

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

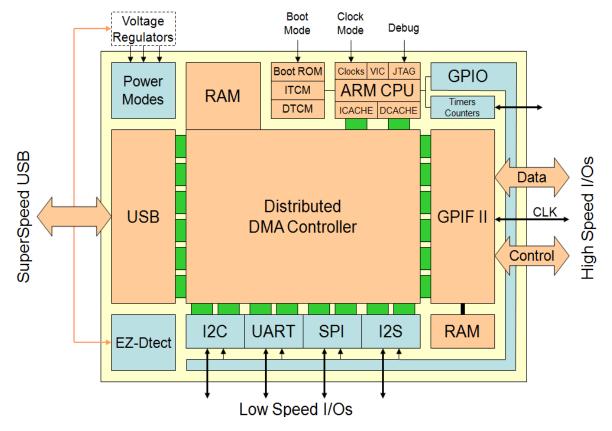
Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are analyzared to

Details


Details	
Product Status	Active
Applications	SuperSpeed USB Peripheral Controller
Core Processor	ARM9®
Program Memory Type	External Program Memory
Controller Series	CYUSB
RAM Size	512K x 8
Interface	GPIF, I ² C, I ² S, SPI, UART, USB
Number of I/O	60
Voltage - Supply	1.15V ~ 1.25V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-FBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cyusb3014-bzxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

Functional Overview

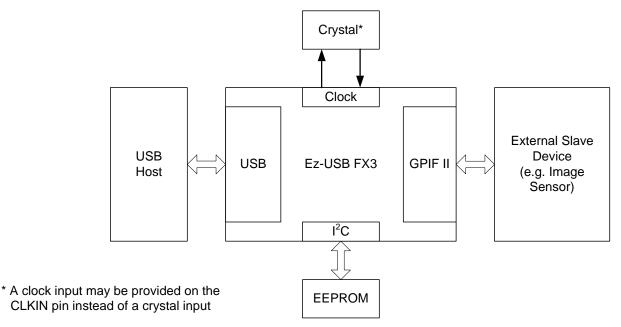
Cypress's EZ-USB FX3 is a SuperSpeed peripheral controller, providing integrated and flexible features.

FX3 has a fully configurable, parallel, general programmable interface called GPIF II, which can connect to any processor, ASIC, or FPGA. GPIF II is an enhanced version of the GPIF in FX2LP, Cypress's flagship USB 2.0 product. It provides easy and glueless connectivity to popular interfaces, such as asynchronous SRAM, asynchronous and synchronous address data multiplexed interfaces, and parallel ATA.

FX3 has integrated the USB 3.1 Gen 1 and USB 2.0 physical layers (PHYs) along with a 32-bit ARM926EJ-S microprocessor for powerful data processing and for building custom applications. It implements an architecture that enables 375-MBps data transfer from GPIF II to the USB interface.

An integrated USB 2.0 OTG controller enables applications in which FX3 may serve dual roles; for example, EZ-USB FX3 may function as an OTG Host to MSC as well as HID-class devices.

FX3 contains 512 KB or 256 KB of on-chip SRAM (see Ordering Information on page 45) for code and data. EZ-USB FX3 also provides interfaces to connect to serial peripherals such as UART, SPI, I²C, and I²S.


FX3 comes with application development tools. The software development kit comes with firmware and host application examples for accelerating time to market.

FX3 complies with the USB 3.1, Gen 1.0 specification and is also backward compatible with USB 2.0. It also complies with the Battery Charging Specification v1.1 and USB 2.0 OTG Specification v2.0.

Application Examples

In a typical application (see Figure 1), the FX3 functions as the main processor running the application software that connects external hardware to the SuperSpeed USB connection. Additionally, FX3 can function as a coprocessor connecting via the GPIF II interface to an application processor (see Figure 2) and operates as a subsystem providing SuperSpeed USB connectivity to the application processor.

Figure 1. EZ-USB FX3 as Main Processor

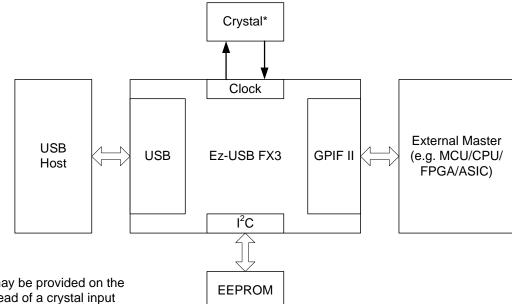


Figure 2. EZ-USB FX3 as a Coprocessor

* A clock input may be provided on the CLKIN pin instead of a crystal input

USB Interface

FX3 complies with the following specifications and supports the following features:

- Supports USB peripheral functionality compliant with USB 3.1 Specification Revision 1.0 and is also backward compatible with the USB 2.0 Specification.
- FX3 Hi-Speed parts (CYUSB201X) only support USB 2.0.
- Complies with OTG Supplement Revision 2.0. It supports High-Speed, Full-Speed, and Low-Speed OTG dual-role device capability. As a peripheral, FX3 is capable of SuperSpeed, High-Speed, and Full-Speed. As a host, it is capable of High-Speed, Full-Speed, and Low-Speed.
- Supports Carkit Pass-Through UART functionality on USB D+/D- lines based on the CEA-936A specification.
- Supports 16 IN and 16 OUT endpoints.
- Supports the USB 3.0 Streams feature. It also supports USB Attached SCSI (UAS) device-class to optimize mass-storage access performance.
- As a USB peripheral, application examples show that the FX3 supports UAS, USB Video Class (UVC), and Mass Storage Class (MSC) USB peripheral classes. All other device classes can be supported by customer firmware; a template example is provided as a starting point.
- As an OTG host, application examples show that FX3 supports MSC and HID device classes.

Note When the USB port is not in use, disable the PHY and transceiver to save power.

OTG

FX3 is compliant with the OTG Specification Revision 2.0. In OTG mode, FX3 supports both A and B device modes and supports Control, Interrupt, Bulk, and Isochronous data transfers.

FX3 requires an external charge pump (either standalone or integrated into a PMIC) to power VBUS in the OTG A-device mode.

The Target Peripheral List for OTG host implementation consists of MSC- and HID-class devices.

FX3 does not support Attach Detection Protocol (ADP).

OTG Connectivity

In OTG mode, FX3 can be configured to be an A, B, or dual-role device. It can connect to the following:

- ACA device
- Targeted USB peripheral
- SRP-capable USB peripheral
- HNP-capable USB peripheral
- OTG host
- HNP-capable host
- OTG device

ReNumeration

Because of FX3's soft configuration, one chip can take on the identities of multiple distinct USB devices.

When first plugged into USB, FX3 enumerates automatically with the Cypress Vendor ID (0x04B4) and downloads firmware and USB descriptors over the USB interface. The downloaded firmware executes an electrical disconnect and connect. FX3 enumerates again, this time as a device defined by the downloaded information. This patented two-step process, called ReNumeration, happens instantly when the device is plugged in.

EZ-Dtect

FX3 supports USB Charger and accessory detection (EZ-Dtect). The charger detection mechanism complies with the Battery Charging Specification Revision 1.1. In addition to supporting this version of the specification, FX3 also provides hardware support to detect the resistance values on the ID pin.

FX3 can detect the following resistance ranges:

- Less than 10 Ω
- Less than 1 kΩ
- 65 kΩ to 72 kΩ
- 35 kΩ to 39 kΩ
- 99.96 kΩ to 104.4 kΩ (102 kΩ ± 2%)
- 119 kΩ to 132 kΩ
- Higher than 220 kΩ
- 431.2 kΩ to 448.8 kΩ (440 kΩ ± 2%)

FX3's charger detects a dedicated wall charger, Host/Hub charger, and Host/Hub.

VBUS Overvoltage Protection

The maximum input voltage on FX3's VBUS pin is 6 V. A charger can supply up to 9 V on VBUS. In this case, an external overvoltage protection (OVP) device is required to protect FX3 from damage on VBUS. Figure 3 shows the system application diagram with an OVP device connected on VBUS. Refer to Table 8 for the operating range of VBUS and VBATT.

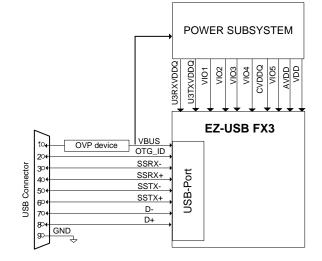
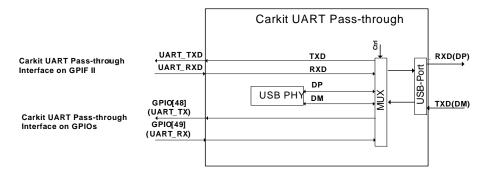


Figure 3. System Diagram with OVP Device For VBUS


Carkit UART Mode

The USB interface supports the Carkit UART mode (UART over D+/D-) for non-USB serial data transfer. This mode is based on the CEA-936A specification.

In the Carkit UART mode, the output signaling voltage is 3.3 V. When configured for the Carkit UART mode, TXD of UART (output) is mapped to the D– line, and RXD of UART (input) is mapped to the D+ line.

In the Carkit UART mode, FX3 disables the USB transceiver and D+ and D- pins serve as pass-through pins to connect to the UART of the host processor. The Carkit UART signals may be routed to the GPIF II interface or to GPIO[48] and GPIO[49], as shown in Figure on page 8.

In this mode, FX3 supports a rate of up to 9600 bps.

Figure 4. Carkit UART Pass-through Block Diagram

UART Interface

The UART interface of FX3 supports full-duplex communication. It includes the signals noted in Table 1.

Table 1. UART Interface Signals

Signal	Description
TX	Output signal
RX	Input signal
CTS	Flow control
RTS	Flow control

The UART is capable of generating a range of baud rates, from 300 bps to 4608 Kbps, selectable by the firmware. If flow control is enabled, then FX3's UART only transmits data when the CTS input is asserted. In addition to this, FX3's UART asserts the RTS output signal, when it is ready to receive data.

I²C Interface

FX3's I^2C interface is compatible with the I^2C Bus Specification Revision 3. This I^2C interface is capable of operating only as I^2C master; therefore, it may be used to communicate with other I^2C slave devices. For example, FX3 may boot from an EEPROM connected to the I^2C interface, as a selectable boot option.

FX3's I²C Master Controller also supports multi-master mode functionality.

The power supply for the l^2C interface is VIO5, which is a separate power domain from the other serial peripherals. This gives the l^2C interface the flexibility to operate at a different voltage than the other serial interfaces.

The I²C controller supports bus frequencies of 100 kHz, 400 kHz, and 1 MHz. When VIO5 is 1.2 V, the maximum operating frequency supported is 100 kHz. When VIO5 is 1.8 V, 2.5 V, or 3.3 V, the operating frequencies supported are 400 kHz and 1 MHz. The I²C controller supports clock-stretching to enable slower devices to exercise flow control.

The I²C interface's SCL and SDA signals require external pull-up resistors. The pull-up resistors must be connected to VIO5.

I²S Interface

FX3 has an I²S port to support external audio codec devices. FX3 functions as I²S Master as transmitter only. The I²S interface consists of four signals: clock line (I2S_CLK), serial data line (I2S_SD), word select line (I2S_WS), and master system clock (I2S_MCLK). FX3 can generate the system clock as an output on I2S_MCLK or accept an external system clock input on I2S_MCLK.

The sampling frequencies supported by the I^2S interface are 32 kHz, 44.1 kHz, and 48 kHz.

Boot Options

FX3 can load boot images from various sources, selected by the configuration of the PMODE pins. Following are the FX3 boot options:

- Boot from USB
- Boot from I²C
- Boot from SPI (SPI devices supported are M25P32 (32 Mbit), M25P16 (16 Mbit), M25P80 (8 Mbit), and M25P40 (4 Mbit)) or their equivalents
- Boot from GPIF II ASync ADMux mode
- Boot from GPIF II Sync ADMux mode
- Boot from GPIF II ASync SRAM mode

Table 2. FX3 Booting Options

PMODE[2:0] ^[1]	Boot From
F00	Sync ADMux (16-bit)
F01	Async ADMux (16-bit)
F11	USB boot
F0F	Async SRAM (16-bit)
F1F	I ² C, On Failure, USB Boot is Enabled
1FF	I ² C only
0F1	SPI, On Failure, USB Boot is Enabled

Reset

Hard Reset

A hard reset is initiated by asserting the Reset# pin on FX3. The specific reset sequence and timing requirements are detailed in Figure 30 on page 42 and Table 19 on page 42. All I/Os are tristated during a hard reset. Note however, that the on-chip bootloader has control after a hard reset and it will configure I/O signals depending on the selected boot mode; see AN76405 - EZ-USB® FX3[™] Boot Options for more details.

Soft Reset

In a soft reset, the processor sets the appropriate bits in the PP_INIT control register. There are two types of Soft Reset:

- CPU Reset The CPU Program Counter is reset. Firmware does not need to be reloaded following a CPU Reset.
- Whole Device Reset This reset is identical to Hard Reset.
- The firmware must be reloaded following a Whole Device Reset.

Note 1. F indicates Floating.

Clocking

FX3 allows either a crystal to be connected between the XTALIN and XTALOUT pins or an external clock to be connected at the CLKIN pin. The XTALIN, XTALOUT, CLKIN, and CLKIN_32 pins can be left unconnected if they are not used.

Crystal frequency supported is 19.2 MHz, while the external clock frequencies supported are 19.2, 26, 38.4, and 52 MHz.

FX3 has an on-chip oscillator circuit that uses an external 19.2-MHz (±100 ppm) crystal (when the crystal option is used). An appropriate load capacitance is required with a crystal. Refer to the specification of the crystal used to determine the appropriate load capacitance. The FSLC[2:0] pins must be configured appropriately to select the crystal- or clock-frequency option. The configuration options are shown in Table 3.

Clock inputs to FX3 must meet the phase noise and jitter requirements specified in Table 4 on page 10.

The input clock frequency is independent of the clock and data rate of the FX3 core or any of the device interfaces. The internal PLL applies the appropriate clock multiply option depending on the input frequency.

Table 3. Crystal/Clock Frequency Selection

FSLC[2]	FSLC[1]	FSLC[0]	Crystal/Clock Frequency
0	0	0	19.2-MHz crystal
1	0	0	19.2-MHz input CLK
1	0	1	26-MHz input CLK
1	1	0	38.4-MHz input CLK
1	1	1	52-MHz input CLK

Table 4. FX3 Input Clock Specifications

Parameter	Description	Specif	Units	
Farameter	Description	Min	Max	Units
	100-Hz offset	-	-75	
	1-kHz offset	-	-104	
Phase noise	10-kHz offset	-	-120	dB
	100-kHz offset	-	-128	
	1-MHz offset	-	-130	
Maximum frequency deviation	-	-	150	ppm
Duty cycle	-	30	70	
Overshoot	-	-	3	%
Undershoot	-	-	-3	
Rise time/fall time	_	_	3	ns

32-kHz Watchdog Timer Clock Input

FX3 includes a watchdog timer. The watchdog timer can be used to interrupt the ARM926EJ-S core, automatically wake up the FX3 in Standby mode, and reset the ARM926EJ-S core. The watchdog timer runs a 32-kHz clock, which may be optionally supplied from an external source on a dedicated FX3 pin.

The firmware can disable the watchdog timer. Requirements for the optional 32-kHz clock input are listed in Table 5.

Table 5. 32-kHz Clock Input Requirements

Parameter	Min	Max	Units
Duty cycle	40	60	%
Frequency deviation	-	±200	ppm
Rise time/fall time	-	200	ns

Power

FX3 has the following power supply domains:

■ IO_VDDQ: This is a group of independent supply domains for digital I/Os. The voltage level on these supplies is 1.8 V to 3.3 V. FX3 provides six independent supply domains for digital I/Os listed as follows (see Table 7 on page 15 for details on each of the power domain signals):

VIO1: GPIF II I/O

- □ VIO2: IO2
- □ VIO3: IO3
- □ VIO4: UART-/SPI/I²S
- □ VIO5: I²C and JTAG (supports 1.2 V to 3.3 V)
- CVDDQ: This is the supply voltage for clock and reset I/O. It should be either 1.8 V or 3.3 V based on the voltage level of the CLKIN signal.
- □ V_{DD}: This is the supply voltage for the logic core. The nominal supply-voltage level is 1.2 V. This supplies the core logic circuits. The same supply must also be used for the following:
 - AVDD: This is the 1.2-V supply for the PLL, crystal oscillator, and other core analog circuits
- U3TXVDDQ/U3RXVDDQ: These are the 1.2-V supply voltages for the USB 3.0 interface.

Table 6. Entry and Exit Methods for Low-Power Modes

■ VBATT/VBUS: This is the 3.2-V to 6-V battery power supply for the USB I/O and analog circuits. This supply powers the USB transceiver through FX3's internal voltage regulator. VBATT is internally regulated to 3.3 V.

Power Modes

FX3 supports the following power modes:

- Normal mode: This is the full-functional operating mode. The internal CPU clock and the internal PLLs are enabled in this mode.
 - Normal operating power consumption does not exceed the sum of I_{CC} Core max and I_{CC} USB max (see Table 7 on page 15 for current consumption specifications).
 - The I/O power supplies VIO2, VIO3, VIO4, and VIO5 can be turned off when the corresponding interface is not in use. VIO1 cannot be turned off at any time if the GPIF II interface is used in the application.
- Low-power modes (see Table 6 on page 11):
 - □ Suspend mode with USB 3.0 PHY enabled (L1)
 - □ Suspend mode with USB 3.0 PHY disabled (L2)
 - □ Standby mode (L3)
 - □ Core power-down mode (L4)

Low-Power Mode	Characteristics	Methods of Entry	Methods of Exit
Suspend Mode with USB 3.0 PHY Enabled (L1)	 The power consumption in this mode does not exceed ISB₁ USB 3.0 PHY is enabled and is in U3 mode (one of the suspend modes defined by the USB 3.0 specification). This one block alone is operational with its internal clock while all other clocks are shut down All I/Os maintain their previous state Power supply for the wakeup source and core power must be retained. All other power domains can be turned on/off individually The states of the configuration registers, buffer memory, and all internal RAM are maintained All transactions must be completed before FX3 enters Suspend mode (state of outstanding transactions are not preserved) The firmware resumes operation from where it was suspended (except when woken up by RESET# assertion) because the program counter does not reset 	 ARM926EJ-S core can put FX3 into suspend mode. For example, on USB suspend condition, firmware may decide to put FX3 into suspend mode External Processor, through the use 	 D+ transitioning to low or high D- transitioning to low or high Impedance change on OTG_ID pin Resume condition on SSRX± Detection of VBUS Level detect on UART_CTS (programmable polarity) GPIF II interface assertion of CTL[0] Assertion of RESET#

Table 6. Entry	y and Exit Methods for Low-P	ower Modes (continued)

Low-Power Mode	Characteristics	Methods of Entry	Methods of Exit
	■ The power consumption in this mode does	■ Turn off V _{DD}	Reapply VDD
Mode (L4)	not exceed ISB ₄		Assertion of RESET#
	Core power is turned off		
	All buffer memory, configuration registers, and the program RAM do not maintain state. After exiting this mode, reload the firmware		
	In this mode, all other power domains can be turned on/off individually		

Digital I/Os

FX3 has internal firmware-controlled pull-up or pull-down resistors on all digital I/O pins. An internal 50-k Ω resistor pulls the pins high, while an internal 10-k Ω resistor pulls the pins low to prevent them from floating. The I/O pins may have the following states:

- Tristated (High-Z)
- Weak pull-up (via internal 50 kΩ)
- Pull-down (via internal 10 kΩ)
- Hold (I/O hold its value) when in low-power modes
- The JTAG TDI, TMS, and TRST# signals have fixed 50-kΩ internal pull-ups, and the TCK signal has a fixed 10-kΩ pull-down resistor.

All unused I/Os should be pulled high by using the internal pull-up resistors. All unused outputs should be left floating. All I/Os can be driven at full-strength, three-quarter strength, half-strength, or quarter-strength. These drive strengths are configured separately for each interface.

GPIOs

EZ-USB enables a flexible pin configuration both on the GPIF II and the serial peripheral interfaces. Any unused control pins (except CTL[15]) on the GPIF II interface can be used as GPIOs. Similarly, any unused pins on the serial peripheral interfaces may be configured as GPIOs. See Pin Configurations for pin configuration options.

All GPIF II and GPIO pins support an external load of up to 16 pF for every pin.

EMI

FX3 meets EMI requirements outlined by FCC 15B (USA) and EN55022 (Europe) for consumer electronics. FX3 can tolerate EMI, conducted by the aggressor, outlined by these specifications and continue to function as expected.

System-level ESD

FX3 has built-in ESD protection on the D+, D–, and GND pins on the USB interface. The ESD protection levels provided on these ports are:

- ±2.2-kV human body model (HBM) based on JESD22-A114 Specification
- ±6-kV contact discharge and ±8-kV air gap discharge based on IEC61000-4-2 level 3A
- ±8-kV Contact Discharge and ±15-kV Air Gap Discharge based on IEC61000-4-2 level 4C.

This protection ensures the device continues to function after ESD events up to the levels stated in this section.

The SSRX+, SSRX–, SSTX+, and SSTX– pins only have up to ± 2.2 -kV HBM internal ESD protection.

Table 7. CYUSB3012 and CYUSB3014 Pin List (continued)

BGA	WLCSP	Power	I/O	Name			Description			
J1	J11	Domain VIO2	I/O	GPIO[38]	DO[21]	DQ[21] GPIO GPIO GPIO GPIO GP				GPIO
H2	H8	VIO2 VIO2	I/O	GPIO[38] GPIO[39]	DQ[21]	GPIO	GPIO	GPIO	GPIO	GPIO
H3	H11	VIO2 VIO2	I/O	GPIO[40]	DQ[22] DQ[23]	GPIO	GPIO	GPIO	GPIO	GPIO
F4	H10	VIO2 VIO2	I/O	GPIO[40]	DQ[23]	GPIO	GPIO	GPIO	GPIO	GPIO
G2	H9	VIO2 VIO2	1/O	GPIO[41] GPIO[42]	DQ[24] DQ[25]	GPIO	GPIO	GPIO	GPIO	GPIO
G2 G3	G11	VIO2 VIO2	1/O	GPIO[42] GPIO[43]	DQ[25]	GPIO	GPIO	GPIO	GPIO	GPIO
F3	G10	VIO2 VIO2	1/O	GPIO[43] GPIO[44]	DQ[20] DQ[27]	GPIO	GPIO	GPIO	GPIO	GPIO
F2	G09	VIO2 VIO2	I/O	GPIO[45]	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO
F5	F11	VIO2 VIO3	I/O	GPIO[46]	DQ[28]	UART_RT S	GPIO	GPIO	GPIO	GPIO
E1	F10	VIO3	I/O	GPIO[47]	DQ[20]	UART_CT S	GPIO	GPIO	GPIO	GPIO
E5	E11	VIO3	I/O	GPIO[48]	DQ[29]	UART_TX	GPIO	GPIO	GPIO	GPIO
E4	D12	VIO3	I/O	GPIO[49]	DQ[31]	UART_R X	GPIO	GPIO	GPIO	GPIO
D1	D12	VIO3	I/O	GPIO[50]	I2S_CLK	I2S_CLK	GPIO	GPIO	GPIO	GPIO
D2	E10	VIO3	I/O	GPIO[51]	I2S_SD	128_SD	GPIO	GPIO	GPIO	GPIO
D2 D3	E10	VIO3	I/O	GPIO[52]	125_5D 12S_WS	125_00 12S_WS	GPIO	GPIO	GPIO	GPIO
D3	D10	VIO3	I/O	GPIO[53]	UART_RTS	SPI SCK	UART_RTS	SPI_SCK	GPIO	GPIO
C1	D10	VIO4 VIO4	I/O	GPIO[54]	UART_CTS	SPI_SSN	UART_CTS	SPI_SSN	I2S_CLK	GPIO
C2	B12	VIO4 VIO4	I/O	GPIO[55]	UART_TX	SPI MIS O	UART_TX	SPI MISO	I2S_OEK	GPIO
D5	C12	VIO4 VIO4	I/O	GPIO[56]	UART_RX	SPI_MOS I	UART RX	SPI_MOSI	125_5D 12S_WS	GPIO
C4	E12	VIO4 VIO4	I/O	GPIO[57]	I2S_MCLK	I2S_MCL K	GPIO	GPIO	125_W5	GPIO
04		104	1/0	0110[37]	120_WOLK		USB Port	0110	120_INCL R	
						CYUSB301X		C	YUSB201X	
A3	A10	U3RXVD	1	SSRXM		SSRX-			NC	
	7.10	DQ								
A4	B10	U3RXVD DQ	Ι	SSRXP		SSRX+			NC	
A6	A8	U3TXVD DQ	0	SSTXM		SSTX-			NC	
A5	B8	U3TXVD DQ	0	SSTXP		SSTX+			NC	
B3	B9	U3TXVD DQ	I/O	R_usb3		stor for USB 3.0 (Co or between this pin a			NC	
C9	C3	VBUS/ VBATT	Ι	OTG_ID			OTG_ID			
A9	A4	VBUS/V BATT	I/O	DP			D+			
A10	A2	VBUS/V BATT	I/O	DM			D-			
C8	B3	VBUS/VBAT T	I/O	R_usb2	Precision resist	tor for USB 2.0 (Cor	nnect a 6.04 k ±1	% resistor be	tween this pin a	and GND)
[II					Clock and Res	set		
B2	A7	CVDDQ	I	FSLC[0]			FSLC[0]			
C6	B6	AVDD	I/O	XTALIN			XTALIN			
07	1	AVDD	I/O	XTALOUT	XTALOUT					
C7	B5	1000								
B4	B5 F9	CVDDQ	1	FSLC[1]			FSLC[1]			
							FSLC[1] FSLC[2]			

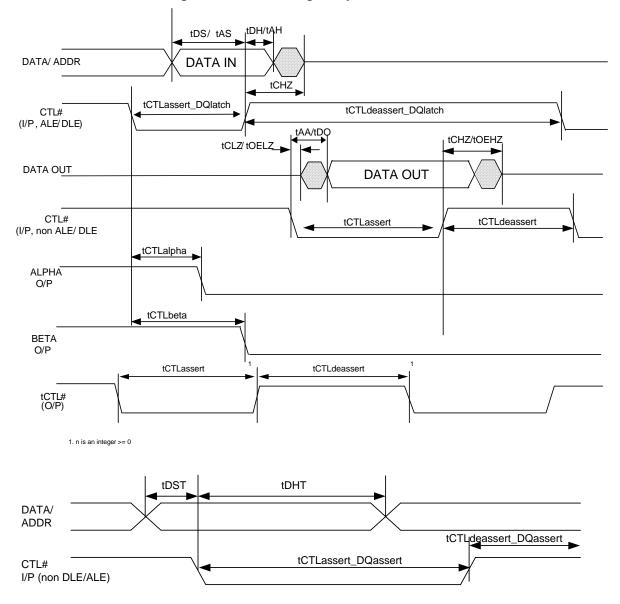
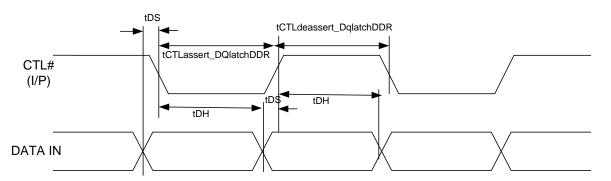
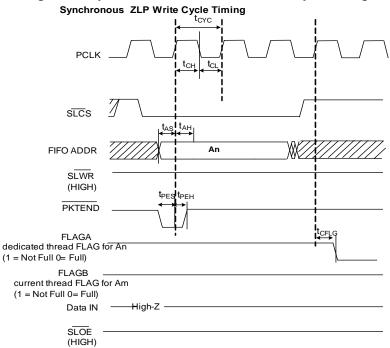



Figure 10. GPIF II Timing in Asynchronous Mode

Table 10. GPIF II Timing in Asynchronous Mode^[3, 4]


Note The following parameters assume one state transition

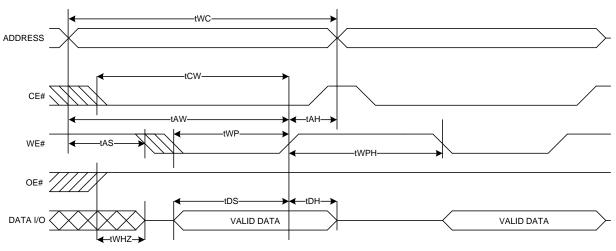
Parameter	Description	Min	Max	Units
tDS	Data In to DLE setup time. Valid in DDR async mode.	2.3	-	ns
tDH	Data In to DLE hold time. Valid in DDR async mode.	2	-	ns
tAS	Address In to ALE setup time	2.3	-	ns
tAH	Address In to ALE hold time	2	-	ns
tCTLassert	CTL I/O asserted width for CTRL inputs without DQ input association and for outputs.	7	-	ns
tCTLdeassert	CTL I/O deasserted width for CTRL inputs without DQ input association and for outputs.	7	-	ns
tCTLassert_DQassert	CTL asserted pulse width for CTL inputs that signify DQ inputs valid at the asserting edge but do not employ in-built latches (ALE/DLE) for those DQ inputs.	20	-	ns
tCTLdeassert_DQassert	CTL deasserted pulse width for CTL inputs that signify DQ input valid at the asserting edge but do not employ in-built latches (ALE/DLE) for those DQ inputs.	7	-	ns
tCTLassert_DQdeassert	CTL asserted pulse width for CTL inputs that signify DQ inputs valid at the deasserting edge but do not employ in-built latches (ALE/DLE) for those DQ inputs.	7	-	ns
tCTLdeassert_DQdeassert	CTL deasserted pulse width for CTL inputs that signify DQ inputs valid at the deasserting edge but do not employ in-built latches (ALE/DLE) for those DQ inputs.	20	-	ns
tCTLassert_DQlatch	CTL asserted pulse width for CTL inputs that employ in-built latches (ALE/DLE) to latch the DQ inputs. In this non-DDR case, in-built latches are always close at the deasserting edge.	7	_	ns
tCTLdeassert_DQlatch	CTL deasserted pulse width for CTL inputs that employ in-built latches (ALE/DLE) to latch the DQ inputs. In this non-DDR case, in-built latches always close at the deasserting edge.	10	-	ns
tCTLassert_DQlatchDDR	CTL asserted pulse width for CTL inputs that employ in-built latches (DLE) to latch the DQ inputs in DDR mode.	10	-	ns
tCTLdeassert_DQlatchDDR	CTL deasserted pulse width for CTL inputs that employ in-built latches (DLE) to latch the DQ inputs in DDR mode.	10	-	ns
tAA	DQ/CTL input to DQ output time when DQ change or CTL change needs to be detected and affects internal updates of input and output DQ lines.	-	30	ns
tDO	CTL to data out when the CTL change merely enables the output flop update whose data was already established.	-	25	ns
tOELZ	CTL designated as OE to low-Z. Time when external devices should stop driving data.	0	-	ns
tOEHZ	CTL designated as OE to high-Z	8	8	ns
tCLZ	CTL (non-OE) to low-Z. Time when external devices should stop driving data.	0	-	ns
tCHZ	CTL (non-OE) to high-Z	30	30	ns
tCTLalpha	CTL to alpha change at output	_	25	ns
tCTLbeta	CTL to beta change at output	_	30	ns
tDST	Addr/data setup when DLE/ALE not used	2	-	ns
tDHT	Addr/data hold when DLE/ALE not used	20	_	ns

Notes

All parameters guaranteed by design and validated through characterization.
 "alpha" output corresponds to "early output" and "beta" corresponds to "delayed output". Please refer to the GPIFII Designer Tool for the use of these outputs.

Figure 14. Synchronous Slave FIFO ZLP Write Cycle Timing

Table 11. Synchronous Slave FIFO Parameters^[5]


Parameter	Description	Min	Max	Units
FREQ	Interface clock frequency	-	100	MHz
tCYC	Clock period	10	-	ns
tCH	Clock high time	4	-	ns
tCL	Clock low time	4	-	ns
tRDS	SLRD# to CLK setup time	2	-	ns
tRDH	SLRD# to CLK hold time	0.5	-	ns
tWRS	SLWR# to CLK setup time	2	-	ns
tWRH	SLWR# to CLK hold time	0.5	-	ns
tCO	Clock to valid data	-	7	ns
tDS	Data input setup time	2	-	ns
tDH	CLK to data input hold	0.5	-	ns
tAS	Address to CLK setup time	2	-	ns
tAH	CLK to address hold time	0.5	-	ns
tOELZ	SLOE# to data low-Z	0	-	ns
tCFLG	CLK to flag output propagation delay	-	8	ns
tOEZ	SLOE# deassert to Data Hi Z	-	8	ns
tPES	PKTEND# to CLK setup	2	-	ns
tPEH	CLK to PKTEND# hold	0.5	-	ns
tCDH	CLK to data output hold	2	-	ns
tSSD	Socket switching delay	2	68	Clock cycles
tACCD	Latency from SLRD# to Data	2	2	Clock cycles
tFAD	Latency from SLWR# to FLAG	3	3	Clock cycles
Note Three-cy	cle latency from ADDR to DATA/FLAGS.			•

Note

5. All parameters guaranteed by design and validated through characterization.

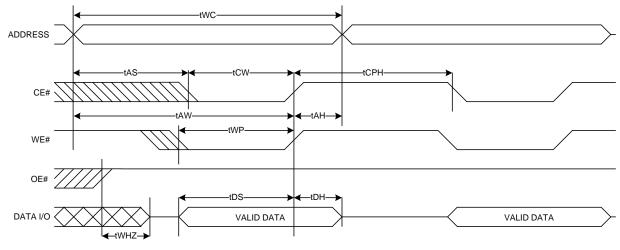
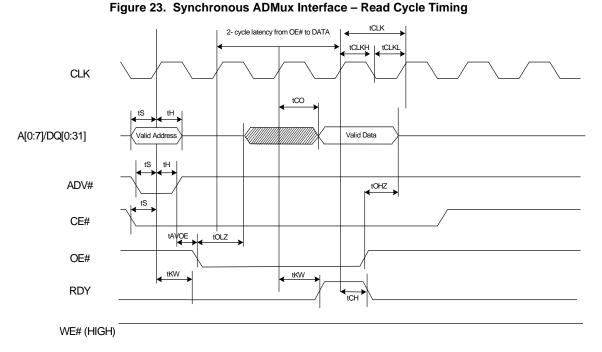
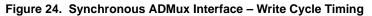
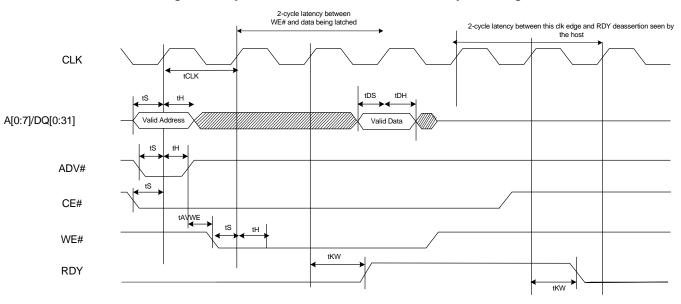


Figure 19. Non-multiplexed Asynchronous SRAM Write Timing (WE# and CE# Controlled)

Write Cycle 1 WE# Controlled, OE# High During Write




Synchronous ADMux Timing



Note:

External P-Port processor and FX3 operate on the same clock edge
 External processor sees RDY assert 2 cycles after OE # asserts andand sees RDY deassert a cycle after the data appears on the output

Valid output data appears 2 cycle after OE # asserted. The data is held until OE # deasserts
 Two cycle latency is shown for 0-100 MHz operation. Latency can be reduced by 1 cycle for operations at less than 50 MHz (this 1 cycle latency is not supported by the bootloader)

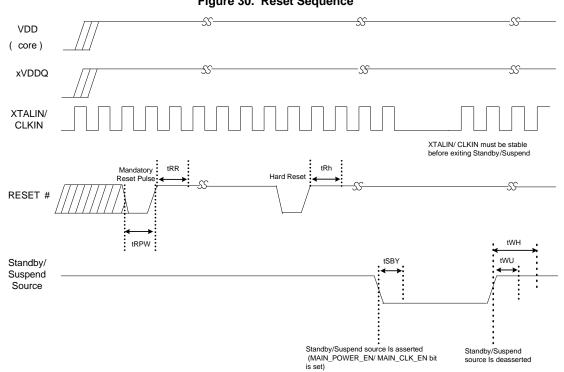
Note:

1) External P-Port processor and FX3 operate on the same clock edge
 2) External processor sees RDY assert 2 cycles after WE # asserts and deassert 3 cycles after the edge sampling the data.
 3) Two cycle latency is shown for 0-100 MHz operation. Latency can be reduced by 1 cycle for operations at less than 50 MHz (this 1 cycle latency is not supported by the bootloader)

Table 16. I²C Timing Parameters^[10]

Parameter	Description	Min	Max	Units	
	I ² C Standard Mode Parameters				
fSCL	SCL clock frequency	0	100	kHz	
tHD:STA	Hold time START condition	4	-	μs	
tLOW	LOW period of the SCL	4.7	-	μs	
tHIGH	HIGH period of the SCL	4	-	μs	
tSU:STA	Setup time for a repeated START condition	4.7	-	μs	
tHD:DAT	Data hold time	0	-	μs	
tSU:DAT	Data setup time	250	-	ns	
tr	Rise time of both SDA and SCL signals	_	1000	ns	
tf	Fall time of both SDA and SCL signals	_	300	ns	
tSU:STO	Setup time for STOP condition	4	-	μs	
tBUF	Bus free time between a STOP and START condition	4.7	-	μs	
tVD:DAT	Data valid time	_	3.45	μs	
tVD:ACK	Data valid ACK	_	3.45	μs	
tSP	Pulse width of spikes that must be suppressed by input filter n/a n/a				
	I ² C Fast Mode Parameters				
fSCL	SCL clock frequency	0	400	kHz	
tHD:STA	Hold time START condition	0.6	-	μs	
tLOW	LOW period of the SCL	1.3	-	μs	
tHIGH	HIGH period of the SCL	0.6	-	μs	
tSU:STA	Setup time for a repeated START condition	0.6	-	μs	
tHD:DAT	Data hold time	0	-	μs	
tSU:DAT	Data setup time	100	-	ns	
tr	Rise time of both SDA and SCL signals	_	300	ns	
tf	Fall time of both SDA and SCL signals - 300		ns		
tSU:STO	Setup time for STOP condition 0.6 –		μs		
tBUF	Bus free time between a STOP and START condition 1.3 –				
tVD:DAT	Data valid time	Data valid time - 0.9			
tVD:ACK	Data valid ACK	-	0.9	μs	
tSP	Pulse width of spikes that must be suppressed by input filter 0 50				

Note 10. All parameters guaranteed by design and validated through characterization.



Reset Sequence

FX3's hard reset sequence requirements are specified in this section.

Table 19. Reset and Standby Timing Parameters

Parameter	Definition	Conditions	Min (ms)	Max (ms)
tRPW	Minimum RESET# pulse width	Clock Input	1	-
		Crystal Input	1	-
tRH	Minimum high on RESET#	-	5	-
tRR	Reset recovery time (after which Boot loader begins firmware download)	Clock Input	1	-
		Crystal Input	5	
tSBY	Time to enter standby/suspend (from the time MAIN_CLOCK_EN/ MAIN_POWER_EN bit is set)	_	-	1
tWU	Time to wakeup from standby	Clock Input	1	-
	Time to wareup nom standby	Crystal Input	5	-
tWH	Minimum time before Standby/Suspend source may be reasserted	-	5	-

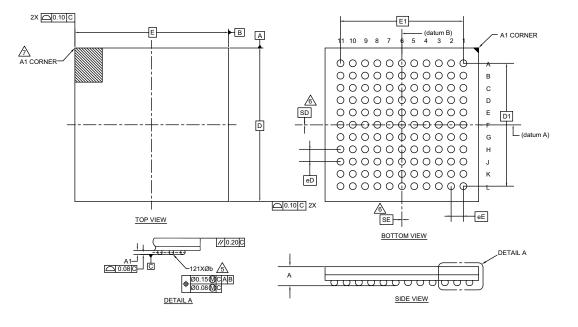


Figure 30. Reset Sequence

CYUSB301X/CYUSB201X

Package Diagram

Figure 31. 121-ball BGA Package Diagram

NOTES:

0.440.01		DIMENSIONS	
SYMBOL	MIN.	NOM.	MAX.
A	-	-	1.20
A1	0.15	-	-
D	10.00 BSC		
E		10.00 BSC	
D1	8.00 BSC		
E1	8.00 BSC		
MD	11		
ME	11		
N		121	
Øь	0.25	0.30	0.35
eD	0.80 BSC		
eE	0.80 BSC		
SD	0.00		
SE		0.00	

- ALL DIMENSIONS ARE IN MILLIMETERS.
 SOLDER BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.
- 3. "e" REPRESENTS THE SOLDER BALL GRID PITCH.
- 4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION. SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION. N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.
- ▲ DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.
- *SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW. WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" OR "SE" = 0.
- WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2.
- A 1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS.
- "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER BALLS.

001-54471 *E

Trigger Conditions

This condition is triggered when FX3 is self-powered in USB boot mode.

■Scope Of Impact

Device does not enumerate

Workaround

Reset the device after connecting to USB host.

■Fix Status

No fix. Workaround is required.

3. Extra ZLP is generated by the COMMIT action in the GPIF II state.

■Problem Definition

When COMMIT action is used in a GPIF-II state without IN_DATA action then an extra Zero Length Packet (ZLP) is committed along with the data packets.

■Parameters Affected

N/A

■Trigger Conditions

This condition is triggered when COMMIT action is used in a state without IN_DATA action.

■Scope Of Impact

Extra ZLP is generated.

Workaround

Use IN_DATA action along with COMMIT action in the same state.

■Fix Status

No fix. Workaround is required.

4. Invalid PID Sequence in USB 2.0 ISOC data transfer.

Problem Definition

When the FX3 device is functioning as a high speed USB device with high bandwidth isochronous endpoints, the PID sequence of the ISO data packets is governed solely by the isomult setting. The length of the data packet is not considered while generating the PID sequence during each microframe. For example, even if a short packet is being sent on an endpoint with MULT set to 2; the PID used will be DATA2

■Parameters Affected

N/A

■Trigger Conditions

This condition is triggered when high bandwidth ISOC transfer endpoints are used.

Scope Of Impact

ISOC data transfers failure.

Workaround

This problem can be worked around by reconfiguring the endpoint with a lower isomult setting prior to sending short packets, and then switching back to the original value.

Fix Status

No fix. Workaround is required.

5. USB data transfer errors are seen when ZLP is followed by data packet within same microframe.

Problem Definition

Some data transfer errors may be seen if a Zero Length Packet is followed very quickly (within one microframe or 125 us) by another data packet on a burst enabled USB IN endpoint operating at super speed.

■Parameters Affected

N/A

■Trigger Conditions

This condition is triggered in SuperSpeed transfer with ZLPs

■Scope Of Impact

Data failure and lower data speed.

■Workaround

The solution is to ensure that some time is allowed to elapse between a ZLP and the next data packet on burst enabled USB IN endpoints. If this cannot be ensured at the data source, the CyU3PDmaChannelSetSuspend() API can be used to suspend the

Document History Page

	Document Title: CYUSB301X/CYUSB201X, EZ-USB [®] FX3: SuperSpeed USB Controller Document Number: 001-52136					
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
**	2669761	VSO / PYRS	03/06/2009	New data sheet		
*A	2758370	VSO	09/01/2009	Updated the part# from CYX01XXBB to CYUSB3011-BZXI Changed the title from "ADVANCE" to "ADVANCE INFORMATION" In page 1, the second bullet (Flexible Host Interface), add "32-bit, 100 MHz" to first sub bullet. In page 1, changed the second bullet "Flexible Host Interface" to General Programmable Interface". In page 1, the second bullet (Flexible Host Interface), removed "DMA Slave Support" and "MMC Slave support with Pass through Boot" sub bullets. In page 1, third bullet, changed "50 μA with Core Power" to "60 μA with Core Power" In page 1, fifth bullet, added "at 1 MHz" In page 1, seventh bullet, added "up to 4MHz" to UART In page 1, Applications Section, move "Digital Still Cameras" to second line. In page 1, Applications Section, move "Digital Still Cameras" to second line. In page 1, updated Logic Block Diagram. In page 2, removed the section of "Product Interface" In page 2, removed the section of "Product Interface" In page 2, removed the section of "Other Interface" In page 2, removed the section of "Other Interface" In page 2, added a section of "GPIF II" In page 2, added a section of "GPIF II" In page 2, added a section of "Boot Options" In page 2, added a section of "Roter Interface" In page 2, added a section of "ReNumeration" In page 2, added a section of "Power" In the section of "Package", replaced "West Bridge USB 3.0 Platform" by FX3. In the section of "Package", added 0.8 mm pitch in front of BGA. Added Pin List (Table 1)		
*B	2779196	VSO/PYRS	09/29/2009	Features: Added the thrid bullet "Fully accessible 32-bit ARM9 core with 512kB of embedded SRAM" Added the thrid line "EZ USB™ Software and DVK for easy code development" Table 1: Pin 74, corrected to NC - No Connect. Changed title to EZ-USB™ FX3: SuperSpeed USB Controller		
*C	2823531	OSG	12/08/2009	Added data sheet to the USB 3.0 EROS spec 001-51884. No technical updates.		
*D	3080927	OSG	11/08/2010	Changed status from Advance to Preliminary Changed part number from CYUSB3011 to CYUSB3014 Added the following sections: Power, Digital I/Os, Digital I/Os, System-level ESD, Electrical Specifications, AC Timing Parameters, Reset Sequence, Package Diagram Added DC Specifications table Updated feature list Updated Pin List Added support for selectable clock input frequencies. Updated block diagram Updated part number Updated package diagram		

Document History Page (continued)

Revision	ECN	Orig. of Change	Submission Date	Description of Change
*0	4368374	RSKV	05/02/2014	Updated Package Diagram: spec 001-62221 – Changed revision from *B to *C. Updated to new template. Completing Sunset Review.
*P	4474200	ANOP	08/14/2014	Added CYUSB201x MPNs, ball map, and pin list to the datasheet.
*Q	4668496	DBIR	02/24/2015	Updated Features. Updated Logic Block Diagram. Updated Functional Description: Added "For a complete list of related documentation, click here." at the end Added More Information. Updated Functional Overview: Updated Application Examples: Updated Figure 1. Updated Figure 2. Updated description. Removed Figure "USB Interface Signals". Updated Pin Configurations: Updated Figure 6. Updated Reset: Updated Hard Reset: Updated Hard Reset: Updated description. Updated Pin Description. Updated Table 7: Updated Table 7: Updated atble 7: Updated entire table. Modified CVDDQ power domain description. Removed Table "CYUSB2014 Pin List (GPIF II with 32-bit Data Bus Width)" Updated Electrical Specifications: Updated Sparameter and its details. Updated Siave FIFO Interface: Updated Siave FIFO Interface: Updated Figure 12. Updated Figure 13. Updated Table 11. Updated AC Timing Parameters: Added Horst Processor Interface (P-Port) Timing. Updated Acronyms. Added Errata. Replaced West Bridge Benicia with FX3.
*R	4703347	AMDK	03/27/2015	Updated Slave FIFO Interface: Updated Synchronous Slave FIFO Read Sequence Description: Updated Figure 12. Updated Synchronous Slave FIFO Write Sequence Description: Updated Figure 13. Updated Table 11: Updated minimum value of tSSD parameter. Added tACCD, tFAD parameters and their details.
*S	5160624	AJAI	04/07/2016	Removed ISS parameter. Added item 6 in Errata.