:0]
signals are digital outputs in multiplexed mode, the state of their corresponding data direction bits in
DDRQA is ignored.

28.4.5 Multiplexed Analog Input Signals

In external multiplexed mode, four of the port QB signals are redefined so that each represent four analog
input channels. See Table 28-1.

Table 28-1. Multiplexed Analog Input Channels

Multiplexed
Analog Input

Channels

ANW Even numbered channels from 0 to 6

ANX Odd numbered channels from 1 to 7

ANY Even numbered channels from 16 to 22

ANZ Odd numbered channels from 17 to 23
Freescale Semiconductor 28-5

MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3

Queued Analog-to-Digital Converter (QADC)
Figure 28-12. Queue Status Transition

28.6.6.2 QADC Status Register 1 (QASR1)

Stop mode resets this register .

15 14 13 12 11 10 9 8

Field — CWPQ15 CWPQ14 CWPQ13 CWPQ12 CWPQ11 CWPQ10

Reset 0011_1111

R/W: R

Q1 Idle/
Q2 Active

Q1 Idle/
Q2 Idle

Q1 Active/
Q2 Idle

Q1 Paused/
Q2 Idle

Q1 Active/
Q2 Suspended

Q1 Active/
Q2 Paused

Q1 Paused/
Q2 Active

Q1 Idle/
Q2 Paused

Q1 Paused/
Q2 Paused

Q1 Active/
Q2 Trigger
Pending

Q1 Paused/
Q2 Trigger
Pending

(Temporary)

Q2 Complete

Delayed Transition

Q1 Pause Bit Set

Q2 Trigger Event

Q1 Trigger Event

Q1 Pause Bit Set

Q1 Complete

Q1 Trigger Event

Q1 Complete

Delayed Transition

Q1 Complete

Q1 Pause Bit Set

Q1 Trigger Event

Q2 Complete

Q2 Pause Bit Set

Q2 Trigger Event

Q1 Trigger Event

Q1 Complete

Q1 Trigger Event

Q1 Pause Bit Set

Q2 Pause Bit Set

Q2 Trigger Event

Q1 Idle/
Q2 Trigger
Pending

(Temporary)
Q1 Trigger Event

Q2 Trigger Event
Freescale Semiconductor 28-23

MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3

Queued Analog-to-Digital Converter (QADC)
The following paragraphs and figures outline the prioritizing criteria used to determine which conversion
occurs in each overlap situation.

NOTE
Each situation in Figure 28-23 through Figure 28-33 is labeled S1 through
S19. In each diagram, time is shown increasing from left to right. The
execution of queue 1 and queue 2 (Q1 and Q2) is shown as a string of
rectangles representing the execution time of each CCW in the queue. In
most of the situations, there are four CCWs (labeled C1 to C4) in both queue
1 and queue 2. In some of the situations, CCW C2 is presumed to have the
pause bit set, to show the similarities of pause and end-of-queue as
terminations of queue execution.

Trigger events are described in Table 28-22.

When a trigger event causes a CCW execution in progress to be aborted, the aborted conversion is shown
as a ragged end of a shortened CCW rectangle.
The situation diagrams also show when key status bits are set.
Table 28-23 describes the status bits.

Below the queue execution flows are three sets of blocks that show the status information that is made
available to the user. The first two rows of status blocks show the condition of each queue as:

• Idle
• Active
• Pause
• Suspended (queue 2 only)
• Trigger pending

The third row of status blocks shows the 4-bit QS status register field that encodes the condition of the two
queues. Two transition status cases, QS = 0011 and QS = 0111, are not shown because they exist only very
briefly between stable status conditions.

Table 28-22. Trigger Events

Trigger Events

T1 Events that trigger queue 1 execution (external trigger, software-initiated single-scan
enable bit, or completion of the previous continuous loop)

T2 Events that trigger queue 2 execution (external trigger, software-initiated single-scan
enable bit, timer period/interval expired, or completion of the previous continuous
loop)

Table 28-23. Status Bits

Bit Function

CF flag Set when the end of the queue is reached

PF flag Set when a queue completes execution up through a pause bit

Trigger overrun
error (TOR)

Set when a new trigger event occurs before the queue is finished
servicing the previous trigger event
Freescale Semiconductor 28-37

MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3

Queued Analog-to-Digital Converter (QADC)
The first three examples in Figure 28-23 through Figure 28-25 (S1, S2, and S3) show what happens when
a new trigger event is recognized before the queue has completed servicing the previous trigger event on
the same queue.
In situation S1 (Figure 28-23), one trigger event is being recognized on each queue while that queue is still
working on the previously recognized trigger event. The trigger overrun error status bit is set, and the
premature trigger event is otherwise ignored. A trigger event that occurs before the servicing of the
previous trigger event is through does not disturb the queue execution in progress.

Figure 28-23. CCW Priority Situation 1

In situation S2 (Figure 28-24), more than one trigger event is recognized before servicing of a previous
trigger event is complete. The trigger overrun bit is again set, but the additional trigger events are otherwise
ignored. After the queue is complete, the first newly detected trigger event causes queue execution to begin
again. When the trigger event rate is high, a new trigger event can be seen very soon after completion of
the previous queue, leaving little time to retrieve the previous results. Also, when trigger events are
occurring at a high rate for queue 1, the lower priority queue 2 channels may not get serviced at all.

Figure 28-24. CCW Priority Situation 2

Situation S3 (Figure 28-25) shows that when the pause feature is used, the trigger overrun error status bit
is set the same way and that queue execution continues unchanged.

Q1:

Q2:

QS:

IDLE

IDLE ACTIVE IDLE

0000 1000 0000 0010 0000

TOR1

T1 T1

Q1: C1 C2 C3 C4

CF1
C1 C2 C3 C4

TOR2

T2 T2

Q2:

CF2

IDLE ACTIVE

T1

 ACTIVE IDLEQ1:

Q2:

QS:

IDLE ACTIVE

IDLE ACTIVE IDLE

1000 1000 0000 0010 0000

C1 C2 C3 C4

TOR2

T2 T2

Q2:

CF2

IDLE

C1 C2 C3 C4

T1

CF1

C1 C2 C3 C4

TOR1

T1

Q1:

CF1TOR1

T1

TOR1

T1

TOR2

T2
28-38 Freescale Semiconductor

MCF5282 and MCF5216 ColdFire Microcontroller User’s Manual, Rev. 3

