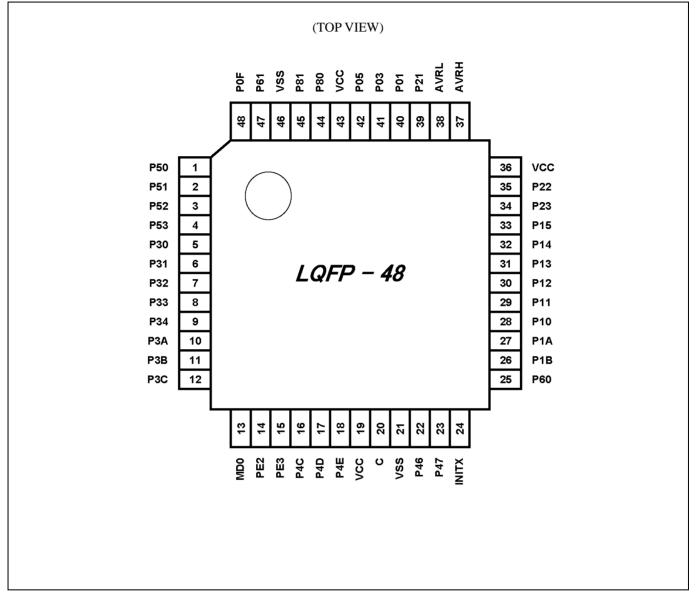


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

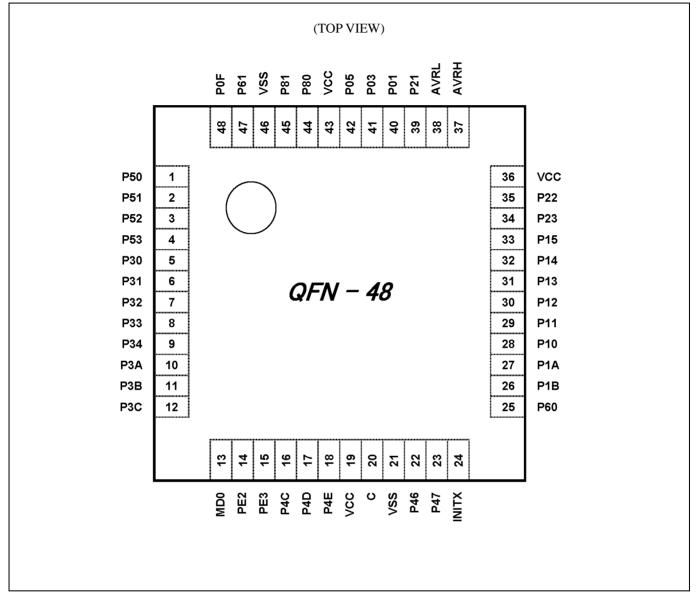
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6e1c32b0agn20000
Supplier Device Package	32-LQFP (7x7)
Package / Case	32-LQFP
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 105°C (TA)
Oscillator Type	Internal
Data Converters	A/D 6x12b
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
RAM Size	16K x 8
EEPROM Size	-
Program Memory Type	FLASH
Program Memory Size	128KB (128K x 8)
Number of I/O	24
Peripherals	LVD, POR, PWM, WDT
Connectivity	CSIO, I ² C, LINbus, UART/USART, USB
Speed	40MHz
Core Size	32-Bit Single-Core
Core Processor	ARM® Cortex®-M0+
Product Status	Active

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



LQA048-02

WNY048

	Pin No.									
LQFP-64 QFN-64	LQFP-48 QFN-48	LQFP-32 QFN-32	Pin Name		Alt	ernate Functio	ons		I/O Circuit Type	Pin State Type
32	24	16	INITX						В	E
33	25	17	P60	TIOA2_2	INT15_1	CEC1_0			Η	K
34	-	-	P1E	RTS4_1	MI2SMCK4_1				D	K
35	-	-	P1D	CTS4_1	MI2SWS4_1				D	K
36	-	-	P1C	SCK4_1	MI2SCK4_1				D	K
37	-	-	P1B	SOT4_1	MI2SDO4_1				D	K
-	26	-	P1B	SOT4_1					D	K
38	-	-	P1A	SIN4_1	INT05_1	CEC0_0	MI2SDI4_1		Н	K
-	27	-	P1A	SIN4_1	INT05_1	CEC0_0			Н	K
39	-	-	P1F	ADTG_5					D	K
40	28	18	P10	AN00					F	J
41	29	19	P11	AN01	SIN1_1	INT02_1	WKUP1		G	J
42	30	20	P12	AN02	SOT1_1				F	J
43	31	21	P13	AN03	SCK1_1	RTCCO_1	SUBOUT_1		F	J
44	32	-	P14	AN04	SIN0_1	SCS10_1	INT03_1		F	J
45	33	-	P15	AN05	SOT0_1	SCS11_1			F	J
46	34	22	P23	AN06	SCK0_0	TIOA7_1			F	J
47	35	23	P22	AN07	TIOB7_1				F	J
48	36	24	VCC						-	-
49	37	-	AVRH ¹						-	-
50	38	25	AVRL						-	-
51	39	26	P21	INT06_1	WKUP2				Е	K
52	-	-	P00	WKUP4					Е	K
53	40	27	P01	SWCLK	SOT0_0				D	K
54	-	-	P02	WKUP5					Е	K
55	41	28	P03	SWDIO	SIN0_0	TIOB7_0			D	K
56	42	29	P05	MD1	TIOA5_2	INT00_1	WKUP3		Е	K
57	43	-	VCC						-	-
58	44	30	P80	UDM0					J	G
59	45	31	P81	UDP0					J	G
60	46	32	VSS						-	-
61	47	-	P61	UHCONX0	TIOB2_2				Н	K
62	-	-	P0B	TIOB6_1	WKUP6				Е	K
63	-	-	P0C	TIOA6_1	WKUP7				Е	K
64	48	1	P0F	NMIX	WKUP0	RTCCO_0	SUBOUT_0	CROUT_1	Е	I

 $^{^{1}\,}$ In a 32-pin package, the AVRH pin is internally connected to the V_{CC} pin.

				Pin No.	
Pin Function	Pin Name	Function Description	LQFP-64	LQFP-48	LQFP-32
		Multi-function serial interface ch.1 input	QFN-64	QFN-48	QFN-32
	SIN1_1	pin	41	29	19
	SOT1_1 (SDA1_1)	Multi-function serial interface ch.1 output pin. This pin operates as SOT1 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) and as SDA1 when used as an I ² C pin (operation mode 4).	42	30	20
Multi-function Serial 1	SCK1_1 (SCL1_1)	Multi-function serial interface ch.1 clock I/O pin. This pin operates as SCK1 when used as a CSIO pin (operation mode 2) and as SCL1 when used as an I^2 C pin (operation mode 4).	43	31	21
	SCS10_1	Multi-function serial interface ch.1 serial chip select 0 input/output pin.	44	32	-
SCS11_1		Multi-function serial interface ch.1 serial chip select 1 output pin.	45	33	-
SI	SIN3_1	Multi-function serial interface ch.3 input pin	1	1	2
Multi-function Serial 3	SOT3_1 (SDA3_1)	Multi-function serial interface ch.3 output pin. This pin operates as SOT3 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) and as SDA3 when used as an I^2C pin (operation mode 4).	2	2	3
	SCK3_1 (SCL3_1)	Multi-function serial interface ch.3 clock I/O pin. This pin operates as SCK3 when used as a CSIO (operation mode 2) and as SCL3 when used as an I^2 C pin (operation mode 4).	3	3	4
	SIN4_1	Multi-function serial interface ch.4 input pin	38	27	-
	SOT4_1 (SDA4_1)	Multi-function serial interface ch.4 output pin. This pin operates as SOT4 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) and as SDA4 when used as an I^2C pin (operation mode 4).	37	26	-
Multi-function Serial 4	SCK4_1 (SCL4_1)	Multi-function serial interface ch.4 clock I/O pin. This pin operates as SCK4 when used as a CSIO (operation mode 2) and as SCL4 when used as an I^2 C pin (operation mode 4).	36	-	-
	CTS4_1	Multi-function serial interface ch4 CTS input pin	35	-	-
	RTS4_1	Multi-function serial interface ch4 RTS output pin	34	-	-

Туре	Circuit	Remarks
Н	Pert Digital output Pert Digital output From Digital input Standby mode Control	 CMOS level output CMOS level hysteresis input 5V tolerant With pull-up resistor control With standby mode control Pull-up resistor Approximately 33 kΩ IOH= -4 mA, IOL= 4 mA Available to control PZR registers When this pin is used as an I²C pin, the digital output P-ch transistor is always off
I	Mode input	CMOS level hysteresis input
J	GPIO Digital output GPIO Digital input/output direction GPIO Digital input GPIO Digital input circuit control UDP output USB Full-speed/Low-speed control UDP input Differential input UDM0/P80 UDM input UDM output UDM output GPIO Digital input/output direction GPIO Digital input/output direction GPIO Digital input GPIO Digital input GPIO Digital input circuit control	It is possible to select the USB I/O / GPIO function. When the USB I/O is selected. • Full-speed, Low-speed control When the GPIO is selected. • CMOS level output • CMOS level hysteresis input • With standby mode control

Latch-Up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

(1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.

(2) Be sure that abnormal current flows do not occur during the power-on sequence.

Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

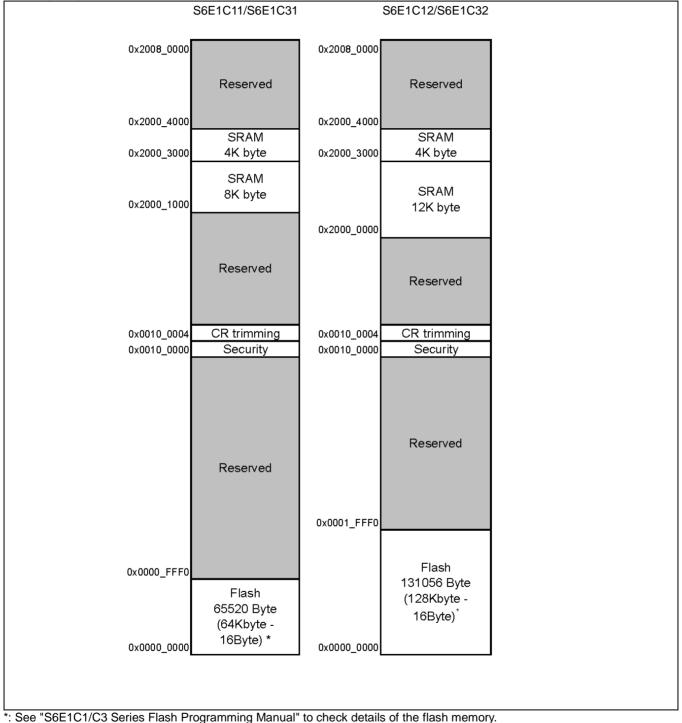
CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

7.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should mount only under Cypress' recommended conditions. For detailed information about mount conditions, contact your sales representative.

Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.


Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

Memory Map (2)

LVD Current

(V_{CC}=1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Pin	Conditions	Va	Value		Remarks		
	Symbol	Name	Conditions	Тур	Max	Unit	Reinarks		
Low-Voltage				0.15	0.3	μA	For occurrence of reset		
detection circuit (LVD) power supply current	ICCLVD	VCC	At operation	0.10	0.3	μA	For occurrence of interrupt		

Bipolar Vref Current

(V_{CC}=1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
	Symbol	Name	Conditions	Тур	Max	Unit	Reillarks
Bipolar Vref Current	I _{CCBGR}	VCC	At operation	100	200	μA	

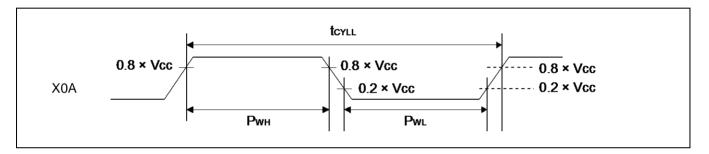
Flash Memory Current

(V_{CC}=1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Pin	Conditions	Va	lue	Unit	Remarks	
Faiailletei	Symbol	Name	Conditions	Тур	Max	Unit	Relliarks	
Flash memory write/erase current	Iccflash	VCC	At Write/Erase	4.4	5.6	mA		

A/D converter Current

(V_{CC}=1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

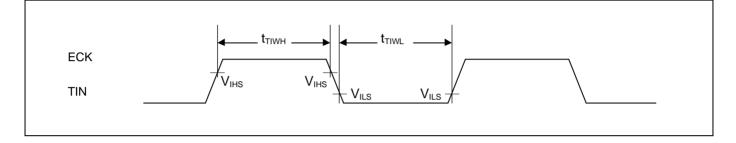

Parameter	Symbol	Pin	Conditions	Va	ue	Unit	Remarks
Falanielei	Symbol	Name	Conditions	Тур	Max	Unit	Reillarks
Power supply current	I _{CCAD}	VCC	At operation	0.5	0.75	mA	
Reference power supply	I _{CCAVRH}	AVRH	At operation	0.69	1.3	mA	AVRH=3.6 V
current (AVRH)			At stop	0.1	1.3	μA	

11.4.2 Sub Clock Input Characteristics³⁵

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Pin	Conditions		Value		Unit	Remarks
Farameter	Symbol	Name	conditions	Min	Тур	Max	Onit	itemarks
Input frequency	f _{CL}	XOA,	-	-	32.768	-	kHz	When the crystal oscillator is connected
			X0A, X1A	-	32	-	100	kHz
Input clock cycle	t _{CYLL}	AIA	-	10	-	31.25	μs	When the external clock is used
Input clock pulse width	-		Pwн/tcyll, Pwl/tcyll	45	-	55	%	When the external clock is used

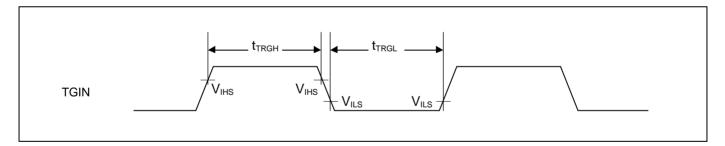
 $^{^{\}rm 35}\,$ See "Sub crystal oscillator" in "11. Handling Devices" for the crystal oscillator used.



11.4.8 Base Timer Input Timing

Timer Input Timing

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)


Parameter	Symbol	Pin Name	Conditions	Va	ue	Unit	Remarks
	Symbol	FIIIMaille	Conditions	Min	Max	Unit	Neillai KS
Input pulse width	t _{⊤IWH} , t _{⊤IWL}	TIOAn/TIOBn (when using as ECK, TIN)	-	2 t _{CYCP}	-	ns	

Trigger Input Timing

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Pin Name	Conditions	Va	lue	Unit	Remarks
	Symbol	FIII Naille	Conditions	Min	Max	Onit	Remarks
Input pulse width	t _{trgh} , t _{trgl}	TIOAn/TIOBn (when using as TGIN)	-	2 t _{CYCP}	-	ns	

Note:

- *t*_{CYCP} indicates the APB bus clock cycle time.
- For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map

- ".

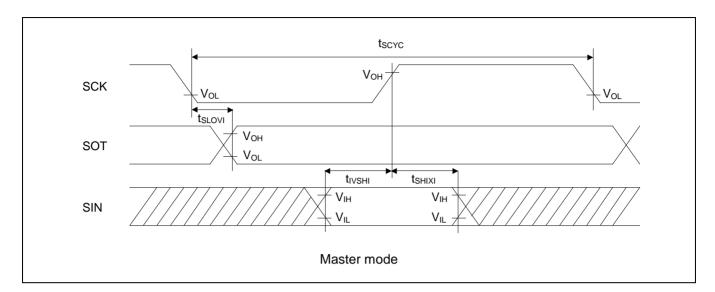
11.4.9 CSIO/SPI/UART Timing

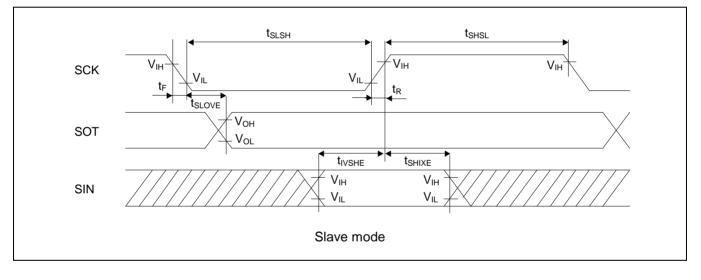
CSIO (SPI=0, SCINV=0)

Paramatar	Symbol	Pin	Conditions	V _{cc} < 2	2.7 V	V _{cc} ≥ :	2.7 V	Unit
Parameter	Symbol	name	Conditions	Min	Max	Min	Max	Unit
Serial clock cycle time	t _{SCYC}	SCKx		4 t _{CYCP}	-	4 t _{CYCP}	-	ns
$\text{SCK} \downarrow \rightarrow \text{SOT}$ delay time	t _{SLOVI}	SCKx, SOTx		- 30	+ 30	- 20	+ 20	ns
$SIN \to SCK \uparrow setup \ time$	t _{ivshi}	SCKx, SINx	Master mode	50	-	36	-	ns
$\text{SCK} \uparrow \rightarrow \text{SIN}$ hold time	t _{SHIXI}	SCKx, SINx		0	-	0	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKx		2 t _{CYCP} - 10	-	2 t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$\text{SCK} \downarrow \rightarrow \text{SOT}$ delay time	t _{SLOVE}	SCKx, SOTx	Slave mode	-	50	-	30	ns
$SIN \to SCK \uparrow setup \ time$	t _{IVSHE}	SCKx, SINx	Slave mode	10	-	10	-	ns
$\text{SCK} \uparrow \rightarrow \text{SIN}$ hold time	t _{SHIXE}	SCKx, SINx		20	-	20	-	ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx		-	5	-	5	ns

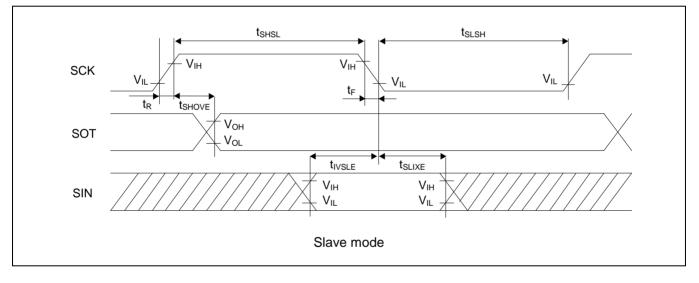
(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Notes:


- The above AC characteristics are for clock synchronous mode.


t_{CYCP} indicates the APB bus clock cycle time.
 For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.

- The characteristics are applicable only when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCKx_0 and SOTx_1.
- External load capacitance C_L=30 pF


CYPRESS Embedded in Tomorrow"

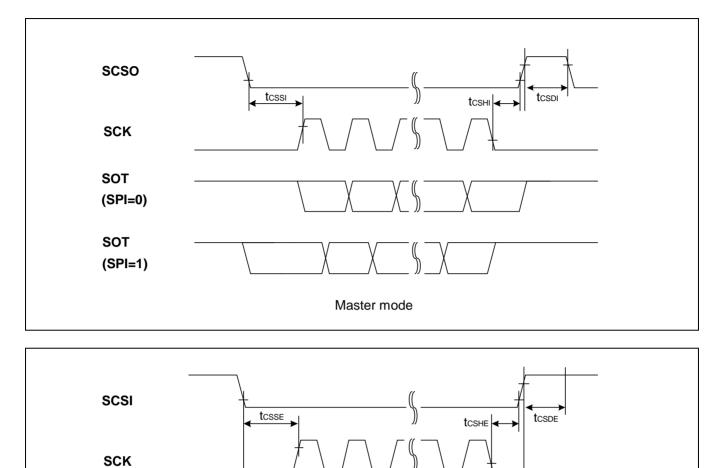
SPI (SPI=1, SCINV=1)

				(V _{CC} = 1.0	65 V to 3.6	6 V, V _{SS} = 0 V,	T _A =- 40°0	C to +10
Parameter	Symbol	Pin	Conditions	V _{CC} < 2.7 V		V _{CC} ≥ 2.7 V		Unit
i didiliotoi	Cymbol	name		Min	Max	Min	Max	onne
Serial clock cycle time	tscyc	SCKx		4 t _{CYCP}	-	4 t _{CYCP}	-	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVI}	SCKx, SOTx		- 30	+ 30	- 20	+ 20	ns
$SIN \to SCK \uparrow setup time$	t _{i∨sнi}	SCKx, SINx	Master mode	50	-	36	-	ns
$SCK \uparrow \to SIN \text{ hold time}$	t _{SHIXI}	SCKx, SINx		0	-	0	-	ns
$SOT \to SCK \uparrow delay \ time$	t _{sovнi}	SCKx, SOTx		2 t _{CYCP} - 30	-	2 t _{CYCP} - 30	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKx		2 t _{CYCP} - 10	-	2 t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK \downarrow \rightarrow SOT$ delay time	t _{SLOVE}	SCKx, SOTx		-	50	-	33	ns
$SIN \to SCK \uparrow setup \ time$	t _{IVSHE}	SCKx, SINx	Slave mode	10	-	10	-	ns
$SCK \uparrow \to SIN \text{ hold time}$	t _{SHIXE}	SCKx, SINx		20	-	20	-	ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx	1	-	5	-	5	ns

Notes:

- The above AC characteristics are for clock synchronous mode.

t_{CYCP} indicates the APB bus clock cycle time.
 For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.


- The characteristics are applicable only when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCKx_0 and SOTx_1.

- External load capacitance C_L=30 pF

tdee ◀➔

Slave mode

SOT (SPI=0)

SOT (SPI=1) tdse

11.5 12-bit A/D Converter

Electrical Characteristics of A/D Converter (Preliminary Values)

Parameter	Symbol	Pin Name	Value			Unit	Demerke	
Parameter	Symbol	Pin Name	Min	Тур	Max	Unit	Remarks	
Resolution	-	-	-	-	12	bit		
Integral Nonlinearity	-	-	- 4.5	-	4.5	LSB		
Differential Nonlinearity	-	-	- 2.5	-	+ 2.5	LSB		
Zero transition voltage	V _{ZT}	ANxx	- 15	-	+ 15	mV		
Full-scale transition voltage	V _{FST}	ANxx	AVRH - 15	-	AVRH + 15	mV		
		-	1.0	-	-		V _{CC} ≥ 2.7 V	
Conversion time ⁶⁴	-		4.0	-	-	μs	$1.8 \leq V_{CC} < 2.7 \text{ V}$	
			10	-	-		$1.65 \le V_{CC} < 1.8 V$	
Sampling time ⁶⁵	Ts	-	0.3	-			$V_{CC} \ge 2.7 V$	
			1.2	-	10	μs	$1.8 \leq V_{CC} < 2.7 \text{ V}$	
			3.0	-			$1.65 \le V_{CC} < 1.8 \text{ V}$	
	Tcck	-	50	-	1000	ns	V _{CC} ≥ 2.7 V	
Compare clock cycle66			200	-			$1.8 \leq V_{CC} < 2.7 \text{ V}$	
			500	-			$1.65 \le V_{CC} < 1.8 \text{ V}$	
State transition time to operation permission	Tstt	-	-	-	1.0	μs		
Analog input capacity	C _{AIN}	-	-	-	7.5	pF		
		-	-	-	2.2		V _{CC} ≥ 2.7 V	
Analog input resistance	RAIN				5.5	kΩ	1.8 ≤ V _{CC} < 2.7 V	
C .					10.5		1.65 ≤ V _{CC} < 1.8 V	
Interchannel disparity	-	-	-	-	4	LSB		
Analog port input leak current	-	ANxx	-	-	5	μA		
Analog input voltage	-	ANxx	Vss	-	AVRH	V		
· · -			2.7		V	V	VCC ≥ 2.7V	
Reference voltage	- AV	AVRH	Vcc	-	V _{cc}		VCC < 2.7V	
5	-	AVRL	V _{SS}	-	V _{SS}	V		

 $^{^{64}}$ The conversion time is the value of sampling time (t_S) + compare time (t_C).

The minimum conversion time is computed according to the following conditions:

 $V_{CC} \ge 2.7 V$ sampling time=0.3 µs, compare time=0.7 µs

 $^{1.8 \}le V_{CC} < 2.7 V$ sampling time=1.2 µs, compare time=2.8 µs

^{1.65 ≤} V_{CC} < 1.8 V sampling time=3.0 µs, compare time=7.0 µs

Ensure that the conversion time satisfies the specifications of the sampling time (t_s) and compare clock cycle (t_{CCK}). For details of the settings of the sampling time and compare clock cycle, refer to "Chapter: A/D Converter" in "FM0+ Family Peripheral Manual Analog Macro Part". The register settings of the A/D Converter are reflected in the operation according to the APB bus clock timing.

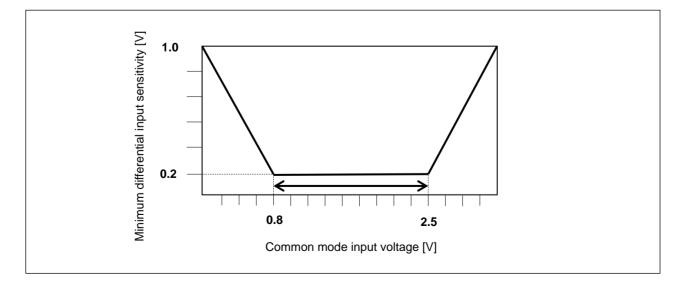
For the number of the APB bus to which the A/D Converter is connected, see the Peripheral Address Map.

⁶⁵ The required sampling time varies according to the external impedance. Set a sampling time that satisfies (Equation 1). ⁶⁶ The compare time (t_c) is the result of (Equation 2).

11.6 USB Characteristics

Parameter		Symbol	Pin	Conditions	Va	lue	Unit	Schematic
		Symbol	Name	Conditions	Min	Max	Unit	Reference
	Input H level voltage	Vін		-	2.0	V _{cc} + 0.3	V	1
Input characteristics	Input L level voltage	VIL		-	V _{SS} – 0.3	0.8	V	1
	Differential input sensitivity	Vdi		-	0.2	-	V	2
	Differential common mode range	Vсм		-	0.8	2.5	V	2
	Output H level voltage	Vон		External pull-down resistance = 15 kΩ	2.8	3.6	V	3
	Output L level voltage	Vol	UDM0	External pull-up resistance = 1.5 kΩ	0.0	0.3	V	3
	Crossover voltage	VCRS		-	1.3	2.0	V	4
Output	Rising time	tFR		Full-speed	4	20	ns	5
characteristic	Falling time	tFF		Full-speed	4	20	ns	5
	Rising/Falling time matching	t FRFM		Full-speed	90	111.11	%	5
	Output impedance	Zdrv		Full-speed	28	44	Ω	6
	Rising time	tLR	-	Low-speed	75	300	ns	7
	Falling time	tLF		Low-speed	75	300	ns	7
	Rising/Falling time matching			Low-speed	80	125	%	7

(V_{CC}=3.0 V to 3.6 V, V_{SS}=0 V, T_A =- 40°C to +105°C)


1. The switching threshold voltage of single-end-receiver of USB I/O buffer is set as within VIL(Max)=0.8 V, VIH(Min)=2.0 V (TTL input standard).

There is some hysteresis to lower noise sensitivity.

2. Use differential-receiver to receive USB differential data signal.

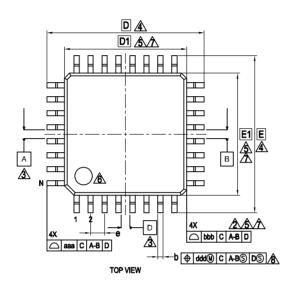
Differential-receiver has 200 mV of differential input sensitivity when the differential data input is within 0.8 V to 2.5 V to the local ground reference level.

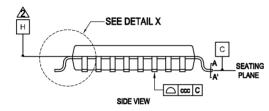
Above voltage range is the common mode input voltage range.

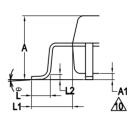
11.7 Low-Voltage Detection Characteristics

11.7.1 Low-Voltage Detection Reset

(T_A=-40°C to +105°C)


Parameter	Symbol	Conditions		Value		Unit	Remarks
Farameter	Symbol	Conditions	Min	Тур	Max	Unit	Remarks
Detected voltage	VDL	Fixed ⁶⁷	1.38	1.50	1.60	V	When voltage drops
Released voltage	VDH	Fixeu	1.43	1.55	1.65	V	When voltage rises
LVD stabilization wait time	T _{LVDW}	-	-	-	8160× t _{CYCP} ⁶⁸	μs	
LVD detection delay time	T _{LVDDL}	-	-	-	200	μs	


 $^{^{67}}$ The value of low voltage detection reset is always fixed. 68 $t_{\rm CYCP}$ indicates the APB1 bus clock cycle time.



14. Package Dimensions

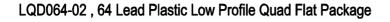
LQB032 032 LEAD PLASTIC LOW PROFILE QUAD FLAT PACKAGE

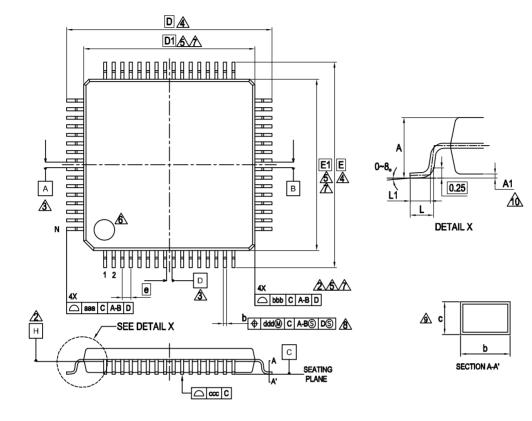
DETAIL X

PACKAGE		LQB032		SYMBOL	TOLERANCES OF FORM
SYMBOL	MIN.	NOM.	MAX.	OTMODE	AND POSITION
A	—	—	1.60	N	32
A1	0.05		0.15	aaa	0.20
b	0.32	0.35	0.42	bbb	0.10
C	0.13).13 — 0.18		CCC	0.10
D	9.00 BSC			ddd	0.20
D1	7.00 BSC				
е	0.80 BSC				
E	9.00 BSC				
E1		7.00 BSC	;		
θ	0°		7°		
L	0.45	0.60	0.75		
L1	1.00 REF				
L2	0.25 BSC				

NOTES

1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (mm)


- ▲ DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ADATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.


TO BE DETERMINED AT SEATING PLANE C.

▲ DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.

- ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE. DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- ▲ DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- ⚠ REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ▲ DIMENSION & DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (\$) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED & MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- ▲ THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- 1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

PACKAGE	LQD64-02					
SYMBOL	MIN. NOM. MAX					
A	—	<u> </u>				
A1	0.00	0.20				
b	0.17	0.22	0.27			
C	0.09 — 0.20					
D	1	2.00 BSC				
D1	10.00 BSC.					
e	0.50 BSC					
E	12.00 BSC.					
E1	10.00 BSC.					
L	0.45	0.75				
L1	0.30	0.50	0.70			
aaa	0.20					
bbb	0.10					
000						
ddd						
N	64					

NOTES

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (mm)
- ▲ DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- A DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- TO BE DETERMINED AT SEATING PLANE C.
- ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE. DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- ▲ DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- ▲ DIMENSION 5 DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (\$) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 5 MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.

▲ THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.

A 1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.