

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

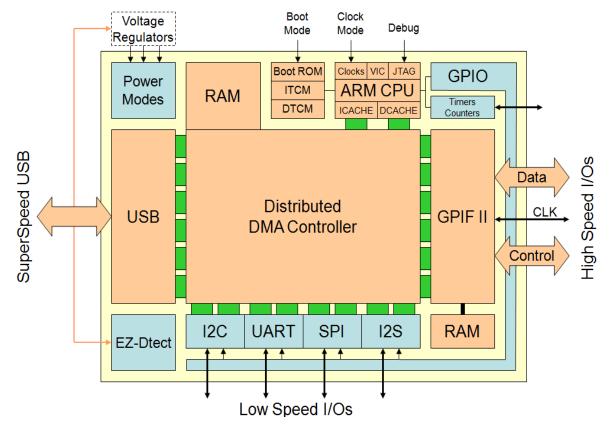
Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are analyzared to

Details


Details	
Product Status	Active
Applications	SuperSpeed USB Peripheral Controller
Core Processor	ARM9®
Program Memory Type	External Program Memory
Controller Series	CYUSB
RAM Size	512K x 8
Interface	GPIF, I ² C, I ² S, SPI, UART, USB
Number of I/O	60
Voltage - Supply	1.15V ~ 1.25V
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-FBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cyusb3014-bzxc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

ReNumeration

Because of FX3's soft configuration, one chip can take on the identities of multiple distinct USB devices.

When first plugged into USB, FX3 enumerates automatically with the Cypress Vendor ID (0x04B4) and downloads firmware and USB descriptors over the USB interface. The downloaded firmware executes an electrical disconnect and connect. FX3 enumerates again, this time as a device defined by the downloaded information. This patented two-step process, called ReNumeration, happens instantly when the device is plugged in.

EZ-Dtect

FX3 supports USB Charger and accessory detection (EZ-Dtect). The charger detection mechanism complies with the Battery Charging Specification Revision 1.1. In addition to supporting this version of the specification, FX3 also provides hardware support to detect the resistance values on the ID pin.

FX3 can detect the following resistance ranges:

- Less than 10 Ω
- Less than 1 kΩ
- 65 kΩ to 72 kΩ
- 35 kΩ to 39 kΩ
- 99.96 kΩ to 104.4 kΩ (102 kΩ ± 2%)
- 119 kΩ to 132 kΩ
- Higher than 220 kΩ
- 431.2 kΩ to 448.8 kΩ (440 kΩ ± 2%)

FX3's charger detects a dedicated wall charger, Host/Hub charger, and Host/Hub.

VBUS Overvoltage Protection

The maximum input voltage on FX3's VBUS pin is 6 V. A charger can supply up to 9 V on VBUS. In this case, an external overvoltage protection (OVP) device is required to protect FX3 from damage on VBUS. Figure 3 shows the system application diagram with an OVP device connected on VBUS. Refer to Table 8 for the operating range of VBUS and VBATT.

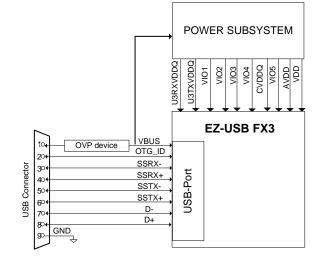
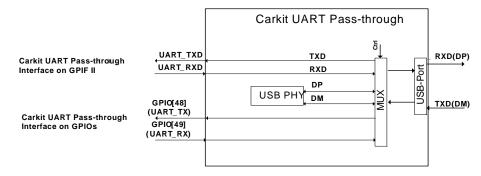


Figure 3. System Diagram with OVP Device For VBUS


Carkit UART Mode

The USB interface supports the Carkit UART mode (UART over D+/D-) for non-USB serial data transfer. This mode is based on the CEA-936A specification.

In the Carkit UART mode, the output signaling voltage is 3.3 V. When configured for the Carkit UART mode, TXD of UART (output) is mapped to the D– line, and RXD of UART (input) is mapped to the D+ line.

In the Carkit UART mode, FX3 disables the USB transceiver and D+ and D- pins serve as pass-through pins to connect to the UART of the host processor. The Carkit UART signals may be routed to the GPIF II interface or to GPIO[48] and GPIO[49], as shown in Figure on page 8.

In this mode, FX3 supports a rate of up to 9600 bps.

Figure 4. Carkit UART Pass-through Block Diagram

GPIF II

The high-performance GPIF II interface enables functionality similar to, but more advanced than, FX2LP's GPIF and Slave FIFO interfaces.

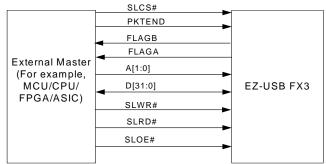
The GPIF II is a programmable state machine that enables a flexible interface that may function either as a master or slave in industry-standard or proprietary interfaces. Both parallel and serial interfaces may be implemented with GPIF II.

Here is a list of GPIF II features:

- Functions as master or slave
- Provides 256 firmware programmable states
- Supports 8-bit, 16-bit, 24-bit, and 32-bit parallel data bus
- Enables interface frequencies up to 100 MHz
- Supports 14 configurable control pins when a 32- bit data bus is used. All control pins can be either input/output or bidirectional.
- Supports 16 configurable control pins when a 16/8 data bus is used. All control pins can be either input/output or bi-directional.

GPIF II state transitions are based on control input signals. The control output signals are driven as a result of the GPIF II state transitions. The INT# output signal can be controlled by GPIF II. Refer to the GPIFII Designer tool. The GPIF II state machine's behavior is defined by a GPIF II descriptor. The GPIF II descriptor is designed such that the required interface specifications are met. 8 KB of memory (separate from the 256/512 KB of embedded SRAM) is dedicated to the GPIF II waveform where the GPIF II descriptor is stored in a specific format.

Cypress's GPIFII Designer Tool enables fast development of GPIF II descriptors and includes examples for common interfaces.


Example implementations of GPIF II are the asynchronous slave FIFO and synchronous slave FIFO interfaces.

Slave FIFO interface

The Slave FIFO interface signals are shown in Figure 5. This interface allows an external processor to directly access up to four buffers internal to FX3. Further details of the Slave FIFO interface are described on page 24.

Note Access to all 32 buffers is also supported over the slave FIFO interface. For details, contact Cypress Applications Support.

Figure 5. Slave FIFO Interface

Note: Multiple Flags may be configured.

CPU

FX3 has an on-chip 32-bit, 200-MHz ARM926EJ-S core CPU. The core has direct access to 16 KB of Instruction Tightly Coupled Memory (TCM) and 8 KB of Data TCM. The ARM926EJ-S core provides a JTAG interface for firmware debugging.

FX3 offers the following advantages:

- Integrates 256/512 KB of embedded SRAM for code and data and 8 KB of Instruction cache and Data cache.
- Implements efficient and flexible DMA connectivity between the various peripherals (such as, USB, GPIF II, I²S, SPI, UART, I²C), requiring firmware only to configure data accesses between peripherals, which are then managed by the DMA fabric.
- Allows easy application development using industry-standard development tools for ARM926EJ-S.

Examples of the FX3 firmware are available with the Cypress EZ-USB FX3 Development Kit.

JTAG Interface

FX3's JTAG interface has a standard five-pin interface to connect to a JTAG debugger in order to debug firmware through the CPU-core's on-chip-debug circuitry.

Industry-standard debugging tools for the ARM926EJ-S core can be used for the FX3 application development.

Other Interfaces

FX3 supports the following serial peripherals:

- SPI
- UART
- ∎ I²C
- I²S

The SPI, UART, and I²S interfaces are multiplexed on the serial peripheral port.

The CYUSB3012 and CYUSB3014 Pin List on page 15 shows details of how these interfaces are multiplexed. Note that when GPIF II is configured for a 32-bit data bus width (CYUSB3012 and CYUSB3014), then the SPI interface is not available.

SPI Interface

FX3 supports an SPI Master interface on the Serial Peripherals port. The maximum operation frequency is 33 MHz.

The SPI controller supports four modes of SPI communication (see SPI Timing Specification on page 40 for details on the modes) with the Start-Stop clock. This controller is a single-master controller with a single automated SSN control. It supports transaction sizes ranging from four bits to 32 bits.

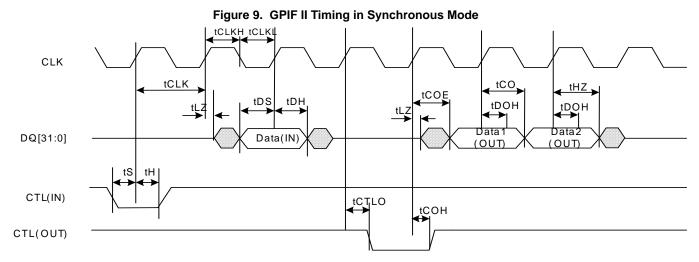

BGA	WLCSP	Power Domain	I/O	Name	Description
B9	E4	-	PWR	VSS	-
F11	F6	-	PWR	VDD	-
-	E5	-	PWR	VSS	GND
-	F7	-	PWR	VDD	-
-	E6	-	PWR	VSS	GND
-	E7	-	PWR	VSS	GND
H1	G6	-	PWR	VDD	-
L7	D7	-	PWR	VDD	-
J11	L10	-	PWR	VDD	-
L5	L12	-	PWR	VDD	-
K4	H7	-	PWR	VSS	-
L3	G7	-	PWR	VSS	-
K3	L11	-	PWR	VSS	-
L2	G8	-	PWR	VSS	-
A8	G5	_	PWR	VSS	-
_	B4	_	—	NC	No Connect
A11	B2	_	—	NC	No Connect

Table 7. CYUSB3012 and CYUSB3014 Pin List (continued)

AC Timing Parameters

GPIF II Timing

Table 9. GPIF II Timing Parameters in Synchronous Mode [2]

Parameter	Description	Min	Max	Units
Frequency	Interface clock frequency	_	100	MHz
tCLK	Interface clock period	10	-	ns
tCLKH	Clock high time	4	-	ns
tCLKL	Clock low time	4	-	ns
tS	CTL input to clock setup time	2	-	ns
tH	CTL input to clock hold time	0.5	-	ns
tDS	Data in to clock setup time	2	-	ns
tDH	Data in to clock hold time	0.5	-	ns
tCO	Clock to data out propagation delay when DQ bus is already in output direction	-	7	ns
tCOE	Clock to data out propagation delay when DQ lines change to output from tristate and valid data is available on the DQ bus	-	9	ns
tCTLO	Clock to CTL out propagation delay	-	8	ns
tDOH	Clock to data out hold	2	-	ns
tCOH	Clock to CTL out hold	0	-	ns
tHZ	Clock to high-Z	_	8	ns
tLZ	Clock to low-Z	0	-	ns

Note2. All parameters guaranteed by design and validated through characterization.

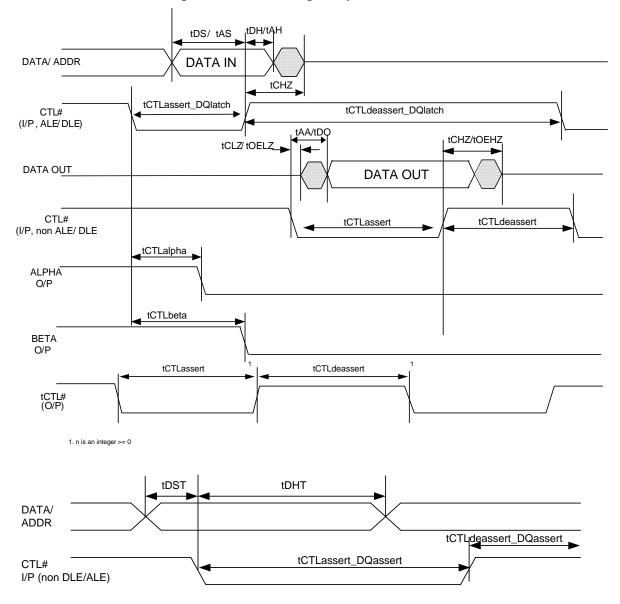
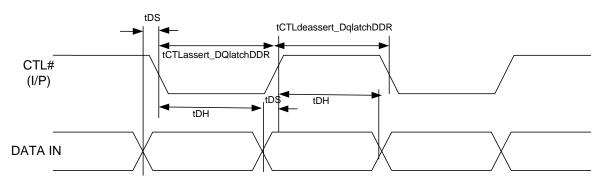



Figure 10. GPIF II Timing in Asynchronous Mode

Table 10. GPIF II Timing in Asynchronous Mode^[3, 4]

Note The following parameters assume one state transition

Parameter	Description	Min	Max	Units	
tDS	Data In to DLE setup time. Valid in DDR async mode.	2.3	-	ns	
tDH	Data In to DLE hold time. Valid in DDR async mode.	2	-	ns	
tAS	Address In to ALE setup time	2.3	-	ns	
tAH	Address In to ALE hold time	2	-	ns	
tCTLassert	CTL I/O asserted width for CTRL inputs without DQ input association and for outputs.	7	-	ns	
tCTLdeassert	CTL I/O deasserted width for CTRL inputs without DQ input association and for outputs.	7	-	ns	
tCTLassert_DQassert	CTL asserted pulse width for CTL inputs that signify DQ inputs valid at the asserting edge but do not employ in-built latches (ALE/DLE) for those DQ inputs.	20	-	ns	
tCTLdeassert_DQassert	CTL deasserted pulse width for CTL inputs that signify DQ input valid at the asserting edge but do not employ in-built latches (ALE/DLE) for those DQ inputs.	7	-	ns	
tCTLassert_DQdeassert	CTL asserted pulse width for CTL inputs that signify DQ inputs valid at the deasserting edge but do not employ in-built latches (ALE/DLE) for those DQ inputs.	7	-	ns	
tCTLdeassert_DQdeassert	Ldeassert_DQdeassert for those DQ inputs.				
tCTLassert_DQlatch	CTL asserted pulse width for CTL inputs that employ in-built latches (ALE/DLE) to latch the DQ inputs. In this non-DDR case, in-built latches are always close at the deasserting edge.	7	_	ns	
tCTLdeassert_DQlatch	CTL deasserted pulse width for CTL inputs that employ in-built latches (ALE/DLE) to latch the DQ inputs. In this non-DDR case, in-built latches always close at the deasserting edge.	10	-	ns	
tCTLassert_DQlatchDDR	CTL asserted pulse width for CTL inputs that employ in-built latches (DLE) to latch the DQ inputs in DDR mode.	10	-	ns	
tCTLdeassert_DQlatchDDR	CTL deasserted pulse width for CTL inputs that employ in-built latches (DLE) to latch the DQ inputs in DDR mode.	10	-	ns	
tAA	DQ/CTL input to DQ output time when DQ change or CTL change needs to be detected and affects internal updates of input and output DQ lines.	-	30	ns	
tDO	CTL to data out when the CTL change merely enables the output flop update whose data was already established.	-	25	ns	
tOELZ	CTL designated as OE to low-Z. Time when external devices should stop driving data.	0	-	ns	
tOEHZ	CTL designated as OE to high-Z	8	8	ns	
tCLZ	CTL (non-OE) to low-Z. Time when external devices should stop driving data.		-	ns	
tCHZ	CTL (non-OE) to high-Z	30	30	ns	
tCTLalpha	CTL to alpha change at output	_	25	ns	
tCTLbeta	CTL to beta change at output	_	30	ns	
tDST	Addr/data setup when DLE/ALE not used	2	-	ns	
tDHT	Addr/data hold when DLE/ALE not used	20	_	ns	

Notes

All parameters guaranteed by design and validated through characterization.
 "alpha" output corresponds to "early output" and "beta" corresponds to "delayed output". Please refer to the GPIFII Designer Tool for the use of these outputs.

Slave FIFO Interface

Synchronous Slave FIFO Read Sequence Description

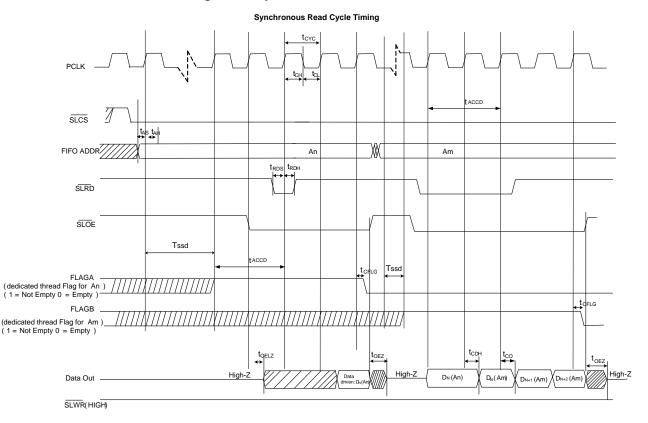
- FIFO address is stable and SLCS is asserted
- FLAG indicates FIFO not empty status
- SLOE is asserted. SLOE is an output-enable only, whose sole function is to drive the data bus.

SLRD is asserted

The FIFO pointer is updated on the rising edge of the PCLK, while the SLRD is asserted. This starts the propagation of data from the newly addressed location to the data bus. After a propagation delay of tco (measured from the rising edge of PCLK), the new data value is present. N is the first data value read from the FIFO. To have data on the FIFO data bus, SLOE must also be asserted.

The same sequence of events is applicable for a burst read.

FLAG Usage:


The FLAG signals are monitored for flow control by the external processor. FLAG signals are outputs from FX3 that may be configured to show empty, full, or partial status for a dedicated thread or the current thread that is addressed.

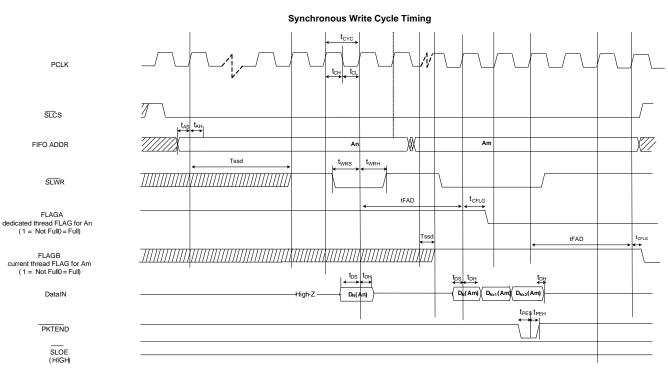
Socket Switching Delay (Tssd):

The socket-switching delay is measured from the time EPSWITCH# is asserted by the master, with the new socket address on the address bus, to the time the Current_Thread_DMA_Ready flag is asserted. For the Producer socket, the flag is asserted when it is ready to receive data in the DMA buffer. For the Consumer socket, the flag is asserted when it is ready to drive data out of the DMA buffer. For a synchronous slave FIFO interface, the switching delay is measured in the number of GPIF interface clock cycles; for an asynchronous slave FIFO interface, in PIB clock cycles. This is applicable only for the 5-bit Slave FIFO interface; there is no socket-switching delay in FX3's 2-bit Slave FIFO interface, which makes use of thread switching in the GPIF[™] II state machine.

Note For burst mode, the SLRD# and SLOE# are asserted during the entire duration of the read. When SLOE# is asserted, the data bus is driven (with data from the previously addressed FIFO). For each subsequent rising edge of PCLK, while the SLRD# is asserted, the FIFO pointer is incremented and the next data value is placed on the data bus.

Figure 12. Synchronous Slave FIFO Read Mode

Synchronous Slave FIFO Write Sequence Description


- FIFO address is stable and the signal SLCS# is asserted
- External master or peripheral outputs the data to the data bus
- SLWR# is asserted
- While the SLWR# is asserted, data is written to the FIFO and on the rising edge of the PCLK, the FIFO pointer is incremented
- The FIFO flag is updated after a delay of t_{WFLG} from the rising edge of the clock

The same sequence of events is also applicable for burst write

Note For the burst mode, SLWR# and SLCS# are asserted for the entire duration, during which all the required data values are written. In this burst write mode, after the SLWR# is asserted, the data on the FIFO data bus is written to the FIFO on every rising edge of PCLK. The FIFO pointer is updated on each rising edge of PCLK.

Short Packet: A short packet can be committed to the USB host by using the PKTEND#. The external device or processor should be designed to assert the PKTEND# along with the last word of data and SLWR# pulse corresponding to the last word. The FIFOADDR lines must be held constant during the PKTEND# assertion.

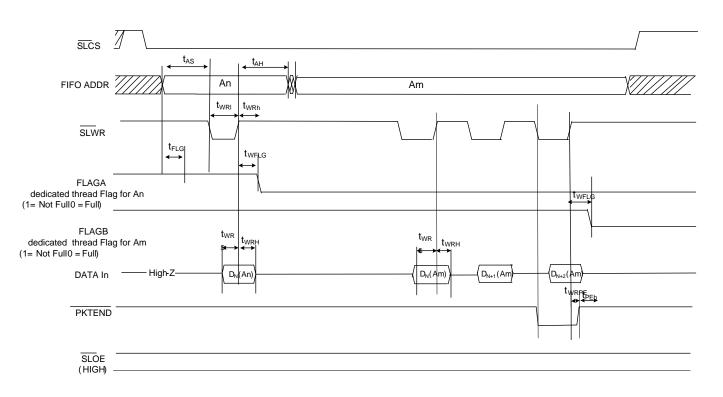
Zero-Length Packet: The external device or processor can signal a Zero-Length Packet (ZLP) to FX3 simply by asserting PKTEND#, without asserting SLWR#. SLCS# and address must be driven as shown in Figure 13.

Figure 13. Synchronous Slave FIFO Write Mode

Asynchronous Slave FIFO Write Sequence Description

- FIFO address is driven and SLCS# is asserted
- SLWR# is asserted. SLCS# must be asserted with SLWR# or before SLWR# is asserted
- Data must be present on the tWRS bus before the deasserting edge of SLWR#
- Deassertion of SLWR# causes the data to be written from the data bus to the FIFO, and then the FIFO pointer is incremented
- The FIFO flag is updated after the tWFLG from the deasserting edge of SLWR.

The same sequence of events is shown for a burst write.


Note that in the burst write mode, after SLWR# deassertion, the data is written to the FIFO, and then the FIFO pointer is incremented.

Short Packet: A short packet can be committed to the USB host by using the PKTEND#. The external device or processor should be designed to assert the PKTEND# along with the last word of data and SLWR# pulse corresponding to the last word. The FIFOADDR lines must be held constant during the PKTEND# assertion.

Zero-Length Packet: The external device or processor can signal a zero-length packet (ZLP) to FX3 simply by asserting PKTEND#, without asserting SLWR#. SLCS# and the address must be driven as shown in Figure 17 on page 29.

FLAG Usage: The FLAG signals are monitored by the external processor for flow control. FLAG signals are FX3 outputs that can be configured to show empty, full, and partial status for a dedicated address or the current address.

Figure 16. Asynchronous Slave FIFO Write Mode

tWRPE: SLWR#de- assert to PKTEND deasset 2 ns min(Note: PKTEND must be asserted at the same time as SL₩/R

Asynchronous Write Cycle Timing

Table 14. Asynchronous ADMux Timing Parameters^[8]

Parameter	Description	Min	Max	Units	Notes
	ADMux Asynchronous	READ Aco	cess Tim	ing Para	meters
tRC	Read cycle time (address valid to address valid)	54.5	_	ns	This parameter is dependent on when the P-port processors deasserts OE#
tACC	Address valid to data valid	-	32	ns	-
tCO	CE# assert to data valid	-	34.5	ns	-
tAVOE	ADV# deassert to OE# assert	2	-	ns	-
tOLZ	OE# assert to data LOW-Z	0	-	ns	-
tOE	OE# assert to data valid	-	25	ns	-
tHZ	Read cycle end to data HIGH-Z	-	22.5	ns	-
	ADMux Asynchronous	VRITE Ac	cess Tim	ing Para	meters
tWC	Write cycle time (Address Valid to Address Valid)	_	52.5	ns	-
tAW	Address valid to write end	30	-	ns	-
tCW	CE# assert to write end	30	-	ns	-
tAVWE	ADV# deassert to WE# assert	2	-	ns	-
tWP	WE# LOW pulse width	20	-	ns	-
tWPH	WE# HIGH pulse width	10	-	ns	-
tDS	Data valid setup to WE# deassert	18	-	ns	-
tDH	Data valid hold from WE# deassert	2	_	ns	_
	ADMux Asynchronous Common	READ/W	RITE Aco	cess Tim	ing Parameters
tAVS	Address valid setup to ADV# deassert	5	-	ns	_
tAVH	Address valid hold from ADV# deassert	2	-	ns	-
tVP	ADV# LOW pulse width	7.5	-	ns	-
tCPH	CE# HIGH pulse width	10	-	ns	-
tVPH	ADV# HIGH pulse width	15	-	ns	-
tCEAV	CE# assert to ADV# assert	0	-	ns	-

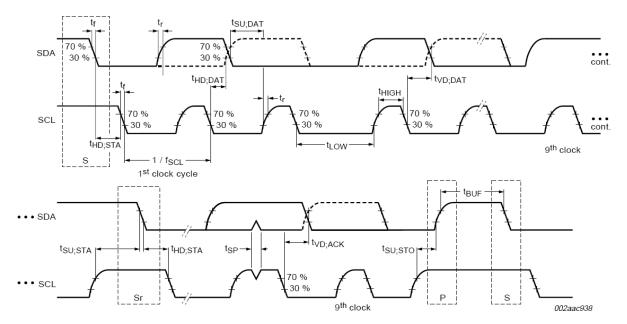

Parameter	Description	Min	Max	Unit
FREQ	Interface clock frequency	-	100	MHz
tCLK	Clock period	10	_	ns
tCLKH	Clock HIGH time	4	-	ns
tCLKL	Clock LOW time	4	-	ns
tS	CE#/WE#/DQ setup time	2	-	ns
tH	CE#/WE#/DQ hold time	0.5	-	ns
tCH	Clock to data output hold time	0	-	ns
tDS	Data input setup time	2	-	ns
tDH	Clock to data input hold	0.5	-	ns
tAVDOE	ADV# HIGH to OE# LOW	0	-	ns
tAVDWE	ADV# HIGH to WE# LOW	0	-	ns
tHZ	CE# HIGH to Data HIGH-Z	-	8	ns
tOHZ	OE# HIGH to Data HIGH-Z	-	8	ns
tOLZ	OE# LOW to Data LOW-Z	0	-	ns
tKW	Clock to RDY valid	-	8	ns

Table 15. Synchronous ADMux Timing Parameters^[9]

Serial Peripherals Timing

I²C Timing

Note9. All parameters guaranteed by design and validated through characterization.

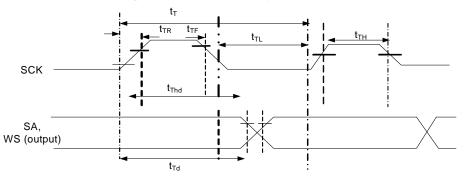


Table 16. I²C Timing Parameters^[10] (continued)

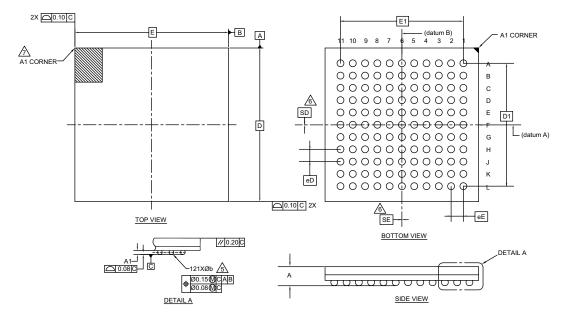
Parameter	Description	Min	Max	Units			
	I ² C Fast Mode Plus Parameters (Not supported at I2C_VDDQ=1.2 V)						
fSCL	SCL clock frequency	0	1000	kHz			
tHD:STA	Hold time START condition	0.26	-	μs			
tLOW	LOW period of the SCL	0.5	-	μs			
tHIGH	HIGH period of the SCL	0.26	-	μs			
tSU:STA	Setup time for a repeated START condition	0.26	-	μs			
tHD:DAT	Data hold time	0	-	μs			
tSU:DAT	Data setup time	50	-	ns			
tr	Rise time of both SDA and SCL signals	-	120	ns			
tf	Fall time of both SDA and SCL signals	-	120	ns			
tSU:STO	Setup time for STOP condition	0.26	-	μs			
tBUF	Bus-free time between a STOP and START condition	0.5	-	μs			
tVD:DAT	Data valid time	-	0.45	μs			
tVD:ACK	Data valid ACK	-	0.55	μs			
tSP	Pulse width of spikes that must be suppressed by input filter	0	50	ns			

I²S Timing Diagram

Figure 28. I²S Transmit Cycle

Table 17. I²S Timing Parameters^[11]

Parameter	Description	Min	Max	Units		
tT	I ² S transmitter clock cycle	Ttr	-	ns		
tTL	I ² S transmitter cycle LOW period	0.35 Ttr	-	ns		
tTH	I ² S transmitter cycle HIGH period	0.35 Ttr	-	ns		
tTR	I ² S transmitter rise time	-	0.15 Ttr	ns		
tTF	I ² S transmitter fall time	-	0.15 Ttr	ns		
tThd	I ² S transmitter data hold time	0	_	ns		
tTd	I ² S transmitter delay time	-	0.8tT	ns		
Note tT is selectable through clock gears. Max Ttr is designed for 96-kHz codec at 32 bits to be 326 ns (3.072 MHz).						


Note

^{11.} All parameters guaranteed by design and validated through characterization.

CYUSB301X/CYUSB201X

Package Diagram

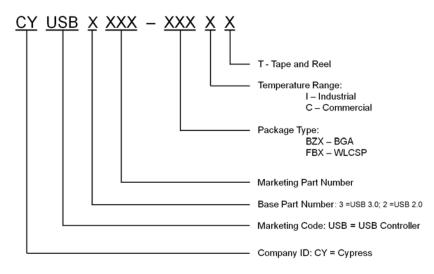
Figure 31. 121-ball BGA Package Diagram

NOTES:

0.440.01		DIMENSIONS			
SYMBOL	MIN.	NOM.	MAX.		
A	-	-	1.20		
A1	0.15	-	-		
D		10.00 BSC			
E		10.00 BSC			
D1		8.00 BSC			
E1		8.00 BSC			
MD		11			
ME		11			
N		121			
Øb	0.25 0.30 0.35				
eD	0.80 BSC				
eE	0.80 BSC				
SD	0.00				
SE		0.00			

- ALL DIMENSIONS ARE IN MILLIMETERS.
 SOLDER BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.
- 3. "e" REPRESENTS THE SOLDER BALL GRID PITCH.
- 4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION. SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION. N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.
- ▲ DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.
- *SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW. WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" OR "SE" = 0.
- WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2.
- A 1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS.
- "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER BALLS.

001-54471 *E



Ordering Information

Table 20. Ordering Information

Ordering Code	USB	SRAM (kB)	GPIF II Data Bus Width	Operating Temperature	Package Type
CYUSB3011-BZXC	USB 3.0	256	16-bit	0 °C to +70 °C	121-ball BGA
CYUSB3012-BZXC	USB 3.0	256	32-bit	0 °C to +70 °C	121-ball BGA
CYUSB3013-BZXC	USB 3.0	512	16-bit	0 °C to +70 °C	121-ball BGA
CYUSB3014-BZXC	USB 3.0	512	32-bit	0 °C to +70 °C	121-ball BGA
CYUSB3014-BZXI	USB 3.0	512	32-bit	-40°C to +85°C	121-ball BGA
CYUSB3014-FBXCT	USB 3.0	512	32-bit	0 °C to +70 °C	131-ball WLCSP
CYUSB3014-FBXIT	USB 3.0	512	32-bit	–40 °C to +85 °C	131-ball WLCSP
CYUSB2014-BZXC	USB 2.0	512	32-bit	0 °C to +70 °C	121-ball BGA
CYUSB2014-BZXI	USB 2.0	512	32-bit	–40 °C to +85 °C	121-ball BGA

Ordering Code Definitions

Errata

This section describes the errata for Revision C of the FX3. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability. Contact your local Cypress Sales Representative if you have questions.

Part Numbers Affected

Part Number	Device Characteristics
CYUSB301x-xxxx	All Variants
CYUSB201x-xxxx	All Variants

Qualification Status

Product Status: Production

Errata Summary

The following table defines the errata applicability to available Rev. C EZ-USB FX3 SuperSpeed USB Controller family devices.

Items	[Part Number]	Silicon Revision	Fix Status
1. Turning off VIO1 during Normal, Suspend, and Standby modes causes the FX3 to stop working.	CYUSB301x-xxxx CYUSB201x-xxxx	Rev. C, B, ES	Workaround provided
2. USB enumeration failure in USB boot mode when FX3 is self-powered.	CYUSB301x-xxxx CYUSB201x-xxxx	Rev. C, B, ES	Workaround provided
 Extra ZLP is generated by the COMMIT action in the GPIF II state. 	CYUSB301x-xxxx CYUSB201x-xxxx	Rev. C, B, ES	Workaround provided
4. Invalid PID Sequence in USB 2.0 ISOC data transfer.	CYUSB301x-xxxx CYUSB201x-xxxx	Rev. C, B, ES	Workaround provided
 USB data transfer errors are seen when ZLP is followed by data packet within same microframe. 	CYUSB301x-xxxx CYUSB201x-xxxx	Rev. C, B, ES	Workaround provided
6. Bus collision is seen when the I2C block is used as a master in the I2C Multi-master configuration.	CYUSB301x-xxxx CYUSB201x-xxxx	Rev. C, B, ES	Use FX3 in single-master configuration

1. Turning off VIO1 during Normal, Suspend, and Standby modes causes the FX3 to stop working.

Problem Definition

Turning off the VIO1 during Normal, Suspend, and Standby modes will cause the FX3 to stop working.

■Parameters Affected

N/A

Trigger Conditions

This condition is triggered when the VIO1 is turned off during Normal, Suspend, and Standby modes.

Scope Of Impact

FX3 stops working.

Workaround

VIO1 must stay on during Normal, Suspend, and Standby modes.

■Fix Status

No fix. Workaround is required.

2. USB enumeration failure in USB boot mode when FX3 is self-powered.

Problem Definition

FX3 device may not enumerate in USB boot mode when it is self-powered. The bootloader is designed for bus power mode. It does not make use of the VBUS pin on the USB connector to detect the USB connection and expect that USB bus is connected to host if it is powered. If FX3 is not already connected to the USB host when it is powered, then it enters into low-power mode and does not wake up when connected to USB host.

■Parameters Affected

N/A

Document History Page

Document Title: CYUSB301X/CYUSB201X, EZ-USB [®] FX3: SuperSpeed USB Controller Document Number: 001-52136					
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
**	2669761	VSO / PYRS	03/06/2009	New data sheet	
*A	2758370	VSO	09/01/2009	Updated the part# from CYX01XXBB to CYUSB3011-BZXI Changed the title from "ADVANCE" to "ADVANCE INFORMATION" In page 1, the second bullet (Flexible Host Interface), add "32-bit, 100 MHz" to first sub bullet. In page 1, changed the second bullet "Flexible Host Interface" to General Programmable Interface". In page 1, the second bullet (Flexible Host Interface), removed "DMA Slave Support" and "MMC Slave support with Pass through Boot" sub bullets. In page 1, third bullet, changed "50 μA with Core Power" to "60 μA with Core Power" In page 1, fifth bullet, added "at 1 MHz" In page 1, seventh bullet, added "up to 4MHz" to UART In page 1, Applications Section, move "Digital Still Cameras" to second line. In page 1, Applications Section, move "Digital Still Cameras" to second line. In page 1, updated Logic Block Diagram. In page 2, removed the section of "Product Interface" In page 2, removed the section of "Product Interface" In page 2, removed the section of "Other Interface" In page 2, removed the section of "Other Interface" In page 2, added a section of "GPIF II" In page 2, added a section of "GPIF II" In page 2, added a section of "Boot Options" In page 2, added a section of "Roter Interface" In page 2, added a section of "ReNumeration" In page 2, added a section of "Power" In the section of "Package", replaced "West Bridge USB 3.0 Platform" by FX3. In the section of "Package", added 0.8 mm pitch in front of BGA. Added Pin List (Table 1)	
*B	2779196	VSO/PYRS	09/29/2009	Features: Added the thrid bullet "Fully accessible 32-bit ARM9 core with 512kB of embedded SRAM" Added the thrid line "EZ USB™ Software and DVK for easy code development" Table 1: Pin 74, corrected to NC - No Connect. Changed title to EZ-USB™ FX3: SuperSpeed USB Controller	
*C	2823531	OSG	12/08/2009	Added data sheet to the USB 3.0 EROS spec 001-51884. No technical updates.	
*D	3080927	OSG	11/08/2010	Changed status from Advance to Preliminary Changed part number from CYUSB3011 to CYUSB3014 Added the following sections: Power, Digital I/Os, Digital I/Os, System-level ESD, Electrical Specifications, AC Timing Parameters, Reset Sequence, Package Diagram Added DC Specifications table Updated feature list Updated Pin List Added support for selectable clock input frequencies. Updated block diagram Updated part number Updated package diagram	

Document History Page (continued)

Document Title: CYUSB301X/CYUSB201X, EZ-USB [®] FX3: SuperSpeed USB Controller Document Number: 001-52136				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
*E	3204393	OSG	03/24/2011	Updated Slave FIFO protocol and added ZLP signaling protocol Changed GPIFII asynchronous tDO parameter Changed Async Slave FIFO tOE parameter Changed Async Slave FIFO tRDO parameter Added tCOE parameter to GPIFII Sync mode timing parameters Renamed GPIFII Sync mode tDO to tCO and tDO_ss0 to tCO_ss0 Modified description of GPIFII Sync tCO (previously tDO) parameter Changed tAH(address hold time) parameter in Async Slave FIFO modes to be with respect to rising edge of SLWR#/SLRD# instead of falling edge. Correspondingly, changed the tAH number. Removed 24 bit data bus support for GPIFII.
*F	3219493	OSG	04/07/2011	Minor ECN - Release to web. No content changes.
*G	3235250	GSZ	04/20/2011	Minor updates in Features.
*H	3217917	OSG	04/06/2011	Updated GPIFII Synchronous Timing diagram. Added SPI Boot option. Corrected values of R_USB2 and R_USB3. Corrected TCK and TRST# pull-up/pull-down configuration. Minor updates to block diagrams. Corrected Synchronous Slave FIFO tDH parameter.
*	3305568	DSG	07/07/2011	Minor ECN - Correct ECN number in revision *F. No content changes.
*J	3369042	OSG	12/06/2011	Changed datasheet status from Preliminary to Final. Changed tWRPE parameter to 2ns Updated tRR and tRPW for crystal input Added clarification regarding I _{OZ} and I _{IX} Updated Sync SLave FIFO Read timing diagram Updated SPI timing diagram Removed tGRANULARITY parameter Updated 12S Timing diagram and tTd parameter Updated 121-ball BGA package diagram. Added clarification regarding VCC in DC Specifications table In Power Modes description, stated that VIO1 cannot be turned off at any time if the GPIFII is used in the application Updated Absolute Maximum Ratings Added requirement for by-pass capacitor on U3RX _{VDDQ} and U3TX _{VDDQ} Updated tPEI parameter in Async Slave FIFO timing diagrams Updated Sync Slave FIFO write and read timing diagrams Updated I2C interface tVD:ACK parameter for 1MHz operation Clarified that CTL[15] is not usable as a GPIO
*K	3534275	OSG	02/24/2012	Corrected typo in the block diagram.
*L	3649782	OSG	08/16/2012	Changed part number to CYUSB301X. Added 256 KB range for embedded SRAM. Updated Functional Overview, Other Interfaces, and Clocking sections. Added Pin List for CYUSB3011 and CYUSB3013 parts. Updated Ordering Information with new part numbers.
*M	3848148	OSG	12/20/2012	Updated 121-ball BGA package diagram to current revision.
*N	4016006	OSG	05/31/2013	Updated Features (Added 131-ball WLCSP under Package option). Updated Pin Configurations (Added FX3 131-ball WLCSP Ball Map (Figure 7)). Updated Pin Description (Updated Table 7). Updated Electrical Specifications (Included Commercial Temperature Range related information). Updated Operating Conditions (Included Commercial Temperature Range related information). Updated Package Diagram (Added 131-ball WLCSP Package Diagram (Figure 32)). Updated Ordering Information (Updated part numbers).

Document History Page (continued)

Revision	ECN	Orig. of Change	Submission Date	Description of Change
*0	4368374	RSKV	05/02/2014	Updated Package Diagram: spec 001-62221 – Changed revision from *B to *C. Updated to new template. Completing Sunset Review.
*P	4474200	ANOP	08/14/2014	Added CYUSB201x MPNs, ball map, and pin list to the datasheet.
*Q	4668496	DBIR	02/24/2015	Updated Features. Updated Logic Block Diagram. Updated Functional Description: Added "For a complete list of related documentation, click here." at the end Added More Information. Updated Functional Overview: Updated Application Examples: Updated Figure 1. Updated Figure 2. Updated description. Removed Figure "USB Interface Signals". Updated Pin Configurations: Updated Figure 6. Updated Reset: Updated Hard Reset: Updated Hard Reset: Updated description. Updated Pin Description. Updated Table 7: Updated Table 7: Updated atble 7: Updated entire table. Modified CVDDQ power domain description. Removed Table "CYUSB2014 Pin List (GPIF II with 32-bit Data Bus Width)" Updated Electrical Specifications: Updated Sparameter and its details. Updated Siave FIFO Interface: Updated Siave FIFO Interface: Updated Figure 12. Updated Figure 13. Updated Table 11. Updated AC Timing Parameters: Added Horst Processor Interface (P-Port) Timing. Updated Acronyms. Added Errata. Replaced West Bridge Benicia with FX3.
*R	4703347	AMDK	03/27/2015	Updated Slave FIFO Interface: Updated Synchronous Slave FIFO Read Sequence Description: Updated Figure 12. Updated Synchronous Slave FIFO Write Sequence Description: Updated Figure 13. Updated Table 11: Updated minimum value of tSSD parameter. Added tACCD, tFAD parameters and their details.
*S	5160624	AJAI	04/07/2016	Removed ISS parameter. Added item 6 in Errata.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2009-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and not except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress berefy grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-52136 Rev. *U

Revised April 20, 2017

EZ-USB[™] is a trademark and West Bridge[®] is a registered trademark of Cypress Semiconductor Corporation.