

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details

Details	
Product Status	Active
Applications	SuperSpeed USB Peripheral Controller
Core Processor	ARM9®
Program Memory Type	External Program Memory
Controller Series	CYUSB
RAM Size	512K x 8
Interface	I ² C, I ² S, MMC/SD, SPI, UART, USB
Number of I/O	59
Voltage - Supply	1.15V ~ 1.25V
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-FBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cyusb2014-bzxc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CYUSB301X/CYUSB201X

Contents

Functional Overview	5
Application Examples	5
USB Interface	6
OTG	6
ReNumeration	7
EZ-Dtect	7
VBUS Overvoltage Protection	7
Carkit UART Mode	7
GPIF II	8
CPU	8
JTAG Interface	8
Other Interfaces	8
SPI Interface	8
UART Interface	9
I2C Interface	9
I2S Interface	9
Boot Options	9
Reset	9
Hard Reset	
Soft Reset	9
Clocking	10
32-kHz Watchdog Timer Clock Input	10
Power	
Power Modes	
Digital I/Os	13
GPIOs	13
System-level ESD	
Pin Configurations	

Pin Description	15
Electrical Specifications	
Absolute Maximum Ratings	
Operating Conditions	
DC Specifications	
AC Timing Parameters	
GPIF II Timing	
Slave FIFO Interface	
Host Processor Interface (P-Port) Timing	
Serial Peripherals Timing	
Reset Sequence	
Package Diagram	43
Ordering Information	45
Ordering Code Definitions	45
Acronyms	
Document Conventions	
Units of Measure	
Errata	47
Qualification Status	47
Errata Summary	47
Document History Page	50
Sales, Solutions, and Legal Information	54
Worldwide Sales and Design Support	
Products	
PSoC®Solutions	54
Cypress Developer Community	54
Technical Support	54

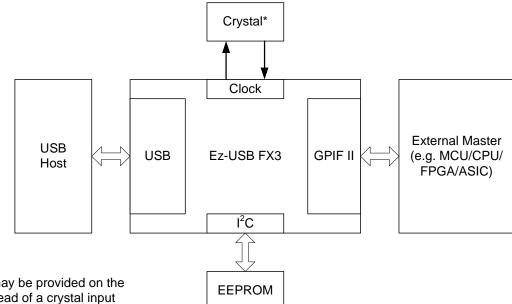


Figure 2. EZ-USB FX3 as a Coprocessor

* A clock input may be provided on the CLKIN pin instead of a crystal input

USB Interface

FX3 complies with the following specifications and supports the following features:

- Supports USB peripheral functionality compliant with USB 3.1 Specification Revision 1.0 and is also backward compatible with the USB 2.0 Specification.
- FX3 Hi-Speed parts (CYUSB201X) only support USB 2.0.
- Complies with OTG Supplement Revision 2.0. It supports High-Speed, Full-Speed, and Low-Speed OTG dual-role device capability. As a peripheral, FX3 is capable of SuperSpeed, High-Speed, and Full-Speed. As a host, it is capable of High-Speed, Full-Speed, and Low-Speed.
- Supports Carkit Pass-Through UART functionality on USB D+/D- lines based on the CEA-936A specification.
- Supports 16 IN and 16 OUT endpoints.
- Supports the USB 3.0 Streams feature. It also supports USB Attached SCSI (UAS) device-class to optimize mass-storage access performance.
- As a USB peripheral, application examples show that the FX3 supports UAS, USB Video Class (UVC), and Mass Storage Class (MSC) USB peripheral classes. All other device classes can be supported by customer firmware; a template example is provided as a starting point.
- As an OTG host, application examples show that FX3 supports MSC and HID device classes.

Note When the USB port is not in use, disable the PHY and transceiver to save power.

OTG

FX3 is compliant with the OTG Specification Revision 2.0. In OTG mode, FX3 supports both A and B device modes and supports Control, Interrupt, Bulk, and Isochronous data transfers.

FX3 requires an external charge pump (either standalone or integrated into a PMIC) to power VBUS in the OTG A-device mode.

The Target Peripheral List for OTG host implementation consists of MSC- and HID-class devices.

FX3 does not support Attach Detection Protocol (ADP).

OTG Connectivity

In OTG mode, FX3 can be configured to be an A, B, or dual-role device. It can connect to the following:

- ACA device
- Targeted USB peripheral
- SRP-capable USB peripheral
- HNP-capable USB peripheral
- OTG host
- HNP-capable host
- OTG device

Clocking

FX3 allows either a crystal to be connected between the XTALIN and XTALOUT pins or an external clock to be connected at the CLKIN pin. The XTALIN, XTALOUT, CLKIN, and CLKIN_32 pins can be left unconnected if they are not used.

Crystal frequency supported is 19.2 MHz, while the external clock frequencies supported are 19.2, 26, 38.4, and 52 MHz.

FX3 has an on-chip oscillator circuit that uses an external 19.2-MHz (±100 ppm) crystal (when the crystal option is used). An appropriate load capacitance is required with a crystal. Refer to the specification of the crystal used to determine the appropriate load capacitance. The FSLC[2:0] pins must be configured appropriately to select the crystal- or clock-frequency option. The configuration options are shown in Table 3.

Clock inputs to FX3 must meet the phase noise and jitter requirements specified in Table 4 on page 10.

The input clock frequency is independent of the clock and data rate of the FX3 core or any of the device interfaces. The internal PLL applies the appropriate clock multiply option depending on the input frequency.

Table 3. Crystal/Clock Frequency Selection

FSLC[2]	FSLC[1]	FSLC[0]	Crystal/Clock Frequency
0	0	0	19.2-MHz crystal
1	0	0	19.2-MHz input CLK
1	0	1	26-MHz input CLK
1	1	0	38.4-MHz input CLK
1	1	1	52-MHz input CLK

Table 4. FX3 Input Clock Specifications

Parameter	Description	Specif	Units	
Farameter	Description	Min	Max	Units
	100-Hz offset	-	-75	
	1-kHz offset	-	-104	
Phase noise	10-kHz offset	-	-120	dB
	100-kHz offset	-	-128	
	1-MHz offset	-	-130	
Maximum frequency deviation	-	-	150	ppm
Duty cycle	-	30	70	
Overshoot	-	-	3	%
Undershoot	-	-	-3	
Rise time/fall time	_	_	3	ns

32-kHz Watchdog Timer Clock Input

FX3 includes a watchdog timer. The watchdog timer can be used to interrupt the ARM926EJ-S core, automatically wake up the FX3 in Standby mode, and reset the ARM926EJ-S core. The watchdog timer runs a 32-kHz clock, which may be optionally supplied from an external source on a dedicated FX3 pin.

The firmware can disable the watchdog timer. Requirements for the optional 32-kHz clock input are listed in Table 5.

Table 5. 32-kHz Clock Input Requirements

Parameter	Min	Max	Units
Duty cycle	40	60	%
Frequency deviation	-	±200	ppm
Rise time/fall time	-	200	ns

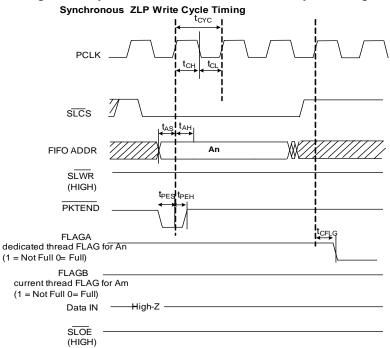
BGA	WLCSP	Power Domain	I/O	Name	Description
B9	E4	-	PWR	VSS	-
F11	F6	-	PWR	VDD	-
-	E5	-	PWR	VSS	GND
-	F7	-	PWR	VDD	-
-	E6	-	PWR	VSS	GND
-	E7	-	PWR	VSS	GND
H1	G6	-	PWR	VDD	-
L7	D7	-	PWR	VDD	-
J11	L10	-	PWR	VDD	-
L5	L12	-	PWR	VDD	-
K4	H7	-	PWR	VSS	-
L3	G7	-	PWR	VSS	-
K3	L11	-	PWR	VSS	-
L2	G8	-	PWR	VSS	-
A8	G5	_	PWR	VSS	-
_	B4	_	—	NC	No Connect
A11	B2	_	—	NC	No Connect

Table 7. CYUSB3012 and CYUSB3014 Pin List (continued)

Table 8. DC Specifications (continued)

Parameter	Description	Min	Max	Units	Notes
V _{OH}	Output HIGH voltage	0.9 × VCC	_	V	I_{OH} (max) = -100 µA tested at quarter drive strength. VCC is the corresponding I/O voltage supply.
V _{OL}	Output LOW voltage	_	0.1 × VCC	V	I_{OL} (min) = +100 µA tested at quarter drive strength. VCC is the corresponding I/O voltage supply.
I _{IX}	Input leakage current for all pins except SSTXP/SSXM/SSRXP/SSRXM	-1	1	μΑ	All I/O signals held at V_{DDQ} (For I/Os with a pull-up or pull-down resistor connected, the leakage current increases by V_{DDQ}/R_{pu} or V_{DDQ}/R_{PD}
I _{OZ}	Output High-Z leakage current for all pins except SSTXP/ SSXM/ SSRXP/SSRXM	-1	1	μA	All I/O signals held at V _{DDQ}
I _{CC} Core	Core and analog voltage operating current	-	200	mA	Total current through A _{VDD} , V _{DD}
I _{CC} USB	USB voltage supply operating current	-	60	mA	-
I _{SB1}	Total suspend current during suspend mode with USB 3.0 PHY enabled (L1)	_	_	mA	Core current: 1.5 mA I/O current: 20 µA USB current: 2 mA For typical PVT (typical silicon, all power supplies at their respective nominal levels at 25 °C)
I _{SB2}	Total suspend current during suspend mode with USB 3.0 PHY disabled (L2)	_	_	mA	Core current: 250 µA I/O current: 20 µA USB current: 1.2 mA For typical PVT (Typical silicon, all power supplies at their respective nominal levels at 25 °C)
I _{SB3}	Total standby current during standby mode (L3)	-	_	μA	Core current: 60 μA I/O current: 20 μA USB current: 40 μA For typical PVT (typical silicon, all power supplies at their respective nominal levels at 25 °C)
I _{SB4}	Total standby current during core power-down mode (L4)	_	_	μA	Core current: 0 μA I/O current: 20 μA USB current: 40 μA For typical PVT (typical silicon, all power supplies at their respective nominal levels at 25 °C)
V _{RAMP}	Voltage ramp rate on core and I/O supplies	0.2	50	V/ms	Voltage ramp must be monotonic
V _N	Noise level permitted on V_{DD} and I/O supplies	-	100	mV	Max p-p noise level permitted on all supplies except $A_{\mbox{VDD}}$
V _{N_AVDD}	Noise level permitted on A _{VDD} supply	_	20	mV	Max p-p noise level permitted on A _{VDD}

Table 10. GPIF II Timing in Asynchronous Mode^[3, 4]


Note The following parameters assume one state transition

Parameter	Description	Min	Max	Units
tDS	Data In to DLE setup time. Valid in DDR async mode.	2.3	-	ns
tDH	Data In to DLE hold time. Valid in DDR async mode.	2	-	ns
tAS	Address In to ALE setup time	2.3	-	ns
tAH	Address In to ALE hold time	2	-	ns
tCTLassert	CTL I/O asserted width for CTRL inputs without DQ input association and for outputs.	7	-	ns
tCTLdeassert	CTL I/O deasserted width for CTRL inputs without DQ input association and for outputs.	7	-	ns
tCTLassert_DQassert	CTL asserted pulse width for CTL inputs that signify DQ inputs valid at the asserting edge but do not employ in-built latches (ALE/DLE) for those DQ inputs.	20	-	ns
tCTLdeassert_DQassert	CTL deasserted pulse width for CTL inputs that signify DQ input valid at the asserting edge but do not employ in-built latches (ALE/DLE) for those DQ inputs.	7	-	ns
tCTLassert_DQdeassert	CTL asserted pulse width for CTL inputs that signify DQ inputs valid at the deasserting edge but do not employ in-built latches (ALE/DLE) for those DQ inputs.	7	-	ns
tCTLdeassert_DQdeassert	CTL deasserted pulse width for CTL inputs that signify DQ inputs valid at the deasserting edge but do not employ in-built latches (ALE/DLE) for those DQ inputs.	20	-	ns
tCTLassert_DQlatch	CTL asserted pulse width for CTL inputs that employ in-built latches (ALE/DLE) to latch the DQ inputs. In this non-DDR case, in-built latches are always close at the deasserting edge.	7	_	ns
tCTLdeassert_DQlatch	deassert_DQlatch CTL deasserted pulse width for CTL inputs that employ in-built latches (ALE/DLE) to latch the DQ inputs. In this non-DDR case, in-built latches always close at the deasserting edge.		-	ns
tCTLassert_DQlatchDDR	CTL asserted pulse width for CTL inputs that employ in-built latches (DLE) to latch the DQ inputs in DDR mode.	10	-	ns
tCTLdeassert_DQlatchDDR	CTL deasserted pulse width for CTL inputs that employ in-built latches (DLE) to latch the DQ inputs in DDR mode.	10	-	ns
tAA	DQ/CTL input to DQ output time when DQ change or CTL change needs to be detected and affects internal updates of input and output DQ lines.	-	30	ns
tDO	CTL to data out when the CTL change merely enables the output flop update whose data was already established.	-	25	ns
tOELZ	CTL designated as OE to low-Z. Time when external devices should stop driving data.	0	-	ns
tOEHZ	CTL designated as OE to high-Z	8	8	ns
tCLZ	CTL (non-OE) to low-Z. Time when external devices should stop driving data.	0	-	ns
tCHZ	CTL (non-OE) to high-Z	30	30	ns
tCTLalpha	CTL to alpha change at output	_	25	ns
tCTLbeta	CTL to beta change at output	_	30	ns
tDST	Addr/data setup when DLE/ALE not used	2	-	ns
tDHT	Addr/data hold when DLE/ALE not used	20	_	ns

Notes

All parameters guaranteed by design and validated through characterization.
 "alpha" output corresponds to "early output" and "beta" corresponds to "delayed output". Please refer to the GPIFII Designer Tool for the use of these outputs.

Figure 14. Synchronous Slave FIFO ZLP Write Cycle Timing

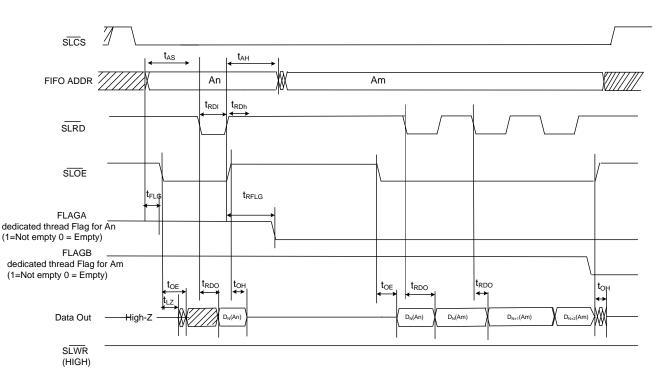
Table 11. Synchronous Slave FIFO Parameters^[5]

Parameter	Description	Min	Max	Units
FREQ	Interface clock frequency	-	100	MHz
tCYC	Clock period	10	-	ns
tCH	Clock high time	4	-	ns
tCL	Clock low time	4	-	ns
tRDS	SLRD# to CLK setup time	2	-	ns
tRDH	SLRD# to CLK hold time	0.5	-	ns
tWRS	SLWR# to CLK setup time	2	-	ns
tWRH	SLWR# to CLK hold time	0.5	-	ns
tCO	Clock to valid data	-	7	ns
tDS	Data input setup time	2	-	ns
tDH	CLK to data input hold	0.5	-	ns
tAS	Address to CLK setup time	2	-	ns
tAH	CLK to address hold time	0.5	-	ns
tOELZ	SLOE# to data low-Z	0	-	ns
tCFLG	CLK to flag output propagation delay	-	8	ns
tOEZ	SLOE# deassert to Data Hi Z	-	8	ns
tPES	PKTEND# to CLK setup	2	-	ns
tPEH	CLK to PKTEND# hold	0.5	-	ns
tCDH	CLK to data output hold	2	-	ns
tSSD	Socket switching delay	2	68	Clock cycles
tACCD	Latency from SLRD# to Data	2	2	Clock cycles
tFAD	Latency from SLWR# to FLAG	3	3	Clock cycles
Note Three-cy	cle latency from ADDR to DATA/FLAGS.	I	•	•

Note

5. All parameters guaranteed by design and validated through characterization.

Asynchronous Slave FIFO Read Sequence Description


- FIFO address is stable and the SLCS# signal is asserted.
- SLOE# is asserted. This results in driving the data bus.
- SLRD # is asserted.
- Data from the FIFO is driven after assertion of SLRD#. This data is valid after a propagation delay of tRDO from the falling edge of SLRD#.
- FIFO pointer is incremented on deassertion of SLRD#

In Figure 15, data N is the first valid data read from the FIFO. For data to appear on the data bus during the read cycle, SLOE# must be in an asserted state. SLRD# and SLOE# can also be tied.

The same sequence of events is also shown for a burst read.

Note In the burst read mode, during SLOE# assertion, the data bus is in a driven state (data is driven from a previously addressed FIFO). After assertion of SLRD# data from the FIFO is driven on the data bus (SLOE# must also be asserted). The FIFO pointer is incremented after deassertion of SLRD#.

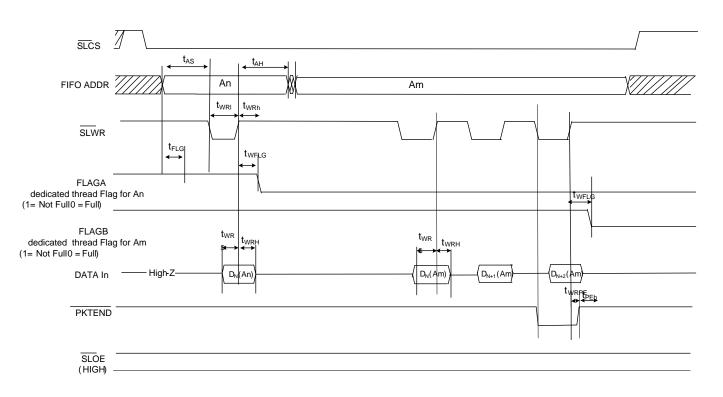
Figure 15. Asynchronous Slave FIFO Read Mode

Asynchronous Read Cycle Timing

Asynchronous Slave FIFO Write Sequence Description

- FIFO address is driven and SLCS# is asserted
- SLWR# is asserted. SLCS# must be asserted with SLWR# or before SLWR# is asserted
- Data must be present on the tWRS bus before the deasserting edge of SLWR#
- Deassertion of SLWR# causes the data to be written from the data bus to the FIFO, and then the FIFO pointer is incremented
- The FIFO flag is updated after the tWFLG from the deasserting edge of SLWR.

The same sequence of events is shown for a burst write.

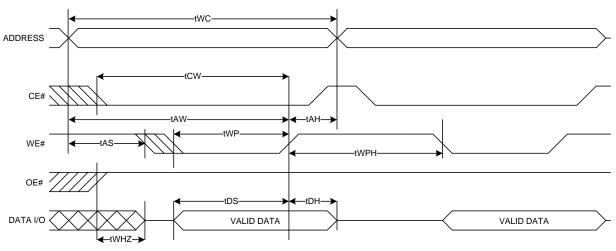

Note that in the burst write mode, after SLWR# deassertion, the data is written to the FIFO, and then the FIFO pointer is incremented.

Short Packet: A short packet can be committed to the USB host by using the PKTEND#. The external device or processor should be designed to assert the PKTEND# along with the last word of data and SLWR# pulse corresponding to the last word. The FIFOADDR lines must be held constant during the PKTEND# assertion.

Zero-Length Packet: The external device or processor can signal a zero-length packet (ZLP) to FX3 simply by asserting PKTEND#, without asserting SLWR#. SLCS# and the address must be driven as shown in Figure 17 on page 29.

FLAG Usage: The FLAG signals are monitored by the external processor for flow control. FLAG signals are FX3 outputs that can be configured to show empty, full, and partial status for a dedicated address or the current address.

Figure 16. Asynchronous Slave FIFO Write Mode



tWRPE: SLWR#de- assert to PKTEND deasset 2 ns min(Note: PKTEND must be asserted at the same time as SL₩/R

Asynchronous Write Cycle Timing

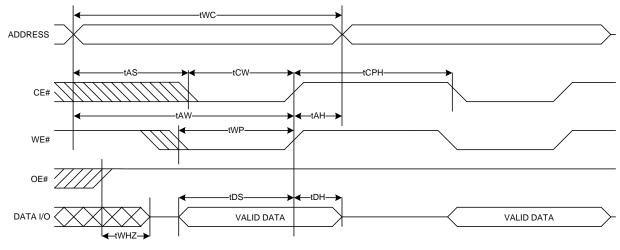


Figure 19. Non-multiplexed Asynchronous SRAM Write Timing (WE# and CE# Controlled)

Write Cycle 1 WE# Controlled, OE# High During Write

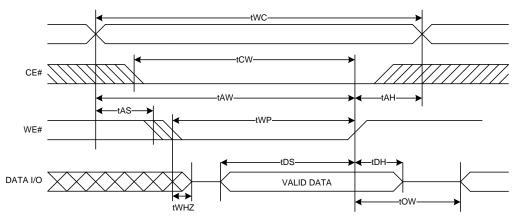
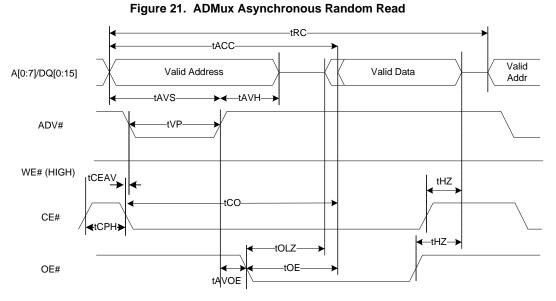


Figure 20. Non-multiplexed Asynchronous SRAM Write Timing (WE# controlled, OE# LOW)

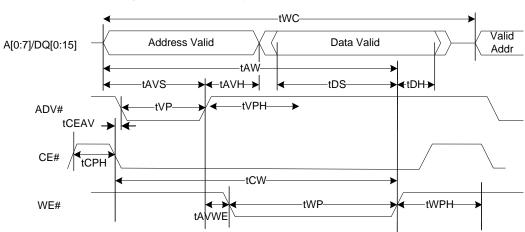
Note: tWP must be adjusted such that tWP > tWHZ + tDS

Table 13. Asynchronous SRAM Timing Parameters^[7]


Parameter	Description	Min	Max	Units
_	SRAM interface bandwidth	-	61.5	Mbps
tRC	Read cycle time	32.5	-	ns
tAA	Address to data valid	-	30	ns
tAOS	Address to OE# LOW setup time	7	-	ns
tOH	Data output hold from address change	3	-	ns
tOHH	OE# HIGH hold time	7.5	-	ns
tOHC	OE# HIGH to CE# HIGH	2	-	ns
tOE	OE# LOW to data valid	-	25	ns
tOLZ	OE# LOW to LOW-Z	0	-	ns
tWC	Write cycle time	30	-	ns
tCW	CE# LOW to write end	30	-	ns
tAW	Address valid to write end	30	-	ns
tAS	Address setup to write start	7	-	ns
tAH	Address hold time from CE# or WE#	2	-	ns
tWP	WE# pulse width	20	-	ns
tWPH	WE# HIGH time	10	-	ns
tCPH	CE# HIGH time	10	-	ns
tDS	Data setup to write end	7	-	ns
tDH	Data hold to write end	2	_	ns
tWHZ	Write to DQ HIGH-Z output	-	22.5	ns
tOEZ	OE# HIGH to DQ HIGH-Z output	-	22.5	ns
tOW	End of write to LOW-Z output	0	_	ns

Note

^{7.} All parameters guaranteed by design and validated through characterization.


ADMux Timing for Asynchronous Access

Note:

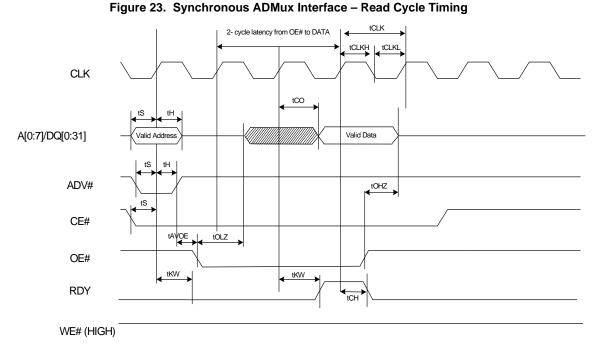
1. Multiple read cycles can be executed while keeping CE# low.

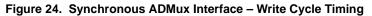
2. Read operation ends with either de-assertion of either OE# or CE#, whichever comes earlier.

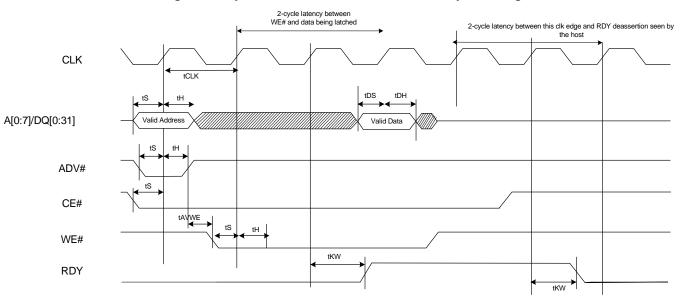
Note:

- 1. Multiple write cycles can be executed while keeping CE# low.
- 2. Write operation ends with de-assertion of either WE# or CE#, whichever comes earlier.

Table 14. Asynchronous ADMux Timing Parameters^[8]


Parameter	Description	Min	Max	Units	Notes			
	ADMux Asynchronous READ Access Timing Parameters							
tRC	Read cycle time (address valid to address valid)	54.5	_	ns	This parameter is dependent on when the P-port processors deasserts OE#			
tACC	Address valid to data valid	-	32	ns	-			
tCO	CE# assert to data valid	-	34.5	ns	-			
tAVOE	ADV# deassert to OE# assert	2	-	ns	-			
tOLZ	OE# assert to data LOW-Z	0	-	ns	-			
tOE	OE# assert to data valid	-	25	ns	-			
tHZ	Read cycle end to data HIGH-Z	-	22.5	ns	-			
	ADMux Asynchronous	VRITE Ac	cess Tim	ing Para	meters			
tWC	Write cycle time (Address Valid to Address Valid)	_	52.5	ns	-			
tAW	Address valid to write end	30	-	ns	-			
tCW	CE# assert to write end	30	-	ns	-			
tAVWE	ADV# deassert to WE# assert	2	-	ns	-			
tWP	WE# LOW pulse width	20	-	ns	-			
tWPH	WE# HIGH pulse width	10	-	ns	-			
tDS	Data valid setup to WE# deassert	18	-	ns	-			
tDH	Data valid hold from WE# deassert	2	_	ns	_			
	ADMux Asynchronous Common	READ/W	RITE Aco	cess Tim	ing Parameters			
tAVS	Address valid setup to ADV# deassert	5	-	ns	_			
tAVH	Address valid hold from ADV# deassert	2	-	ns	-			
tVP	ADV# LOW pulse width	7.5	-	ns	-			
tCPH	CE# HIGH pulse width	10	-	ns	-			
tVPH	ADV# HIGH pulse width	15	-	ns	-			
tCEAV	CE# assert to ADV# assert	0	-	ns	-			


Synchronous ADMux Timing



Note:

External P-Port processor and FX3 operate on the same clock edge
 External processor sees RDY assert 2 cycles after OE # asserts andand sees RDY deassert a cycle after the data appears on the output

Valid output data appears 2 cycle after OE # asserted. The data is held until OE # deasserts
 Two cycle latency is shown for 0-100 MHz operation. Latency can be reduced by 1 cycle for operations at less than 50 MHz (this 1 cycle latency is not supported by the bootloader)

Note:

1) External P-Port processor and FX3 operate on the same clock edge
 2) External processor sees RDY assert 2 cycles after WE # asserts and deassert 3 cycles after the edge sampling the data.
 3) Two cycle latency is shown for 0-100 MHz operation. Latency can be reduced by 1 cycle for operations at less than 50 MHz (this 1 cycle latency is not supported by the bootloader)

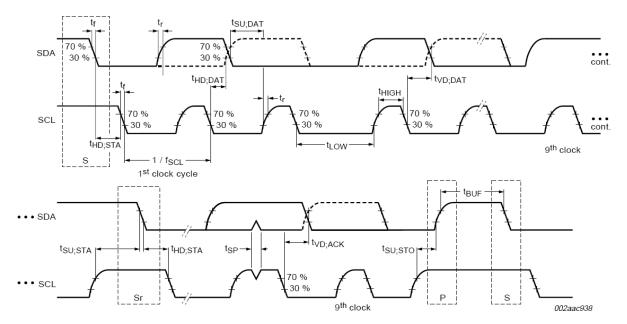
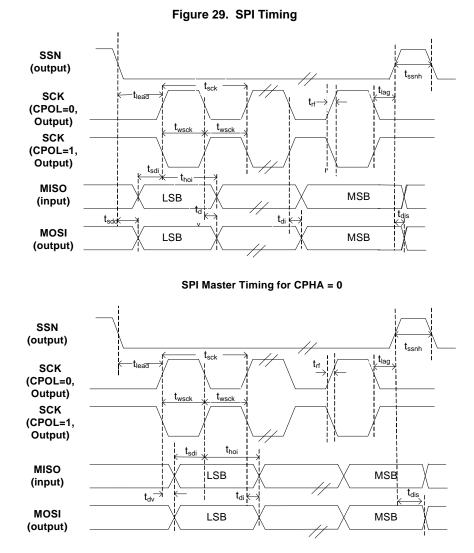

Parameter	Description	Min	Max	Unit
FREQ	Interface clock frequency	-	100	MHz
tCLK	Clock period	10	_	ns
tCLKH	Clock HIGH time	4	-	ns
tCLKL	Clock LOW time	4	-	ns
tS	CE#/WE#/DQ setup time	2	_	ns
tH	CE#/WE#/DQ hold time	0.5	-	ns
tCH	Clock to data output hold time	0	_	ns
tDS	Data input setup time	2	_	ns
tDH	Clock to data input hold	0.5	_	ns
tAVDOE	ADV# HIGH to OE# LOW	0	-	ns
tAVDWE	ADV# HIGH to WE# LOW	0	-	ns
tHZ	CE# HIGH to Data HIGH-Z	-	8	ns
tOHZ	OE# HIGH to Data HIGH-Z	-	8	ns
tOLZ	OE# LOW to Data LOW-Z	0	-	ns
tKW	Clock to RDY valid	-	8	ns

Table 15. Synchronous ADMux Timing Parameters^[9]

Serial Peripherals Timing

I²C Timing



Note9. All parameters guaranteed by design and validated through characterization.

SPI Timing Specification

SPI Master Timing for CPHA = 1

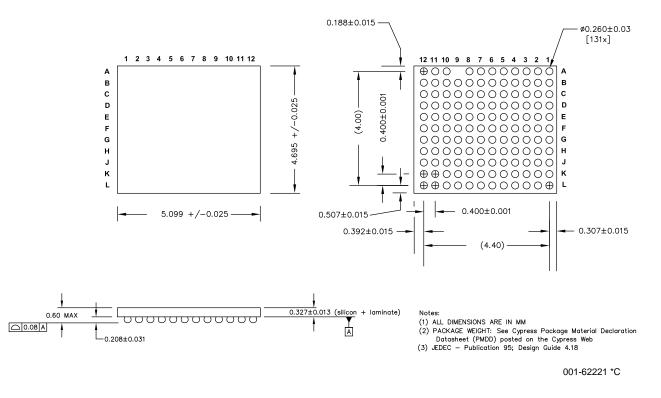


Figure 32. 131-ball WLCSP (5.099 × 4.695 × 0.60 mm) Package Diagram

Note Underfill is required on the board design. Contact fx3@cypress.com for details.

Trigger Conditions

This condition is triggered when FX3 is self-powered in USB boot mode.

■Scope Of Impact

Device does not enumerate

Workaround

Reset the device after connecting to USB host.

■Fix Status

No fix. Workaround is required.

3. Extra ZLP is generated by the COMMIT action in the GPIF II state.

■Problem Definition

When COMMIT action is used in a GPIF-II state without IN_DATA action then an extra Zero Length Packet (ZLP) is committed along with the data packets.

■Parameters Affected

N/A

■Trigger Conditions

This condition is triggered when COMMIT action is used in a state without IN_DATA action.

■Scope Of Impact

Extra ZLP is generated.

Workaround

Use IN_DATA action along with COMMIT action in the same state.

■Fix Status

No fix. Workaround is required.

4. Invalid PID Sequence in USB 2.0 ISOC data transfer.

Problem Definition

When the FX3 device is functioning as a high speed USB device with high bandwidth isochronous endpoints, the PID sequence of the ISO data packets is governed solely by the isomult setting. The length of the data packet is not considered while generating the PID sequence during each microframe. For example, even if a short packet is being sent on an endpoint with MULT set to 2; the PID used will be DATA2

■Parameters Affected

N/A

■Trigger Conditions

This condition is triggered when high bandwidth ISOC transfer endpoints are used.

Scope Of Impact

ISOC data transfers failure.

Workaround

This problem can be worked around by reconfiguring the endpoint with a lower isomult setting prior to sending short packets, and then switching back to the original value.

Fix Status

No fix. Workaround is required.

5. USB data transfer errors are seen when ZLP is followed by data packet within same microframe.

Problem Definition

Some data transfer errors may be seen if a Zero Length Packet is followed very quickly (within one microframe or 125 us) by another data packet on a burst enabled USB IN endpoint operating at super speed.

■Parameters Affected

N/A

■Trigger Conditions

This condition is triggered in SuperSpeed transfer with ZLPs

■Scope Of Impact

Data failure and lower data speed.

■Workaround

The solution is to ensure that some time is allowed to elapse between a ZLP and the next data packet on burst enabled USB IN endpoints. If this cannot be ensured at the data source, the CyU3PDmaChannelSetSuspend() API can be used to suspend the

Document History Page (continued)

Revision	ECN	Orig. of Change	Submission Date	Description of Change
*0	4368374	RSKV	05/02/2014	Updated Package Diagram: spec 001-62221 – Changed revision from *B to *C. Updated to new template. Completing Sunset Review.
*P	4474200	ANOP	08/14/2014	Added CYUSB201x MPNs, ball map, and pin list to the datasheet.
*Q	4668496	DBIR	02/24/2015	Updated Features. Updated Logic Block Diagram. Updated Functional Description: Added "For a complete list of related documentation, click here." at the end Added More Information. Updated Functional Overview: Updated Application Examples: Updated Figure 1. Updated Figure 2. Updated description. Removed Figure "USB Interface Signals". Updated Pin Configurations: Updated Figure 6. Updated Reset: Updated Hard Reset: Updated Hard Reset: Updated description. Updated Pin Description. Updated Table 7: Updated Table 7: Updated atble 7: Updated entire table. Modified CVDDQ power domain description. Removed Table "CYUSB2014 Pin List (GPIF II with 32-bit Data Bus Width)" Updated Electrical Specifications: Updated Sparameter and its details. Updated Siave FIFO Interface: Updated Siave FIFO Interface: Updated Figure 12. Updated Figure 13. Updated Table 11. Updated AC Timing Parameters: Added Horst Processor Interface (P-Port) Timing. Updated Acronyms. Added Errata. Replaced West Bridge Benicia with FX3.
*R	4703347	AMDK	03/27/2015	Updated Slave FIFO Interface: Updated Synchronous Slave FIFO Read Sequence Description: Updated Figure 12. Updated Synchronous Slave FIFO Write Sequence Description: Updated Figure 13. Updated Table 11: Updated minimum value of tSSD parameter. Added tACCD, tFAD parameters and their details.
*S	5160624	AJAI	04/07/2016	Removed ISS parameter. Added item 6 in Errata.

Document History Page (continued)

Document Title: CYUSB301X/CYUSB201X, EZ-USB [®] FX3: SuperSpeed USB Controller Document Number: 001-52136							
Revision	ECN	Orig. of Change	Submission Date	Description of Change			
*Т	5306567	MDDD	06/29/2016	Updated AC Timing Parameters: Updated GPIF II Timing: Updated Table 9: Changed maximum value of t _{CO} parameter from 8 ns to 7 ns. Updated Slave FIFO Interface: Updated Synchronous Slave FIFO Write Sequence Description: Updated Table 11: Changed maximum value of t _{CO} parameter from 8 ns to 7 ns. Updated to new template.			
*U	5703914	GNKK	04/20/2017	Updated the Cypress logo and copyright information.			