

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application charific microcontrollars are analyzared to

Details

E·XFI

2 0 0 0 0 0	
Product Status	Active
Applications	SuperSpeed USB Peripheral Controller
Core Processor	ARM9®
Program Memory Type	External Program Memory
Controller Series	CYUSB
RAM Size	512K x 8
Interface	I ² C, I ² S, MMC/SD, SPI, UART, USB
Number of I/O	59
Voltage - Supply	1.15V ~ 1.25V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-FBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cyusb2014-bzxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right <product> device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article KBA87889, How to design with FX3/FX3S.

- Overview: USB Portfolio, USB Roadmap
- USB 3.0 Product Selectors: FX3, FX3S, CX3, HX3, West Bridge Benicia
- Application notes: Cypress offers a large number of USB application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with FX3 are:
 - □ AN75705 Getting Started with EZ-USB FX3
 - □ AN76405 EZ-USB FX3 Boot Options
 - AN70707 EZ-USB FX3/FX3S Hardware Design Guidelines and Schematic Checklist
 - AN65974 Designing with the EZ-USB FX3 Slave FIFO Interface
 - AN75779 How to Implement an Image Sensor Interface with EZ-USB FX3 in a USB Video Class (UVC) Framework
 - AN86947 Optimizing USB 3.0 Throughput with EZ-USB FX3
 - AN84868 Configuring an FPGA over USB Using Cypress EZ-USB FX3
 - AN68829 Slave FIFO Interface for EZ-USB FX3: 5-Bit Address Mode

EZ-USB FX3 Software Development Kit

- AN73609 EZ-USB FX2LP/ FX3 Developing Bulk-Loop Example on Linux
- AN77960 Introduction to EZ-USB FX3 High-Speed USB Host Controller
- AN76348 Differences in Implementation of EZ-USB FX2LP and EZ-USB FX3 Applications
- □ AN89661 USB RAID 1 Disk Design Using EZ-USB FX3S
- Code Examples: < Modify as required >
 - USB Hi-Speed
 - USB Full-Speed
 - USB SuperSpeed
- Technical Reference Manual (TRM):
 EZ-USB FX3 Technical Reference Manual
- Development Kits:
 CYUSB3KIT-003, EZ-USB FX3 SuperSpeed Explorer Kit
 CYUSB3KIT-001, EZ-USB FX3 Development Kit
- Models: IBIS

Cypress delivers the complete software and firmware stack for FX3, in order to easily integrate SuperSpeed USB into any embedded application. The Software Development Kit (SDK) comes with tools, drivers and application examples, which help accelerate application development.

GPIF™ II Designer

The GPIF II Designer is a graphical software that allows designers to configure the GPIF II interface of the EZ-USB FX3 USB 3.0 Device Controller.

The tool allows users the ability to select from one of five Cypress supplied interfaces, or choose to create their own GPIF II interface from scratch. Cypress has supplied industry standard interfaces such as Asynchronous and Synchronous Slave FIFO, Asynchronous and Synchronous SRAM, and Asynchronous SRAM. Designers who already have one of these pre-defined interfaces in their system can simply select the interface of choice, choose from a set of standard parameters such as bus width (x8, 16, x32) endianess, clock settings, and compile the interface. The tool has a streamlined three step GPIF interface development process for users who need a customized interface. Users are able to first select their pin configuration and standard parameters. Secondly, they can design a virtual state machine using configurable actions. Finally, users can view output timing to verify that it matches the expected timing. Once the three step process is complete, the interface can be compiled and integrated with FX3.

GPIF II

The high-performance GPIF II interface enables functionality similar to, but more advanced than, FX2LP's GPIF and Slave FIFO interfaces.

The GPIF II is a programmable state machine that enables a flexible interface that may function either as a master or slave in industry-standard or proprietary interfaces. Both parallel and serial interfaces may be implemented with GPIF II.

Here is a list of GPIF II features:

- Functions as master or slave
- Provides 256 firmware programmable states
- Supports 8-bit, 16-bit, 24-bit, and 32-bit parallel data bus
- Enables interface frequencies up to 100 MHz
- Supports 14 configurable control pins when a 32- bit data bus is used. All control pins can be either input/output or bidirectional.
- Supports 16 configurable control pins when a 16/8 data bus is used. All control pins can be either input/output or bi-directional.

GPIF II state transitions are based on control input signals. The control output signals are driven as a result of the GPIF II state transitions. The INT# output signal can be controlled by GPIF II. Refer to the GPIFII Designer tool. The GPIF II state machine's behavior is defined by a GPIF II descriptor. The GPIF II descriptor is designed such that the required interface specifications are met. 8 KB of memory (separate from the 256/512 KB of embedded SRAM) is dedicated to the GPIF II waveform where the GPIF II descriptor is stored in a specific format.

Cypress's GPIFII Designer Tool enables fast development of GPIF II descriptors and includes examples for common interfaces.

Example implementations of GPIF II are the asynchronous slave FIFO and synchronous slave FIFO interfaces.

Slave FIFO interface

The Slave FIFO interface signals are shown in Figure 5. This interface allows an external processor to directly access up to four buffers internal to FX3. Further details of the Slave FIFO interface are described on page 24.

Note Access to all 32 buffers is also supported over the slave FIFO interface. For details, contact Cypress Applications Support.

Figure 5. Slave FIFO Interface

Note: Multiple Flags may be configured.

CPU

FX3 has an on-chip 32-bit, 200-MHz ARM926EJ-S core CPU. The core has direct access to 16 KB of Instruction Tightly Coupled Memory (TCM) and 8 KB of Data TCM. The ARM926EJ-S core provides a JTAG interface for firmware debugging.

FX3 offers the following advantages:

- Integrates 256/512 KB of embedded SRAM for code and data and 8 KB of Instruction cache and Data cache.
- Implements efficient and flexible DMA connectivity between the various peripherals (such as, USB, GPIF II, I²S, SPI, UART, I²C), requiring firmware only to configure data accesses between peripherals, which are then managed by the DMA fabric.
- Allows easy application development using industry-standard development tools for ARM926EJ-S.

Examples of the FX3 firmware are available with the Cypress EZ-USB FX3 Development Kit.

JTAG Interface

FX3's JTAG interface has a standard five-pin interface to connect to a JTAG debugger in order to debug firmware through the CPU-core's on-chip-debug circuitry.

Industry-standard debugging tools for the ARM926EJ-S core can be used for the FX3 application development.

Other Interfaces

FX3 supports the following serial peripherals:

- SPI
- UART
- ∎ I²C
- I²S

The SPI, UART, and I²S interfaces are multiplexed on the serial peripheral port.

The CYUSB3012 and CYUSB3014 Pin List on page 15 shows details of how these interfaces are multiplexed. Note that when GPIF II is configured for a 32-bit data bus width (CYUSB3012 and CYUSB3014), then the SPI interface is not available.

SPI Interface

FX3 supports an SPI Master interface on the Serial Peripherals port. The maximum operation frequency is 33 MHz.

The SPI controller supports four modes of SPI communication (see SPI Timing Specification on page 40 for details on the modes) with the Start-Stop clock. This controller is a single-master controller with a single automated SSN control. It supports transaction sizes ranging from four bits to 32 bits.

Clocking

FX3 allows either a crystal to be connected between the XTALIN and XTALOUT pins or an external clock to be connected at the CLKIN pin. The XTALIN, XTALOUT, CLKIN, and CLKIN_32 pins can be left unconnected if they are not used.

Crystal frequency supported is 19.2 MHz, while the external clock frequencies supported are 19.2, 26, 38.4, and 52 MHz.

FX3 has an on-chip oscillator circuit that uses an external 19.2-MHz (±100 ppm) crystal (when the crystal option is used). An appropriate load capacitance is required with a crystal. Refer to the specification of the crystal used to determine the appropriate load capacitance. The FSLC[2:0] pins must be configured appropriately to select the crystal- or clock-frequency option. The configuration options are shown in Table 3.

Clock inputs to FX3 must meet the phase noise and jitter requirements specified in Table 4 on page 10.

The input clock frequency is independent of the clock and data rate of the FX3 core or any of the device interfaces. The internal PLL applies the appropriate clock multiply option depending on the input frequency.

Table 3. Crystal/Clock Frequency Selection

FSLC[2]	FSLC[1]	FSLC[0]	Crystal/Clock Frequency
0	0	0	19.2-MHz crystal
1	0	0	19.2-MHz input CLK
1	0	1	26-MHz input CLK
1	1	0	38.4-MHz input CLK
1	1	1	52-MHz input CLK

Table 4. FX3 Input Clock Specifications

Baramotor	Description	Specific	cation	Units		
Farameter	Description	Min	Max	Units		
	100-Hz offset	-	-75			
	1-kHz offset	_	-104			
Phase noise	10-kHz offset	—	-120	dB		
	100-kHz offset	—	-128			
	1-MHz offset	_	-130			
Maximum frequency deviation	-	_	150	ppm		
Duty cycle	-	30	70			
Overshoot	-	_	3	%		
Undershoot	-	_	-3			
Rise time/fall time	_	_	3	ns		

32-kHz Watchdog Timer Clock Input

FX3 includes a watchdog timer. The watchdog timer can be used to interrupt the ARM926EJ-S core, automatically wake up the FX3 in Standby mode, and reset the ARM926EJ-S core. The watchdog timer runs a 32-kHz clock, which may be optionally supplied from an external source on a dedicated FX3 pin.

The firmware can disable the watchdog timer. Requirements for the optional 32-kHz clock input are listed in Table 5.

Table 5. 32-kHz Clock Input Requirements

Parameter	Min	Max	Units
Duty cycle	40	60	%
Frequency deviation	_	±200	ppm
Rise time/fall time	-	200	ns

Pin Configurations

							1 1 1	,			
	1	2	3	4	5	6	7	8	9	10	11
А	U3VSSQ	U3RXVDDQ	SSRXM	SSRXP	SSTXP	SSTXM	AVDD	VSS	DP	DM	NC
В	VIO4	FSLC[0]	R_USB3	FSLC[1]	U3TXVDDQ	CVDDQ	AVSS	VSS	VSS	VDD	TRST#
С	GPIO[54]	GPIO[55]	VDD	GPIO[57]	RESET#	XTALIN	XTALOUT	R_USB2	OTG_ID	TDO	VIO5
D	GPIO[50]	GPIQ[51]	GPIO[52]	GPIO[53]	GPIO[56]	CLKIN_32	CLKIN	VSS	12C_GPIO[58]	12C_GPIQ[59]	O [60]
Е	GPIO[47]	VSS	VIO3	GPIO[49]	GPIO[48]	FSLC[2]	TDI	TMS	VDD	VBATT	VBUS
F	VIO2	GPIO[45]	GPIQ[44]	GPIO[41]	GPIO[46]	TCK	GPIO[2]	GPIO[5]	GPIQ[1]	GPIQ[0]	VDD
G	VSS	GPIO[42]	GPIQ[43]	GPIO[30]	GPIO[25]	GPIO[22]	GPIO[21]	GPIO[15]	GPIO[4]	GPIO[3]	VSS
Н	VDD	GPIO[39]	GPIQ[40]	GPIO[31]	GPIO[29]	GPIO[26]	GPIO[20]	GPIO[24]	GPIO[7]	GPIO[6]	VIO1
J	GPIO[38]	GPIO[36]	GPIO[37]	GPIO[34]	GPIO[28]	GPIO[16]	GPIO[19]	GPIO[14]	GPIO[9]	GPIO[8]	VDD
К	GPIO[35]	GPIO[33]	VSS	VSS	GPIO[27]	GPIO[23]	GPIO[18]	GPIQ[17]	GPIO[13]	GPIO[12]	GPIO[10]
L	VSS	VSS	VSS	GPIQ[32]	VDD	VSS	VDD	INT#	VIO1	GPIQ[11]	VSS

Figure 6. FX3 121-ball BGA Ball Map (Top View)

Figure 7. FX3 131-Ball WLCSP Ball Map (Bottom View)

	12	11	10	9	8	7	6	5	4	3	2	1
А	VSS	VSS	SSRXM		SSTXM	FSLC[0]	AVSS	AVDD	DP	VSS	DM	VDD
В	GPIO[55]	VIO4	SSRXP	R_USB3	SSTXP	FSLC[2]	XTALIN	XTALOUT	NC	R_USB2	NC	VDD
С	GPIO[56]	VIO3	U3RXVDDQ	U3VSSQ	U3TXVDDQ	CVDDQ	CLKIN_32	CLKIN	VSS	OTG_ID	TDO	TRST#
D	GPIO[49]	GPIO[50]	GPIO[53]	GPIO[54]	RESET#	VDD	12C_GPIO[58]	TMS	VIO5	ТСК	12C_GPIO[59]	VSS
Е	GPIO[57]	GPIO[48]	GPIO[51]	GPIO[52]	O[60]	VSS	VSS	VSS	VSS	GPIO[3]	VBATT	VBUS
F	VSS	GPIO[46]	GPIO[47]	FSLC[1]	TDI	VDD	VDD	VDD	VDD	GPIO[4]	GPIO[1]	GPIO[0]
G	VIO2	GPIO[43]	GPIO[44]	GPIO[45]	VSS	VSS	VDD	VSS	GPIO[9]	GPIO[7]	GPIO[6]	GPIO[2]
н	VSS	GPIO[40]	GPIO[41]	GPIO[42]	GPIO[39]	VSS	GPIO[20]	GPIO[18]	GPIO[14]	GPIO[12]	GPIO[8]	VIO1
J	VIO2	GPIO[38]	GPIO[37]	GPIO[36]	GPIO[31]	GPIO[27]	GPIO[25]	GPIO[22]	GPIO[19]	GPIO[15]	GPIO[10]	GPIO[5]
К	GPIO[35]	GPIO[34]	GPIO[33]	GPIO[32]	GPIO[28]	GPIO[26]	GPIO[16]	GPIO[21]	INT#	GPIO[24]	GPIO[11]	VSS
L	VDD	VSS	VDD	GPIO[30]	GPIO[29]	VIO1	GPIO[23]	VSS	VIO1	GPIO[17]	GPIO[13]	VSS

Note No ball is populated at location A9.

Figure 8. FX3 Hi-Speed 121-Ball BGA Ball Map (Top View)

			r			1				1	
	1	2	3	4	5	6	7	8	9	10	11
А	U3VSSQ	VDD	NC	NC	NC	NC	AVDD	VSS	DP	DM	NC
В	VIO4	FSLC[0]	NC	FSLC[1]	VDD	CVDDQ	AVSS	VSS	VSS	VDD	TRST#
С	GPIO[54]	GPIO[55]	VDD	GPIO[57]	RESET#	XTALIN	XTALOUT	R_USB2	OTG_ID	TDO	VIO5
D	GPIO[50]	GPIO[51]	GPIO[52]	GPIO[53]	GPIO[56]	CLKIN_32	CLKIN	VSS	I2C_GPIO[58]	I2C_GPIO[59]	O[60]
E	GPIO[47]	VSS	VIO3	GPIO[49]	GPIO[48]	FSLC[2]	TDI	TMS	VDD	VBATT	VBUS
F	VIO2	GPIO[45]	GPIO[44]	GPIO[41]	GPIO[46]	TCK	GPIO[2]	GPIO[5]	GPIO[1]	GPIO[0]	VDD
G	VSS	GPIO[42]	GPIO[43]	GPIO[30]	GPIO[25]	GPIO[22]	GPIO[21]	GPIO[15]	GPIO[4]	GPIO[3]	VSS
Н	VDD	GPIO[39]	GPIO[40]	GPIO[31]	GPIO[29]	GPIO[26]	GPIO[20]	GPIO[24]	GPIO[7]	GPIO[6]	VIO1
J	GPIO[38]	GPIO[36]	GPIO[37]	GPIO[34]	GPIO[28]	GPIO[16]	GPIO[19]	GPIO[14]	GPIO[9]	GPIO[8]	VDD
К	GPIO[35]	GPIO[33]	VSS	VSS	GPIO[27]	GPIO[23]	GPIO[18]	GPIO[17]	GPIO[13]	GPIO[12]	GPIO[10]
L	VSS	VSS	VSS	GPIO[32]	VDD	VSS	VDD	INT#	VIO1	GPIO[11]	VSS

Table 7. CYUSB3012 and CYUSB3014 Pin List (continued)

BGA	WLCSP	Power Domain	I/O	Name	Description					
J1	J11	VIO2	I/O	GPIO[38]	DQ[21]	GPIO	GPIO	GPIO	GPIO	GPIO
H2	H8	VIO2	I/O	GPIO[39]	DQ[22]	GPIO	GPIO	GPIO	GPIO	GPIO
H3	H11	VIO2	I/O	GPIO[40]	DQ[23]	GPIO	GPIO	GPIO	GPIO	GPIO
F4	H10	VIO2	I/O	GPIO[41]	DQ[24]	GPIO	GPIO	GPIO	GPIO	GPIO
G2	H9	VIO2	I/O	GPIO[42]	DQ[25]	GPIO	GPIO	GPIO	GPIO	GPIO
G3	G11	VIO2	I/O	GPIO[43]	DQ[26]	GPIO	GPIO	GPIO	GPIO	GPIO
F3	G10	VIO2	I/O	GPIO[44]	DQ[27]	GPIO	GPIO	GPIO	GPIO	GPIO
F2	G09	VIO2	I/O	GPIO[45]	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO
F5	F11	VIO3	I/O	GPIO[46]	DQ[28]	UART_RT S	GPIO	GPIO	GPIO	GPIO
E1	F10	VIO3	I/O	GPIO[47]	DQ[29]	UART_CT S	GPIO	GPIO	GPIO	GPIO
E5	E11	VIO3	I/O	GPIO[48]	DQ[30]	UART_TX	GPIO	GPIO	GPIO	GPIO
E4	D12	VIO3	I/O	GPIO[49]	DQ[31]	UART_R X	GPIO	GPIO	GPIO	GPIO
D1	D11	VIO3	I/O	GPIO[50]	I2S_CLK	I2S_CLK	GPIO	GPIO	GPIO	GPIO
D2	E10	VIO3	I/O	GPIO[51]	I2S_SD	I2S_SD	GPIO	GPIO	GPIO	GPIO
D3	E9	VIO3	I/O	GPIO[52]	I2S_WS	I2S_WS	GPIO	GPIO	GPIO	GPIO
D4	D10	VIO4	I/O	GPIO[53]	UART_RTS	SPI_SCK	UART_RTS	SPI_SCK	GPIO	GPIO
C1	D9	VIO4	I/O	GPIO[54]	UART_CTS	SPI_SSN UART_CTS		SPI_SSN	I2S_CLK	GPIO
C2	B12	VIO4	I/O	GPIO[55]	UART_TX	SPI_MIS O UART_TX		SPI_MISO	I2S_SD	GPIO
D5	C12	VIO4	I/O	GPIO[56]	UART_RX	SPI_MOS I	UART_RX	SPI_MOSI	I2S_WS	GPIO
C4	E12	VIO4	I/O	GPIO[57]	I2S_MCLK	I2S_MCL K	GPIO	GPIO	I2S_MCL K	GPIO
							USB Port			
				1	CYUSB301X CYUSB201X					
A3	A10	U3RXVD DQ	-	SSRXM		SSRX-			NC	
A4	B10	U3RXVD DQ	I	SSRXP		SSRX+			NC	
A6	A8	U3TXVD DQ	0	SSTXM		SSTX-			NC	
A5	B8	U3TXVD DQ	0	SSTXP		SSTX+			NC	
B3	B9	U3TXVD DQ	I/O	R_usb3	Precision resistent ±1% resistent	stor for USB 3.0 (Cor or between this pin a	nnect a 200 and GND)		NC	
C9	C3	VBUS/ VBATT	Ι	OTG_ID			OTG_ID			
A9	A4	VBUS/V BATT	I/O	DP			D+			
A10	A2	VBUS/V BATT	I/O	DM			D-			
C8	B3	VBUS/VBAT T	I/O	R_usb2	Precision resis	tor for USB 2.0 (Cor	nnect a 6.04 k ±1	% resistor be	tween this pin a	and GND)
							Clock and Res	et		
B2	A7	CVDDQ	Ι	FSLC[0]			FSLC[0]			
C6	B6	AVDD	I/O	XTALIN			XTALIN			
C7	B5	AVDD	I/O	XTALOUT			XTALOUT			
B4	F9	CVDDQ	I	FSLC[1]			FSLC[1]			
E6	B7	CVDDQ	Ι	FSLC[2]			FSLC[2]			
D7	C5	CVDDQ	Ι	CLKIN			CLKIN			

BGA	WLCSP	Power Domain	I/O	Name	Description
D6	C6	CVDDQ	I	CLKIN_32	CLKIN_32
C5	D8	CVDDQ	I	RESET#	RESET#
	•			•	I2C and JTAG
D9	D6	VIO5	I/O	I2C_GPIO[58]	I ² C_SCL
D10	D2	VIO5	I/O	I2C_GPIO[59]	I ² C_SDA
E7	F8	VIO5	I	TDI	TDI
C10	C2	VIO5	0	TDO	TDO
B11	C1	VIO5	I	TRST#	TRST#
E8	D5	VIO5	I	TMS	TMS
F6	D3	VIO5	I	TCK	ТСК
D11	E8	VIO5	0	O[60]	Charger detect output
	•			•	Power
E10	E2	_	PWR	VBATT	_
B10	B1	_	PWR	VDD	_
_	A1	-	PWR	VDD	_
A1	C9	-	PWR	U3VSSQ	_
E11	E1	-	PWR	VBUS	_
D8	C4	-	PWR	VSS	_
H11	H1	-	PWR	VIO1	_
E2	K1	_	PWR	VSS	_
L9	L4	_	PWR	VIO1	_
G1	L5	_	PWR	VSS	_
_	L7	-	PWR	VIO1	_
_	L1	_	PWR	VSS	_
F1	J12	_	PWR	VIO2	_
G11	H12	_	PWR	VSS	_
	G12	-	PWR	VIO2	_
E3	C11	-	PWR	VIO3	_
L1	F12	-	PWR	VSS	_
B1	B11	_	PWR	VIO4	_
L6	A11	-	PWR	VSS	_
-	A12	-	PWR	VSS	_
B6	C7	-	PWR	CVDDQ	_
B5	C8	-	PWR	U3TXVDDQ	_
A2	C10	-	PWR	U3RXVDDQ	_
C11	D4	-	PWR	VIO5	_
L11	A3	_	PWR	VSS	_
A7	A5	_	PWR	AVDD	_
B7	A6	_	PWR	AVSS	_
C3	F4	_	PWR	VDD	_
B8	D1	_	PWR	VSS	_
E9	F5	_	PWR	VDD	_

Table 7. CYUSB3012 and CYUSB3014 Pin List (continued)

Figure 10. GPIF II Timing in Asynchronous Mode

Synchronous Slave FIFO Write Sequence Description

- FIFO address is stable and the signal SLCS# is asserted
- External master or peripheral outputs the data to the data bus
- SLWR# is asserted
- While the SLWR# is asserted, data is written to the FIFO and on the rising edge of the PCLK, the FIFO pointer is incremented
- The FIFO flag is updated after a delay of t_{WFLG} from the rising edge of the clock

The same sequence of events is also applicable for burst write

Note For the burst mode, SLWR# and SLCS# are asserted for the entire duration, during which all the required data values are written. In this burst write mode, after the SLWR# is asserted, the data on the FIFO data bus is written to the FIFO on every rising edge of PCLK. The FIFO pointer is updated on each rising edge of PCLK.

Short Packet: A short packet can be committed to the USB host by using the PKTEND#. The external device or processor should be designed to assert the PKTEND# along with the last word of data and SLWR# pulse corresponding to the last word. The FIFOADDR lines must be held constant during the PKTEND# assertion.

Zero-Length Packet: The external device or processor can signal a Zero-Length Packet (ZLP) to FX3 simply by asserting PKTEND#, without asserting SLWR#. SLCS# and address must be driven as shown in Figure 13.

Figure 13. Synchronous Slave FIFO Write Mode

Figure 14. Synchronous Slave FIFO ZLP Write Cycle Timing

Table 11. Synchronous Slave FIFO Parameters^[5]

Parameter	Description	Min	Max	Units
FREQ	Interface clock frequency	-	100	MHz
tCYC	Clock period	10	-	ns
tCH	Clock high time	4	-	ns
tCL	Clock low time	4	_	ns
tRDS	SLRD# to CLK setup time	2	-	ns
tRDH	SLRD# to CLK hold time	0.5	_	ns
tWRS	SLWR# to CLK setup time	2	_	ns
tWRH	SLWR# to CLK hold time	0.5	_	ns
tCO	Clock to valid data	-	7	ns
tDS	Data input setup time	2	-	ns
tDH	CLK to data input hold	0.5	-	ns
tAS	Address to CLK setup time	2	-	ns
tAH	CLK to address hold time	0.5	-	ns
tOELZ	SLOE# to data low-Z	0	-	ns
tCFLG	CLK to flag output propagation delay	-	8	ns
tOEZ	SLOE# deassert to Data Hi Z	-	8	ns
tPES	PKTEND# to CLK setup	2	-	ns
tPEH	CLK to PKTEND# hold	0.5	-	ns
tCDH	CLK to data output hold	2	-	ns
tSSD	Socket switching delay	2	68	Clock cycles
tACCD	Latency from SLRD# to Data	2	2	Clock cycles
tFAD	Latency from SLWR# to FLAG	3	3	Clock cycles
Note Three-cv	cle latency from ADDR to DATA/FLAGS.			

Note

5. All parameters guaranteed by design and validated through characterization.

Host Processor Interface (P-Port) Timing

Asynchronous SRAM Timing

Figure 18. Non-multiplexed Asynchronous SRAM Read Timing

Figure 19. Non-multiplexed Asynchronous SRAM Write Timing (WE# and CE# Controlled)

Write Cycle 1 WE# Controlled, OE# High During Write

Table 14. Asynchronous ADMux Timing Parameters^[8]

Parameter	Description	Min	Max	Units	Notes					
	ADMux Asynchronous F	READ Acc	ess Tim	ing Para	meters					
tRC	Read cycle time (address valid to address valid)	54.5	-	ns	This parameter is dependent on when the P-port processors deasserts OE#					
tACC	Address valid to data valid	_	32	ns	_					
tCO	CE# assert to data valid	_	34.5	ns	_					
tAVOE	ADV# deassert to OE# assert	2	-	ns	-					
tOLZ	OE# assert to data LOW-Z	0	_	ns	_					
tOE	OE# assert to data valid	-	25	ns	_					
tHZ	Read cycle end to data HIGH-Z	-	22.5	ns	_					
ADMux Asynchronous WRITE Access Timing Parameters										
tWC	Write cycle time (Address Valid to Address Valid)	-	52.5	ns	_					
tAW	Address valid to write end	30	-	ns	_					
tCW	CE# assert to write end	30	_	ns	_					
tAVWE	ADV# deassert to WE# assert	2	-	ns	-					
tWP	WE# LOW pulse width	20	_	ns	_					
tWPH	WE# HIGH pulse width	10	_	ns	-					
tDS	Data valid setup to WE# deassert	18	-	ns	-					
tDH	Data valid hold from WE# deassert	2	-	ns	-					
	ADMux Asynchronous Common	READ/W	RITE Aco	cess Tim	ing Parameters					
tAVS	Address valid setup to ADV# deassert	5	-	ns	-					
tAVH	Address valid hold from ADV# deassert	2	_	ns	_					
tVP	ADV# LOW pulse width	7.5	-	ns	-					
tCPH	CE# HIGH pulse width	10	_	ns	_					
tVPH	ADV# HIGH pulse width	15	_	ns	_					
tCEAV	CE# assert to ADV# assert	0	_	ns	_					

Parameter	Description	Min	Max	Unit
FREQ	Interface clock frequency	-	100	MHz
tCLK	Clock period	10	_	ns
tCLKH	Clock HIGH time	4	-	ns
tCLKL	Clock LOW time	4	-	ns
tS	CE#/WE#/DQ setup time	2	-	ns
tH	CE#/WE#/DQ hold time	0.5	-	ns
tCH	Clock to data output hold time	0	-	ns
tDS	Data input setup time	2	-	ns
tDH	Clock to data input hold	0.5	-	ns
tAVDOE	ADV# HIGH to OE# LOW	0	-	ns
tAVDWE	ADV# HIGH to WE# LOW	0	_	ns
tHZ	CE# HIGH to Data HIGH-Z	_	8	ns
tOHZ	OE# HIGH to Data HIGH-Z	_	8	ns
tOLZ	OE# LOW to Data LOW-Z	0	_	ns
tKW	Clock to RDY valid	-	8	ns

Table 15. Synchronous ADMux Timing Parameters^[9]

Serial Peripherals Timing

I²C Timing

Note9. All parameters guaranteed by design and validated through characterization.

Table 16. I²C Timing Parameters^[10] (continued)

Parameter	Description	Min	Max	Units		
I ² C Fast Mode Plus Parameters (Not supported at I2C_VDDQ=1.2 V)						
fSCL	SCL clock frequency	0	1000	kHz		
tHD:STA	Hold time START condition	0.26	-	μs		
tLOW	LOW period of the SCL	0.5	-	μs		
tHIGH	HIGH period of the SCL	0.26	-	μs		
tSU:STA	Setup time for a repeated START condition	0.26	_	μs		
tHD:DAT	Data hold time	0	-	μs		
tSU:DAT	Data setup time	50	-	ns		
tr	Rise time of both SDA and SCL signals	-	120	ns		
tf	Fall time of both SDA and SCL signals	-	120	ns		
tSU:STO	Setup time for STOP condition	0.26	-	μs		
tBUF	Bus-free time between a STOP and START condition	0.5	-	μs		
tVD:DAT	Data valid time	-	0.45	μs		
tVD:ACK	Data valid ACK	-	0.55	μs		
tSP	Pulse width of spikes that must be suppressed by input filter	0	50	ns		

I²S Timing Diagram

Figure 28. I²S Transmit Cycle

Table 17. I²S Timing Parameters^[11]

Parameter	Description	Min	Max	Units	
tT	I ² S transmitter clock cycle	Ttr	-	ns	
tTL	I ² S transmitter cycle LOW period	0.35 Ttr	_	ns	
tTH	I ² S transmitter cycle HIGH period	0.35 Ttr	_	ns	
tTR	I ² S transmitter rise time	_	0.15 Ttr	ns	
tTF	I ² S transmitter fall time	_	0.15 Ttr	ns	
tThd	I ² S transmitter data hold time	0	_	ns	
tTd	I ² S transmitter delay time	-	0.8tT	ns	
Note tT is selectable through clock gears. Max Ttr is designed for 96-kHz codec at 32 bits to be 326 ns (3.072 MHz).					

Note

^{11.} All parameters guaranteed by design and validated through characterization.

Ordering Information

Table 20. Ordering Information

Ordering Code	USB	SRAM (kB)	GPIF II Data Bus Width	Operating Temperature	Package Type
CYUSB3011-BZXC	USB 3.0	256	16-bit	0 °C to +70 °C	121-ball BGA
CYUSB3012-BZXC	USB 3.0	256	32-bit	0 °C to +70 °C	121-ball BGA
CYUSB3013-BZXC	USB 3.0	512	16-bit	0 °C to +70 °C	121-ball BGA
CYUSB3014-BZXC	USB 3.0	512	32-bit	0 °C to +70 °C	121-ball BGA
CYUSB3014-BZXI	USB 3.0	512	32-bit	-40°C to +85°C	121-ball BGA
CYUSB3014-FBXCT	USB 3.0	512	32-bit	0 °C to +70 °C	131-ball WLCSP
CYUSB3014-FBXIT	USB 3.0	512	32-bit	–40 °C to +85 °C	131-ball WLCSP
CYUSB2014-BZXC	USB 2.0	512	32-bit	0 °C to +70 °C	121-ball BGA
CYUSB2014-BZXI	USB 2.0	512	32-bit	–40 °C to +85 °C	121-ball BGA

Ordering Code Definitions

Document History Page

Document Title: CYUSB301X/CYUSB201X, EZ-USB [®] FX3: SuperSpeed USB Controller Document Number: 001-52136					
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
**	2669761	VSO / PYRS	03/06/2009	New data sheet	
*A	2758370	VSO	09/01/2009	Updated the part# from CYX01XXBB to CYUSB3011-BZXI Changed the title from "ADVANCE" to "ADVANCE INFORMATION" In page 1, the second bullet (Flexible Host Interface), add "32-bit, 100 MHz" to first sub bullet. In page 1, changed the second bullet "Flexible Host Interface" to General Programmable Interface". In page 1, the second bullet (Flexible Host Interface), removed "DMA Slave Support" and "MMC Slave support with Pass through Boot" sub bullets. In page 1, third bullet, changed "50 µA with Core Power" to "60 µA with Core Power" In page 1, fifth bullet, added "at 1 MHz" In page 1, seventh bullet, added "up to 4MHz" to UART In page 1, seventh bullet, added "up to 4MHz" to UART In page 1, Applications Section, move "Digital Still Cameras" to second line. In page 1, Applications Section, added "Machine Vision" and Industrial Cameras" Added ™ to GPIF and FX3. In page 2, section of "Functional Overview", updated the whole section. In page 2, removed the section of "Product Interface" In page 2, removed the section of "USB Interface (U-Port)" In page 2, removed the section of "GPIF II" In page 2, added a section of "GPIF II" In page 2, added a section of "Boot Options" In page 2, added a section of "Boot Options" In page 2, added a section of "ReNumeration" In page 2, added a section of "ReNumeration" In page 2, added a section of "Power" In page 2, added a section of "Power" In page 2, added a section of "Power" In the section of "Package", replaced "West Bridge USB 3.0 Platform" by FX3. In the section of "Package", added 0.8 mm pitch in front of BGA. Added Pin List (Table 1)	
*В	2779196	VSO/PYRS	09/29/2009	Features: Added the thrid bullet "Fully accessible 32-bit ARM9 core with 512kB of embedded SRAM" Added the thrid line "EZ USB™ Software and DVK for easy code development" Table 1: Pin 74, corrected to NC - No Connect. Changed title to EZ-USB™ FX3: SuperSpeed USB Controller	
*C	2823531	OSG	12/08/2009	Added data sheet to the USB 3.0 EROS spec 001-51884. No technical updates.	
*D	3080927	OSG	11/08/2010	Changed status from Advance to Preliminary Changed part number from CYUSB3011 to CYUSB3014 Added the following sections: Power, Digital I/Os, Digital I/Os, System-level ESD, Electrical Specifications, AC Timing Parameters, Reset Sequence, Package Diagram Added DC Specifications table Updated feature list Updated Pin List Added support for selectable clock input frequencies. Updated block diagram Updated part number Updated package diagram	

Document History Page (continued)

Document Document	Document Title: CYUSB301X/CYUSB201X, EZ-USB [®] FX3: SuperSpeed USB Controller Document Number: 001-52136				
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
*Е	3204393	OSG	03/24/2011	Updated Slave FIFO protocol and added ZLP signaling protocol Changed GPIFII asynchronous tDO parameter Changed Async Slave FIFO tOE parameter Changed Async Slave FIFO tRDO parameter Added tCOE parameter to GPIFII Sync mode timing parameters Renamed GPIFII Sync mode tDO to tCO and tDO_ss0 to tCO_ss0 Modified description of GPIFII Sync tCO (previously tDO) parameter Changed tAH(address hold time) parameter in Async Slave FIFO modes to be with respect to rising edge of SLWR#/SLRD# instead of falling edge. Correspondingly, changed the tAH number. Removed 24 bit data bus support for GPIFII.	
*F	3219493	OSG	04/07/2011	Minor ECN - Release to web. No content changes.	
*G	3235250	GSZ	04/20/2011	Minor updates in Features.	
*H	3217917	OSG	04/06/2011	Updated GPIFII Synchronous Timing diagram. Added SPI Boot option. Corrected values of R_USB2 and R_USB3. Corrected TCK and TRST# pull-up/pull-down configuration. Minor updates to block diagrams. Corrected Synchronous Slave FIFO tDH parameter.	
*	3305568	DSG	07/07/2011	Minor ECN - Correct ECN number in revision *F. No content changes.	
*J	3369042	OSG	12/06/2011	Changed datasheet status from Preliminary to Final. Changed tWRPE parameter to 2ns Updated tRR and tRPW for crystal input Added clarification regarding I _{OZ} and I _{IX} Updated Sync SLave FIFO Read timing diagram Updated SPI timing diagram Removed tGRANULARITY parameter Updated I2S Timing diagram and tTd parameter Updated 12S Timing diagram and tTd parameter Updated 121-ball BGA package diagram. Added clarification regarding VCC in DC Specifications table In Power Modes description, stated that VIO1 cannot be turned off at any time if the GPIFII is used in the application Updated Absolute Maximum Ratings Added requirement for by-pass capacitor on U3RX _{VDDQ} and U3TX _{VDDQ} Updated tPEI parameter in Async Slave FIFO timing table Updated Sync Slave FIFO write and read timing diagrams Updated I2C interface tVD:ACK parameter for 1MHz operation Clarified that CTL[15] is not usable as a GPIO	
*K	3534275	OSG	02/24/2012	Corrected typo in the block diagram.	
*L	3649782	OSG	08/16/2012	Changed part number to CYUSB301X. Added 256 KB range for embedded SRAM. Updated Functional Overview, Other Interfaces, and Clocking sections. Added Pin List for CYUSB3011 and CYUSB3013 parts. Updated Ordering Information with new part numbers.	
*M	3848148	OSG	12/20/2012	Updated 121-ball BGA package diagram to current revision.	
*N	4016006	OSG	05/31/2013	Updated Features (Added 131-ball WLCSP under Package option). Updated Pin Configurations (Added FX3 131-ball WLCSP Ball Map (Figure 7)). Updated Pin Description (Updated Table 7). Updated Electrical Specifications (Included Commercial Temperature Range related information). Updated Operating Conditions (Included Commercial Temperature Range related information). Updated Package Diagram (Added 131-ball WLCSP Package Diagram (Figure 32)). Updated Ordering Information (Updated part numbers).	

Document History Page (continued)

Document Title: CYUSB301X/CYUSB201X, EZ-USB [®] FX3: SuperSpeed USB Controller Document Number: 001-52136					
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
*T	5306567	MDDD	06/29/2016	Updated AC Timing Parameters: Updated GPIF II Timing: Updated Table 9: Changed maximum value of t _{CO} parameter from 8 ns to 7 ns. Updated Slave FIFO Interface: Updated Synchronous Slave FIFO Write Sequence Description: Updated Table 11: Changed maximum value of t _{CO} parameter from 8 ns to 7 ns. Updated to new template.	
*U	5703914	GNKK	04/20/2017	Updated the Cypress logo and copyright information.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2009-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and not except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress berefy grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-52136 Rev. *U

Revised April 20, 2017

EZ-USB™ is a trademark and West Bridge[®] is a registered trademark of Cypress Semiconductor Corporation.