

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details

Details	
Product Status	Obsolete
Applications	SuperSpeed USB Peripheral Controller
Core Processor	ARM9®
Program Memory Type	External Program Memory
Controller Series	CYUSB
RAM Size	512K x 8
Interface	GPIF, I ² C, I ² S, SPI, UART, USB
Number of I/O	60
Voltage - Supply	1.15V ~ 1.25V
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	131-UFBGA, WLCSP
Supplier Device Package	131-WLCSP (5.1x4.7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cyusb3014-fbxct

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right <product> device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article KBA87889, How to design with FX3/FX3S.

- Overview: USB Portfolio, USB Roadmap
- USB 3.0 Product Selectors: FX3, FX3S, CX3, HX3, West Bridge Benicia
- Application notes: Cypress offers a large number of USB application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with FX3 are:
 - AN75705 Getting Started with EZ-USB FX3
 - □ AN76405 EZ-USB FX3 Boot Options
 - AN70707 EZ-USB FX3/FX3S Hardware Design Guidelines and Schematic Checklist
 - AN65974 Designing with the EZ-USB FX3 Slave FIFO Interface
 - AN75779 How to Implement an Image Sensor Interface with EZ-USB FX3 in a USB Video Class (UVC) Framework
 - AN86947 Optimizing USB 3.0 Throughput with EZ-USB FX3
 - AN84868 Configuring an FPGA over USB Using Cypress EZ-USB FX3
 - AN68829 Slave FIFO Interface for EZ-USB FX3: 5-Bit Address Mode

EZ-USB FX3 Software Development Kit

- AN73609 EZ-USB FX2LP/ FX3 Developing Bulk-Loop Example on Linux
- AN77960 Introduction to EZ-USB FX3 High-Speed USB Host Controller
- AN76348 Differences in Implementation of EZ-USB FX2LP and EZ-USB FX3 Applications
- □ AN89661 USB RAID 1 Disk Design Using EZ-USB FX3S
- Code Examples: < Modify as required >
 - USB Hi-Speed
 - USB Full-Speed
 - USB SuperSpeed
- Technical Reference Manual (TRM):
 EZ-USB FX3 Technical Reference Manual
- Development Kits:
 CYUSB3KIT-003, EZ-USB FX3 SuperSpeed Explorer Kit
 CYUSB3KIT-001, EZ-USB FX3 Development Kit
- Models: IBIS

Cypress delivers the complete software and firmware stack for FX3, in order to easily integrate SuperSpeed USB into any embedded application. The Software Development Kit (SDK) comes with tools, drivers and application examples, which help accelerate application development.

GPIF™ II Designer

The GPIF II Designer is a graphical software that allows designers to configure the GPIF II interface of the EZ-USB FX3 USB 3.0 Device Controller.

The tool allows users the ability to select from one of five Cypress supplied interfaces, or choose to create their own GPIF II interface from scratch. Cypress has supplied industry standard interfaces such as Asynchronous and Synchronous Slave FIFO, Asynchronous and Synchronous SRAM, and Asynchronous SRAM. Designers who already have one of these pre-defined interfaces in their system can simply select the interface of choice, choose from a set of standard parameters such as bus width (x8, 16, x32) endianess, clock settings, and compile the interface. The tool has a streamlined three step GPIF interface development process for users who need a customized interface. Users are able to first select their pin configuration and standard parameters. Secondly, they can design a virtual state machine using configurable actions. Finally, users can view output timing to verify that it matches the expected timing. Once the three step process is complete, the interface can be compiled and integrated with FX3.

CYUSB301X/CYUSB201X

Contents

Functional Overview	5
Application Examples	5
USB Interface	6
OTG	6
ReNumeration	7
EZ-Dtect	7
VBUS Overvoltage Protection	7
Carkit UART Mode	7
GPIF II	8
CPU	8
JTAG Interface	8
Other Interfaces	8
SPI Interface	8
UART Interface	9
I2C Interface	9
I2S Interface	9
Boot Options	9
Reset	9
Hard Reset	
Soft Reset	9
Clocking	10
32-kHz Watchdog Timer Clock Input	10
Power	
Power Modes	
Digital I/Os	13
GPIOs	13
System-level ESD	
Pin Configurations	

Pin Description	15
Electrical Specifications	
Absolute Maximum Ratings	
Operating Conditions	
DC Specifications	
AC Timing Parameters	
GPIF II Timing	
Slave FIFO Interface	
Host Processor Interface (P-Port) Timing	
Serial Peripherals Timing	
Reset Sequence	
Package Diagram	43
Ordering Information	45
Ordering Code Definitions	45
Acronyms	
Document Conventions	
Units of Measure	
Errata	
Qualification Status	47
Errata Summary	47
Document History Page	50
Sales, Solutions, and Legal Information	54
Worldwide Sales and Design Support	
Products	
PSoC®Solutions	54
Cypress Developer Community	54
Technical Support	54

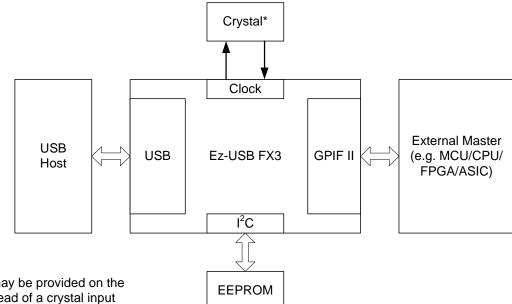


Figure 2. EZ-USB FX3 as a Coprocessor

* A clock input may be provided on the CLKIN pin instead of a crystal input

USB Interface

FX3 complies with the following specifications and supports the following features:

- Supports USB peripheral functionality compliant with USB 3.1 Specification Revision 1.0 and is also backward compatible with the USB 2.0 Specification.
- FX3 Hi-Speed parts (CYUSB201X) only support USB 2.0.
- Complies with OTG Supplement Revision 2.0. It supports High-Speed, Full-Speed, and Low-Speed OTG dual-role device capability. As a peripheral, FX3 is capable of SuperSpeed, High-Speed, and Full-Speed. As a host, it is capable of High-Speed, Full-Speed, and Low-Speed.
- Supports Carkit Pass-Through UART functionality on USB D+/D- lines based on the CEA-936A specification.
- Supports 16 IN and 16 OUT endpoints.
- Supports the USB 3.0 Streams feature. It also supports USB Attached SCSI (UAS) device-class to optimize mass-storage access performance.
- As a USB peripheral, application examples show that the FX3 supports UAS, USB Video Class (UVC), and Mass Storage Class (MSC) USB peripheral classes. All other device classes can be supported by customer firmware; a template example is provided as a starting point.
- As an OTG host, application examples show that FX3 supports MSC and HID device classes.

Note When the USB port is not in use, disable the PHY and transceiver to save power.

OTG

FX3 is compliant with the OTG Specification Revision 2.0. In OTG mode, FX3 supports both A and B device modes and supports Control, Interrupt, Bulk, and Isochronous data transfers.

FX3 requires an external charge pump (either standalone or integrated into a PMIC) to power VBUS in the OTG A-device mode.

The Target Peripheral List for OTG host implementation consists of MSC- and HID-class devices.

FX3 does not support Attach Detection Protocol (ADP).

OTG Connectivity

In OTG mode, FX3 can be configured to be an A, B, or dual-role device. It can connect to the following:

- ACA device
- Targeted USB peripheral
- SRP-capable USB peripheral
- HNP-capable USB peripheral
- OTG host
- HNP-capable host
- OTG device

ReNumeration

Because of FX3's soft configuration, one chip can take on the identities of multiple distinct USB devices.

When first plugged into USB, FX3 enumerates automatically with the Cypress Vendor ID (0x04B4) and downloads firmware and USB descriptors over the USB interface. The downloaded firmware executes an electrical disconnect and connect. FX3 enumerates again, this time as a device defined by the downloaded information. This patented two-step process, called ReNumeration, happens instantly when the device is plugged in.

EZ-Dtect

FX3 supports USB Charger and accessory detection (EZ-Dtect). The charger detection mechanism complies with the Battery Charging Specification Revision 1.1. In addition to supporting this version of the specification, FX3 also provides hardware support to detect the resistance values on the ID pin.

FX3 can detect the following resistance ranges:

- Less than 10 Ω
- Less than 1 kΩ
- 65 kΩ to 72 kΩ
- 35 kΩ to 39 kΩ
- 99.96 kΩ to 104.4 kΩ (102 kΩ ± 2%)
- 119 kΩ to 132 kΩ
- Higher than 220 kΩ
- 431.2 kΩ to 448.8 kΩ (440 kΩ ± 2%)

FX3's charger detects a dedicated wall charger, Host/Hub charger, and Host/Hub.

VBUS Overvoltage Protection

The maximum input voltage on FX3's VBUS pin is 6 V. A charger can supply up to 9 V on VBUS. In this case, an external overvoltage protection (OVP) device is required to protect FX3 from damage on VBUS. Figure 3 shows the system application diagram with an OVP device connected on VBUS. Refer to Table 8 for the operating range of VBUS and VBATT.

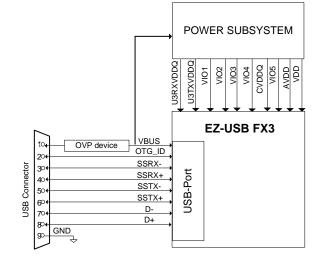
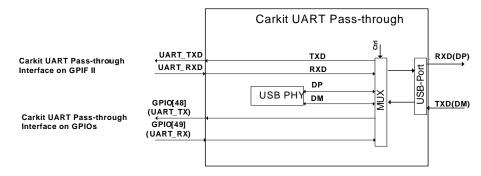


Figure 3. System Diagram with OVP Device For VBUS


Carkit UART Mode

The USB interface supports the Carkit UART mode (UART over D+/D-) for non-USB serial data transfer. This mode is based on the CEA-936A specification.

In the Carkit UART mode, the output signaling voltage is 3.3 V. When configured for the Carkit UART mode, TXD of UART (output) is mapped to the D– line, and RXD of UART (input) is mapped to the D+ line.

In the Carkit UART mode, FX3 disables the USB transceiver and D+ and D- pins serve as pass-through pins to connect to the UART of the host processor. The Carkit UART signals may be routed to the GPIF II interface or to GPIO[48] and GPIO[49], as shown in Figure on page 8.

In this mode, FX3 supports a rate of up to 9600 bps.

Figure 4. Carkit UART Pass-through Block Diagram

UART Interface

The UART interface of FX3 supports full-duplex communication. It includes the signals noted in Table 1.

Table 1. UART Interface Signals

Signal	Description
TX	Output signal
RX	Input signal
CTS	Flow control
RTS	Flow control

The UART is capable of generating a range of baud rates, from 300 bps to 4608 Kbps, selectable by the firmware. If flow control is enabled, then FX3's UART only transmits data when the CTS input is asserted. In addition to this, FX3's UART asserts the RTS output signal, when it is ready to receive data.

I²C Interface

FX3's I^2C interface is compatible with the I^2C Bus Specification Revision 3. This I^2C interface is capable of operating only as I^2C master; therefore, it may be used to communicate with other I^2C slave devices. For example, FX3 may boot from an EEPROM connected to the I^2C interface, as a selectable boot option.

FX3's I²C Master Controller also supports multi-master mode functionality.

The power supply for the l^2C interface is VIO5, which is a separate power domain from the other serial peripherals. This gives the l^2C interface the flexibility to operate at a different voltage than the other serial interfaces.

The I²C controller supports bus frequencies of 100 kHz, 400 kHz, and 1 MHz. When VIO5 is 1.2 V, the maximum operating frequency supported is 100 kHz. When VIO5 is 1.8 V, 2.5 V, or 3.3 V, the operating frequencies supported are 400 kHz and 1 MHz. The I²C controller supports clock-stretching to enable slower devices to exercise flow control.

The I²C interface's SCL and SDA signals require external pull-up resistors. The pull-up resistors must be connected to VIO5.

I²S Interface

FX3 has an I²S port to support external audio codec devices. FX3 functions as I²S Master as transmitter only. The I²S interface consists of four signals: clock line (I2S_CLK), serial data line (I2S_SD), word select line (I2S_WS), and master system clock (I2S_MCLK). FX3 can generate the system clock as an output on I2S_MCLK or accept an external system clock input on I2S_MCLK.

The sampling frequencies supported by the I^2S interface are 32 kHz, 44.1 kHz, and 48 kHz.

Boot Options

FX3 can load boot images from various sources, selected by the configuration of the PMODE pins. Following are the FX3 boot options:

- Boot from USB
- Boot from I²C
- Boot from SPI (SPI devices supported are M25P32 (32 Mbit), M25P16 (16 Mbit), M25P80 (8 Mbit), and M25P40 (4 Mbit)) or their equivalents
- Boot from GPIF II ASync ADMux mode
- Boot from GPIF II Sync ADMux mode
- Boot from GPIF II ASync SRAM mode

Table 2. FX3 Booting Options

PMODE[2:0] ^[1]	Boot From
F00	Sync ADMux (16-bit)
F01	Async ADMux (16-bit)
F11	USB boot
F0F	Async SRAM (16-bit)
F1F	I ² C, On Failure, USB Boot is Enabled
1FF	I ² C only
0F1	SPI, On Failure, USB Boot is Enabled

Reset

Hard Reset

A hard reset is initiated by asserting the Reset# pin on FX3. The specific reset sequence and timing requirements are detailed in Figure 30 on page 42 and Table 19 on page 42. All I/Os are tristated during a hard reset. Note however, that the on-chip bootloader has control after a hard reset and it will configure I/O signals depending on the selected boot mode; see AN76405 - EZ-USB® FX3[™] Boot Options for more details.

Soft Reset

In a soft reset, the processor sets the appropriate bits in the PP_INIT control register. There are two types of Soft Reset:

- CPU Reset The CPU Program Counter is reset. Firmware does not need to be reloaded following a CPU Reset.
- Whole Device Reset This reset is identical to Hard Reset.
- The firmware must be reloaded following a Whole Device Reset.

Note 1. F indicates Floating.

Clocking

FX3 allows either a crystal to be connected between the XTALIN and XTALOUT pins or an external clock to be connected at the CLKIN pin. The XTALIN, XTALOUT, CLKIN, and CLKIN_32 pins can be left unconnected if they are not used.

Crystal frequency supported is 19.2 MHz, while the external clock frequencies supported are 19.2, 26, 38.4, and 52 MHz.

FX3 has an on-chip oscillator circuit that uses an external 19.2-MHz (±100 ppm) crystal (when the crystal option is used). An appropriate load capacitance is required with a crystal. Refer to the specification of the crystal used to determine the appropriate load capacitance. The FSLC[2:0] pins must be configured appropriately to select the crystal- or clock-frequency option. The configuration options are shown in Table 3.

Clock inputs to FX3 must meet the phase noise and jitter requirements specified in Table 4 on page 10.

The input clock frequency is independent of the clock and data rate of the FX3 core or any of the device interfaces. The internal PLL applies the appropriate clock multiply option depending on the input frequency.

Table 3. Crystal/Clock Frequency Selection

FSLC[2]	FSLC[1]	FSLC[0]	Crystal/Clock Frequency
0	0	0	19.2-MHz crystal
1	0	0	19.2-MHz input CLK
1	0	1	26-MHz input CLK
1	1	0	38.4-MHz input CLK
1	1	1	52-MHz input CLK

Table 4. FX3 Input Clock Specifications

Parameter	Description	Specif	Units		
Farameter	Description	Min	Max	Units	
	100-Hz offset	-	-75		
	1-kHz offset	-	-104		
Phase noise	10-kHz offset	-	-120	dB	
	100-kHz offset	-	-128		
	1-MHz offset	-	-130		
Maximum frequency deviation	-	-	150	ppm	
Duty cycle	-	30	70		
Overshoot –		-	3	%	
Undershoot	-	-	-3		
Rise time/fall time	_	_	3	ns	

32-kHz Watchdog Timer Clock Input

FX3 includes a watchdog timer. The watchdog timer can be used to interrupt the ARM926EJ-S core, automatically wake up the FX3 in Standby mode, and reset the ARM926EJ-S core. The watchdog timer runs a 32-kHz clock, which may be optionally supplied from an external source on a dedicated FX3 pin.

The firmware can disable the watchdog timer. Requirements for the optional 32-kHz clock input are listed in Table 5.

Table 5. 32-kHz Clock Input Requirements

Parameter	Min	Max	Units	
Duty cycle	40	60	%	
Frequency deviation	-	±200	ppm	
Rise time/fall time	-	200	ns	

BGA	WLCSP	Power Domain	I/O	Name	Description
B9	E4	-	PWR	VSS	-
F11	F6	-	PWR	VDD	-
-	E5	-	PWR	VSS	GND
-	F7	-	PWR	VDD	-
-	E6	-	PWR	VSS	GND
-	E7	-	PWR	VSS	GND
H1	G6	-	PWR	VDD	-
L7	D7	-	PWR	VDD	-
J11	L10	-	PWR	VDD	-
L5	L12	-	PWR	VDD	-
K4	H7	-	PWR	VSS	-
L3	G7	-	PWR	VSS	-
K3	L11	-	PWR	VSS	-
L2	G8	-	PWR	VSS	-
A8	G5	_	PWR	VSS	-
_	B4	_	—	NC	No Connect
A11	B2	_	—	NC	No Connect

Table 7. CYUSB3012 and CYUSB3014 Pin List (continued)

Electrical Specifications

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device.
Storage temperature65 °C to +150 °C
Ambient temperature with power supplied (Industrial)40 °C to +85 °C
Ambient temperature with power supplied (Commercial)0 °C to +70 °C
Supply voltage to ground potential V_{DD},A_{VDDQ} 1.25 V
$V_{\text{IO1}}, V_{\text{IO2}}, V_{\text{IO3}}, V_{\text{IO4}}, V_{\text{IO5}} \ \ldots \\ 3.6 \ \text{V}$
U3TX _{VDDQ} , U3RX _{VDDQ} 1.25 V
DC input voltage to any input pinV _{CC} + 0.3 V
DC voltage applied to outputs in high Z state V _{CC} + 0.3 V
(VCC is the corresponding I/O voltage)
Static discharge voltage ESD protection levels:

■ ± 2.2-kV HBM based on JESD22-A114

- Additional ESD protection levels on D+, D–, and GND pins, and serial peripheral pins
- ± 6-kV contact discharge, ± 8-kV air gap discharge based on IEC61000-4-2 level 3A, ± 8-kV contact discharge, and ± 15-kV air gap discharge based on IEC61000-4-2 level 4C

Latch-up current> 200 mA						
		short-circuit				
Maximum o (source or s		ent per I/O			2	20 mA

Operating Conditions

T _A (ambient temperature under bias)	
Industrial	–40 °C to +85 °C
Commercial	0 °C to +70 °C
V_{DD} , A_{VDDQ} , U3TX $_{VDDQ}$, U3RX $_{VDDQ}$	
Supply voltage	1.15 V to 1.25 V
V _{BATT} supply voltage	3.2 V to 6 V
$V_{IO1},V_{IO2},V_{IO3},V_{IO4},C_{VDDQ}$	
Supply voltage	1.7 V to 3.6 V
V _{IO5} supply voltage	1.15 V to 3.6 V

DC Specifications

Table 8. DC Specifications

Parameter	Description	Min	Max	Units	Notes
V _{DD}	Core voltage supply	1.15	1.25	V	1.2-V typical
A _{VDD}	Analog voltage supply	1.15	1.25	V	1.2-V typical
V _{IO1}	GPIF II I/O power supply domain	1.7	3.6	V	1.8-, 2.5-, and 3.3-V typical
V _{IO2}	IO2 power supply domain	1.7	3.6	V	1.8-, 2.5-, and 3.3-V typical
V _{IO3}	IO3 power supply domain	1.7	3.6	V	1.8-, 2.5-, and 3.3-V typical
V _{IO4}	UART/SPI/I2S power supply domain	1.7	3.6	V	1.8-, 2.5-, and 3.3-V typical
V _{BATT}	USB voltage supply	3.2	6	V	3.7-V typical
V _{BUS}	USB voltage supply	4.0	6	V	5-V typical
U3TX _{VDDQ}	USB 3.0 1.2-V supply	1.15	1.25	V	1.2-V typical. A 22-μF bypass capacitor is required on this power supply. N/A for CYUSB201X
U3RX _{VDDQ}	USB 3.0 1.2-V supply	1.15	1.25	V	1.2-V typical. A 22-µF bypass capacitor is required on this power supply. N/A for CYUSB201X
C _{VDDQ}	Clock voltage supply	1.7	3.6	V	1.8-, 3.3-V typical
V _{IO5}	I ² C and JTAG voltage supply	1.15	3.6	V	1.2-, 1.8-, 2.5-, and 3.3-V typical
V _{IH1}	Input HIGH voltage 1	0.625 × VCC	VCC + 0.3	V	For 2.0 V \leq V _{CC} \leq 3.6 V (except USB port). VCC is the corresponding I/O voltage supply.
V _{IH2}	Input HIGH voltage 2	VCC - 0.4	VCC + 0.3	V	For 1.7 V \leq V _{CC} \leq 2.0 V (except USB port). VCC is the corresponding I/O voltage supply.
V _{IL}	Input LOW voltage	-0.3	0.25 × VCC	V	VCC is the corresponding I/O voltage supply.

Table 8. DC Specifications (continued)

Parameter	Description	Min	Max	Units	Notes
V _{OH}	Output HIGH voltage	0.9 × VCC	_	V	I_{OH} (max) = -100 µA tested at quarter drive strength. VCC is the corresponding I/O voltage supply.
V _{OL}	Output LOW voltage	_	0.1 × VCC	V	I_{OL} (min) = +100 µA tested at quarter drive strength. VCC is the corresponding I/O voltage supply.
I _{IX}	Input leakage current for all pins except SSTXP/SSXM/SSRXP/SSRXM	-1	1	μΑ	All I/O signals held at V_{DDQ} (For I/Os with a pull-up or pull-down resistor connected, the leakage current increases by V_{DDQ}/R_{pu} or V_{DDQ}/R_{PD}
I _{OZ}	Output High-Z leakage current for all pins except SSTXP/ SSXM/ SSRXP/SSRXM	-1	1	μA	All I/O signals held at V _{DDQ}
I _{CC} Core	Core and analog voltage operating current	-	200	mA	Total current through A _{VDD} , V _{DD}
I _{CC} USB	USB voltage supply operating current	-	60	mA	-
I _{SB1}	Total suspend current during suspend mode with USB 3.0 PHY enabled (L1)	-	_	mA	Core current: 1.5 mA I/O current: 20 µA USB current: 2 mA For typical PVT (typical silicon, all power supplies at their respective nominal levels at 25 °C)
I _{SB2}	Total suspend current during suspend mode with USB 3.0 PHY disabled (L2)	-	_	mA	Core current: 250 µA I/O current: 20 µA USB current: 1.2 mA For typical PVT (Typical silicon, all power supplies at their respective nominal levels at 25 °C)
I _{SB3}	Total standby current during standby mode (L3)	-	_	μA	Core current: 60 μA I/O current: 20 μA USB current: 40 μA For typical PVT (typical silicon, all power supplies at their respective nominal levels at 25 °C)
I _{SB4}	Total standby current during core power-down mode (L4)	_	_	μA	Core current: 0 μA I/O current: 20 μA USB current: 40 μA For typical PVT (typical silicon, all power supplies at their respective nominal levels at 25 °C)
V _{RAMP}	Voltage ramp rate on core and I/O supplies	0.2	50	V/ms	Voltage ramp must be monotonic
V _N	Noise level permitted on V_{DD} and I/O supplies	-	100	mV	Max p-p noise level permitted on all supplies except A_{VDD}
V _{N_AVDD}	Noise level permitted on A _{VDD} supply	_	20	mV	Max p-p noise level permitted on A _{VDD}

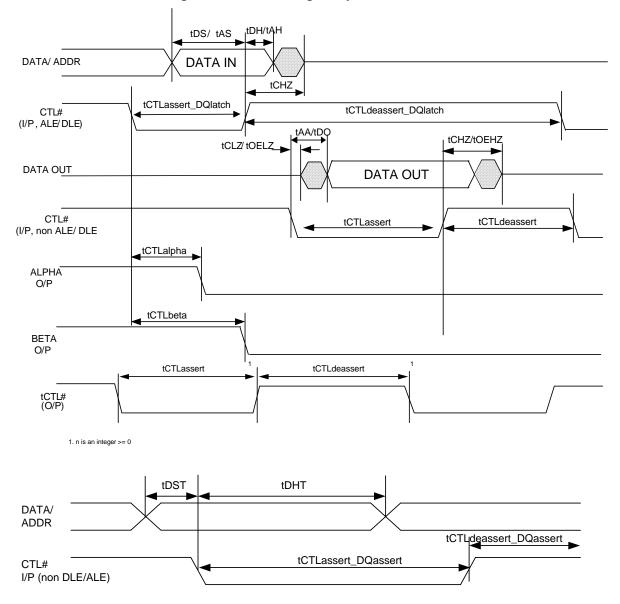
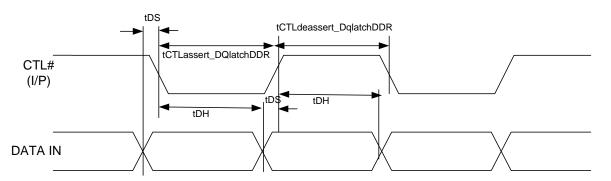
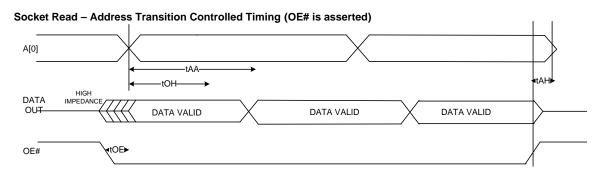
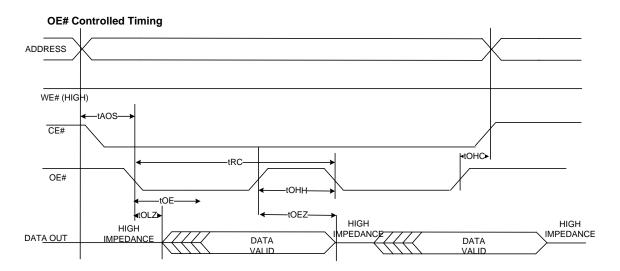



Figure 10. GPIF II Timing in Asynchronous Mode



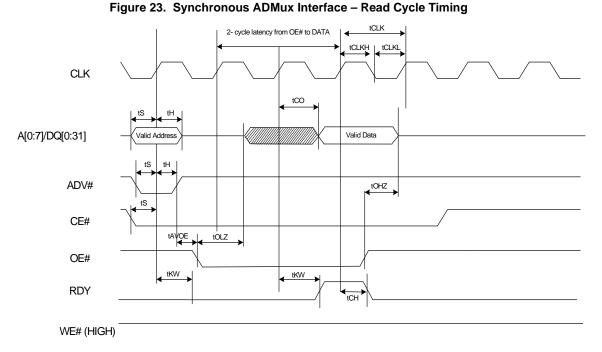


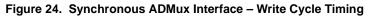
Host Processor Interface (P-Port) Timing

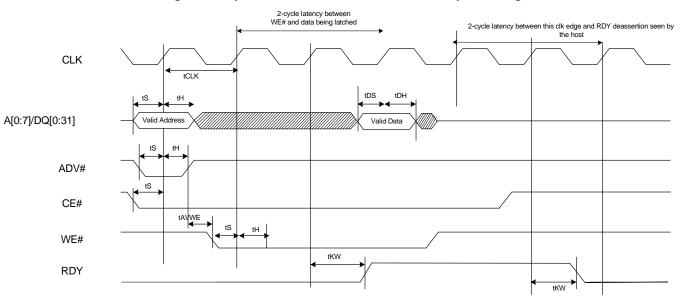
Asynchronous SRAM Timing

Figure 18. Non-multiplexed Asynchronous SRAM Read Timing

Table 14. Asynchronous ADMux Timing Parameters^[8]


Parameter	Description	Min	Max	Units	Notes	
ADMux Asynchronous READ Access Timing Parameters						
tRC	Read cycle time (address valid to address valid)	54.5	_	ns	This parameter is dependent on when the P-port processors deasserts OE#	
tACC	Address valid to data valid	-	32	ns	-	
tCO	CE# assert to data valid	-	34.5	ns	-	
tAVOE	ADV# deassert to OE# assert	2	-	ns	-	
tOLZ	OE# assert to data LOW-Z	0	-	ns	-	
tOE	OE# assert to data valid	-	25	ns	-	
tHZ	Read cycle end to data HIGH-Z	-	22.5	ns	-	
	ADMux Asynchronous	VRITE Ac	cess Tim	ing Para	meters	
tWC	Write cycle time (Address Valid to Address Valid)	_	52.5	ns	_	
tAW	Address valid to write end	30	-	ns	-	
tCW	CE# assert to write end	30	-	ns	-	
tAVWE	ADV# deassert to WE# assert	2	-	ns	-	
tWP	WE# LOW pulse width	20	-	ns	-	
tWPH	WE# HIGH pulse width	10	-	ns	-	
tDS	Data valid setup to WE# deassert	18	_	ns	-	
tDH	Data valid hold from WE# deassert	2	_	ns	-	
	ADMux Asynchronous Common	READ/W	RITE Aco	cess Tim	ing Parameters	
tAVS	Address valid setup to ADV# deassert	5	-	ns	-	
tAVH	Address valid hold from ADV# deassert	2	-	ns	-	
tVP	ADV# LOW pulse width	7.5	-	ns	-	
tCPH	CE# HIGH pulse width	10	-	ns	-	
tVPH	ADV# HIGH pulse width	15	-	ns	-	
tCEAV	CE# assert to ADV# assert	0	-	ns	-	


Synchronous ADMux Timing



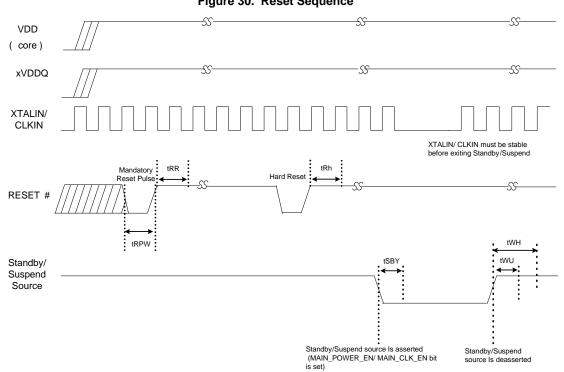
Note:

External P-Port processor and FX3 operate on the same clock edge
 External processor sees RDY assert 2 cycles after OE # asserts andand sees RDY deassert a cycle after the data appears on the output

Valid output data appears 2 cycle after OE # asserted. The data is held until OE # deasserts
 Two cycle latency is shown for 0-100 MHz operation. Latency can be reduced by 1 cycle for operations at less than 50 MHz (this 1 cycle latency is not supported by the bootloader)

Note:

1) External P-Port processor and FX3 operate on the same clock edge
 2) External processor sees RDY assert 2 cycles after WE # asserts and deassert 3 cycles after the edge sampling the data.
 3) Two cycle latency is shown for 0-100 MHz operation. Latency can be reduced by 1 cycle for operations at less than 50 MHz (this 1 cycle latency is not supported by the bootloader)



Reset Sequence

FX3's hard reset sequence requirements are specified in this section.

Table 19. Reset and Standby Timing Parameters

Parameter	Definition	Conditions	Min (ms)	Max (ms)
tRPW	Minimum RESET# pulse width	Clock Input	1	-
		Crystal Input	1	-
tRH	Minimum high on RESET#	-	5	-
tRR	Reset recovery time (after which Boot loader begins firmware download)	Clock Input	1	-
Reset recovery time (after which Boot load)	Reset recovery time (alter which boot loader begins him ware download)	Crystal Input	5	
tSBY	Time to enter standby/suspend (from the time MAIN_CLOCK_EN/ MAIN_POWER_EN bit is set)	_	-	1
tWU	Time to wakeup from standby	Clock Input	1	-
1000	Time to wareup nom standby	Crystal Input	5	-
tWH	Minimum time before Standby/Suspend source may be reasserted	-	5	-

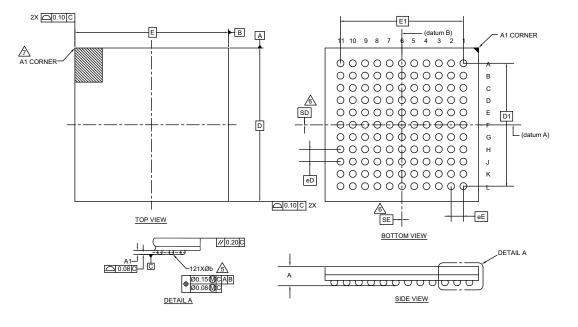


Figure 30. Reset Sequence

CYUSB301X/CYUSB201X

Package Diagram

Figure 31. 121-ball BGA Package Diagram

NOTES:

0.440.01		DIMENSIONS	
SYMBOL	MIN.	NOM.	MAX.
A	-	-	1.20
A1	0.15	-	-
D		10.00 BSC	
E		10.00 BSC	
D1	8.00 BSC		
E1	8.00 BSC		
MD	11		
ME	11		
N		121	
Øb	0.25	0.30	0.35
eD	0.80 BSC		
eE	0.80 BSC		
SD	0.00		
SE	0.00		

- ALL DIMENSIONS ARE IN MILLIMETERS.
 SOLDER BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.
- 3. "e" REPRESENTS THE SOLDER BALL GRID PITCH.
- 4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION. SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION. N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.
- ▲ DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.
- *SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW. WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" OR "SE" = 0.
- WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2.
- A 1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS.
- "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER BALLS.

001-54471 *E

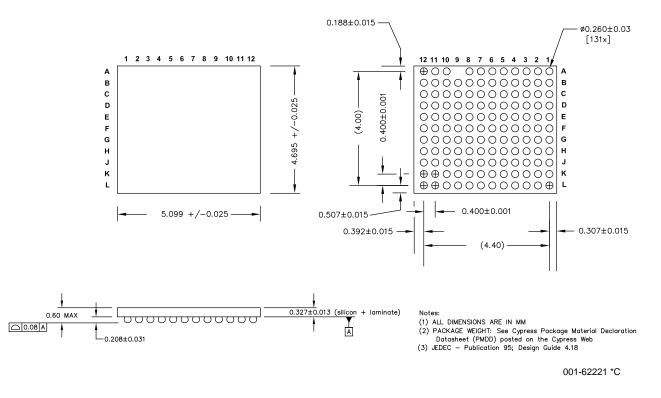
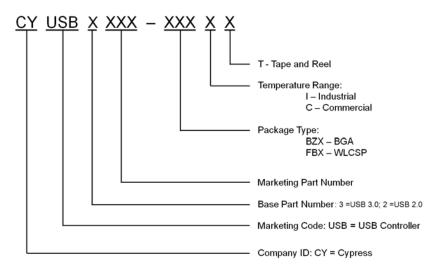


Figure 32. 131-ball WLCSP (5.099 × 4.695 × 0.60 mm) Package Diagram

Note Underfill is required on the board design. Contact fx3@cypress.com for details.



Ordering Information

Table 20. Ordering Information

Ordering Code	USB	SRAM (kB)	GPIF II Data Bus Width	Operating Temperature	Package Type
CYUSB3011-BZXC	USB 3.0	256	16-bit	0 °C to +70 °C	121-ball BGA
CYUSB3012-BZXC	USB 3.0	256	32-bit	0 °C to +70 °C	121-ball BGA
CYUSB3013-BZXC	USB 3.0	512	16-bit	0 °C to +70 °C	121-ball BGA
CYUSB3014-BZXC	USB 3.0	512	32-bit	0 °C to +70 °C	121-ball BGA
CYUSB3014-BZXI	USB 3.0	512	32-bit	-40°C to +85°C	121-ball BGA
CYUSB3014-FBXCT	USB 3.0	512	32-bit	0 °C to +70 °C	131-ball WLCSP
CYUSB3014-FBXIT	USB 3.0	512	32-bit	–40 °C to +85 °C	131-ball WLCSP
CYUSB2014-BZXC	USB 2.0	512	32-bit	0 °C to +70 °C	121-ball BGA
CYUSB2014-BZXI	USB 2.0	512	32-bit	–40 °C to +85 °C	121-ball BGA

Ordering Code Definitions

Errata

This section describes the errata for Revision C of the FX3. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability. Contact your local Cypress Sales Representative if you have questions.

Part Numbers Affected

Part Number	Device Characteristics
CYUSB301x-xxxx	All Variants
CYUSB201x-xxxx	All Variants

Qualification Status

Product Status: Production

Errata Summary

The following table defines the errata applicability to available Rev. C EZ-USB FX3 SuperSpeed USB Controller family devices.

Items	[Part Number]	Silicon Revision	Fix Status
1. Turning off VIO1 during Normal, Suspend, and Standby modes causes the FX3 to stop working.	CYUSB301x-xxxx CYUSB201x-xxxx	Rev. C, B, ES	Workaround provided
2. USB enumeration failure in USB boot mode when FX3 is self-powered.	CYUSB301x-xxxx CYUSB201x-xxxx	Rev. C, B, ES	Workaround provided
 Extra ZLP is generated by the COMMIT action in the GPIF II state. 	CYUSB301x-xxxx CYUSB201x-xxxx	Rev. C, B, ES	Workaround provided
4. Invalid PID Sequence in USB 2.0 ISOC data transfer.	CYUSB301x-xxxx CYUSB201x-xxxx	Rev. C, B, ES	Workaround provided
 USB data transfer errors are seen when ZLP is followed by data packet within same microframe. 	CYUSB301x-xxxx CYUSB201x-xxxx	Rev. C, B, ES	Workaround provided
6. Bus collision is seen when the I2C block is used as a master in the I2C Multi-master configuration.	CYUSB301x-xxxx CYUSB201x-xxxx	Rev. C, B, ES	Use FX3 in single-master configuration

1. Turning off VIO1 during Normal, Suspend, and Standby modes causes the FX3 to stop working.

Problem Definition

Turning off the VIO1 during Normal, Suspend, and Standby modes will cause the FX3 to stop working.

■Parameters Affected

N/A

Trigger Conditions

This condition is triggered when the VIO1 is turned off during Normal, Suspend, and Standby modes.

Scope Of Impact

FX3 stops working.

Workaround

VIO1 must stay on during Normal, Suspend, and Standby modes.

■Fix Status

No fix. Workaround is required.

2. USB enumeration failure in USB boot mode when FX3 is self-powered.

Problem Definition

FX3 device may not enumerate in USB boot mode when it is self-powered. The bootloader is designed for bus power mode. It does not make use of the VBUS pin on the USB connector to detect the USB connection and expect that USB bus is connected to host if it is powered. If FX3 is not already connected to the USB host when it is powered, then it enters into low-power mode and does not wake up when connected to USB host.

■Parameters Affected

N/A

Document History Page (continued)

Revision	ECN	Orig. of Change	Submission Date	Description of Change
*0	4368374	RSKV	05/02/2014	Updated Package Diagram: spec 001-62221 – Changed revision from *B to *C. Updated to new template. Completing Sunset Review.
*P	4474200	ANOP	08/14/2014	Added CYUSB201x MPNs, ball map, and pin list to the datasheet.
*Q	4668496	DBIR	02/24/2015	Updated Features. Updated Logic Block Diagram. Updated Functional Description: Added "For a complete list of related documentation, click here." at the end Added More Information. Updated Functional Overview: Updated Application Examples: Updated Figure 1. Updated Figure 2. Updated description. Removed Figure "USB Interface Signals". Updated Pin Configurations: Updated Figure 6. Updated Figure 6. Updated Hard Reset: Updated Hard Reset: Updated description. Updated description. Updated Pin Description: Updated Pin Description: Updated Pin Description: Updated Table 7: Updated Table 7: Updated Table 7: Updated entire table. Modified CVDDQ power domain description. Removed Table "CYUSB2014 Pin List (GPIF II with 32-bit Data Bus Width)" Updated Electrical Specifications: Updated Space FIFO Interface: Updated Siave FIFO Interface: Updated Siave FIFO Interface: Updated Figure 12. Updated Figure 13. Updated Table 11. Updated Acronyms. Added Host Processor Interface (P-Port) Timing. Updated Acronyms. Added Host Processor Interface (P-Port) Timing. Updated Electrata. Replaced West Bridge Benicia with FX3.
*R	4703347	AMDK	03/27/2015	Updated Slave FIFO Interface: Updated Synchronous Slave FIFO Read Sequence Description: Updated Figure 12. Updated Synchronous Slave FIFO Write Sequence Description: Updated Figure 13. Updated Table 11: Updated minimum value of tSSD parameter. Added tACCD, tFAD parameters and their details.
*S	5160624	AJAI	04/07/2016	Removed ISS parameter. Added item 6 in Errata.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2009-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and not except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress berefy grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-52136 Rev. *U

Revised April 20, 2017

EZ-USB[™] is a trademark and West Bridge[®] is a registered trademark of Cypress Semiconductor Corporation.