

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	Floating Point
Interface	Host Interface, Link Port, Serial Port
Clock Rate	40MHz
Non-Volatile Memory	External
On-Chip RAM	512kB
Voltage - I/O	5.00V
Voltage - Core	5.00V
Operating Temperature	0°C ~ 85°C (TC)
Mounting Type	Surface Mount
Package / Case	225-BBGA
Supplier Device Package	225-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-21060kbz-160

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CONTENTS

Summary	1
General Description	4
SHARC Family Core Architecture	4
Memory and I/O Interface Features	5
Development Tools	8
Additional Information	9
Related Signal Chains	9
Pin Function Descriptions	10
Target Board Connector for EZ-ICE Probe	13
ADSP-21060/ADSP-21062 Specifications	15
Operating Conditions (5 V)	15
Electrical Characteristics (5 V)	15
Internal Power Dissipation (5 V)	16
External Power Dissipation (5 V)	17
ADSP-21060L/ADSP-21062L Specifications	18
Operating Conditions (3.3 V)	18

REVISION HISTORY

3/13—Rev. G to Rev. H
Updated Development Tools8
Corrected the power dissipation equation from $P_{\text{TOTAL}} = P_{EXT} + (I_{DDIN2} \times 5.0 \text{ V})$ to $P_{\text{TOTAL}} = P_{EXT} + (I_{DDIN2} \times 3.3 \text{ V})$
External Power Dissipation (3.3 V)

Electrical Characteristics (3.3 V)
Internal Power Dissipation (3.3 V) 19
External Power Dissipation (3.3 V) 20
Absolute Maximum Ratings 20
ESD Caution
Package Marking Information 21
Timing Specifications 21
Test Conditions 48
Environmental Conditions 51
225-Ball PBGA Ball Configuration 52
220 Duilt Doitt Duil Coningulation
240-Lead MQFP_PQ4/CQFP Pin Configuration54
240-Lead MQFP_PQ4/CQFP Pin Configuration54Outline Dimensions56
240-Lead MQFP_PQ4/CQFP Pin Configuration 54 Outline Dimensions 56 Surface-Mount Design 61

GENERAL DESCRIPTION

The ADSP-2106x SHARC[®]—Super Harvard Architecture Computer—is a 32-bit signal processing microcomputer that offers high levels of DSP performance. The ADSP-2106x builds on the ADSP-21000 DSP core to form a complete system-on-a-chip, adding a dual-ported on-chip SRAM and integrated I/O peripherals supported by a dedicated I/O bus.

Fabricated in a high speed, low power CMOS process, the ADSP-2106x has a 25 ns instruction cycle time and operates at 40 MIPS. With its on-chip instruction cache, the processor can execute every instruction in a single cycle. Table 2 shows performance benchmarks for the ADSP-2106x.

The ADSP-2106x SHARC represents a new standard of integration for signal computers, combining a high performance floating-point DSP core with integrated, on-chip system features including up to 4M bit SRAM memory (see Table 1), a host processor interface, DMA controller, serial ports and link port, and parallel bus connectivity for glueless DSP multiprocessing.

Table 2. Benchmarks (at 40 MHz)

Benchmark Algorithm	Speed	Cycles
1024 Point Complex FFT (Radix 4, with reversal)	0.46 μs	18,221
FIR Filter (per tap)	25 ns	1
IIR Filter (per biquad)	100 ns	4
Divide (y/x)	150 ns	6
Inverse Square Root	225 ns	9
DMA Transfer Rate	240 Mbytes/s	

The ADSP-2106x continues SHARC's industry-leading standards of integration for DSPs, combining a high performance 32-bit DSP core with integrated, on-chip system features.

The block diagram on Page 1 illustrates the following architectural features:

- Computation units (ALU, multiplier and shifter) with a shared data register file
- Data address generators (DAG1, DAG2)
- Program sequencer with instruction cache
- PM and DM buses capable of supporting four 32-bit data transfers between memory and the core at every core processor cycle
- Interval timer
- On-chip SRAM
- External port for interfacing to off-chip memory and peripherals
- Host port and multiprocessor Interface
- DMA controller

- Serial ports and link ports
- JTAG Test Access Port

Figure 2. ADSP-2106x System Sample Configuration

SHARC FAMILY CORE ARCHITECTURE

The ADSP-2106x includes the following architectural features of the ADSP-21000 family core.

Independent, Parallel Computation Units

The arithmetic/logic unit (ALU), multiplier and shifter all perform single-cycle instructions. The three units are arranged in parallel, maximizing computational throughput. Single multifunction instructions execute parallel ALU and multiplier operations. These computation units support IEEE 32-bit singleprecision floating-point, extended precision 40-bit floatingpoint, and 32-bit fixed-point data formats.

Data Register File

A general-purpose data register file is used for transferring data between the computation units and the data buses, and for storing intermediate results. This 10-port, 32-register (16 primary, 16 secondary) register file, combined with the ADSP-21000 Harvard architecture, allows unconstrained data flow between computation units and internal memory.

DMA Controller

The ADSP-2106x's on-chip DMA controller allows zero-overhead data transfers without processor intervention. The DMA controller operates independently and invisibly to the processor core, allowing DMA operations to occur while the core is simultaneously executing its program instructions.

DMA transfers can occur between the ADSP-2106x's internal memory and external memory, external peripherals, or a host processor. DMA transfers can also occur between the ADSP-2106x's internal memory and its serial ports or link ports. DMA transfers between external memory and external peripheral devices are another option. External bus packing to 16-, 32-, or 48-bit words is performed during DMA transfers.

Ten channels of DMA are available on the ADSP-2106x—two via the link ports, four via the serial ports, and four via the processor's external port (for either host processor, other ADSP-2106xs, memory, or I/O transfers). Four additional link port DMA channels are shared with Serial Port 1 and the external port. Programs can be downloaded to the ADSP-2106x using DMA transfers. Asynchronous off-chip peripherals can

control two DMA channels using DMA request/grant lines (DMAR1-2, DMAG1-2). Other DMA features include interrupt generation upon completion of DMA transfers and DMA chaining for automatic linked DMA transfers.

Multiprocessing

The ADSP-2106x offers powerful features tailored to multiprocessor DSP systems. The unified address space (see Figure 4) allows direct interprocessor accesses of each ADSP-2106x's internal memory. Distributed bus arbitration logic is included on-chip for simple, glueless connection of systems containing up to six ADSP-2106xs and a host processor. Master processor changeover incurs only one cycle of overhead. Bus arbitration is selectable as either fixed or rotating priority. Bus lock allows indivisible read-modify-write sequences for semaphores. A vector interrupt is provided for interprocessor commands. Maximum throughput for interprocessor data transfer is 240M bytes/s over the link ports or external port. Broadcast writes allow simultaneous transmission of data to all ADSP-2106xs and can be used to implement reflective semaphores.

NOTE: BANK SIZES ARE SELECTED BY

MSIZE BITS IN THE SYSCON REGISTER

Figure 4. Memory Map

PIN FUNCTION DESCRIPTIONS

The ADSP-2106x pin definitions are listed below. Inputs identified as synchronous (S) must meet timing requirements with respect to CLKIN (or with respect to TCK for TMS, TDI). Inputs identified as asynchronous (A) can be asserted asynchronously to CLKIN (or to TCK for TRST). Unused inputs should be tied or pulled to VDD or GND, except for ADDR31–0, DATA47–0, FLAG3–0, and inputs that have internal pull-up or pull-down resistors (CPA, ACK, DTx, DRx, TCLKx, RCLKx, LxDAT3–0, LxCLK, LxACK, TMS, and TDI)—these pins can be left floating. These pins have a logic-level hold circuit that prevents the input from floating internally.

Pin Type Function ADDR31-0 I/O/T External Bus Address. The ADSP-2106x outputs addresses for external memory and peripherals on these pins. In a multiprocessor system, the bus master outputs addresses for read/write of the internal memory or IOP registers of other ADSP-2106xs. The ADSP-2106x inputs addresses when a host processor or multiprocessing bus master is reading or writing its internal memory or IOP registers. I/O/T External Bus Data. The ADSP-2106x inputs and outputs data and instructions on these pins. 32-bit single-DATA47-0 precision floating-point data and 32-bit fixed-point data is transferred over bits 47-16 of the bus. 40-bit extended-precision floating-point data is transferred over bits 47-8 of the bus. 16-bit short word data is transferred over bits 31–16 of the bus. In PROM boot mode, 8-bit data is transferred over bits 23–16. Pull-up resistors on unused DATA pins are not necessary. O/T MS3-0 Memory Select Lines. These lines are asserted (low) as chip selects for the corresponding banks of external memory. Memory bank size must be defined in the ADSP-2106x's system control register (SYSCON). The MS3–0 lines are decoded memory address lines that change at the same time as the other address lines. When no external memory access is occurring, the MS3–0 lines are inactive; they are active however when a conditional memory access instruction is executed, whether or not the condition is true. MSO can be used with the PAGE signal to implement a bank of DRAM memory (Bank 0). In a multiprocessing system the MS3-0 lines are output by the bus master. RD I/O/T Memory Read Strobe. This pin is asserted (low) when the ADSP-2106x reads from external memory devices or from the internal memory of other ADSP-2106xs. External devices (including other ADSP-2106xs) must assert RD to read from the ADSP-2106x's internal memory. In a multiprocessing system, RD is output by the bus master and is input by all other ADSP-2106xs. WR I/O/T Memory Write Strobe. This pin is asserted (low) when the ADSP-2106x writes to external memory devices or to the internal memory of other ADSP-2106xs. External devices must assert \overline{WR} to write to the ADSP-2106x's internal memory. In a multiprocessing system, \overline{WR} is output by the bus master and is input by all other ADSP-2106xs. PAGE O/T DRAM Page Boundary. The ADSP-2106x asserts this pin to signal that an external DRAM page boundary has been crossed. DRAM page size must be defined in the ADSP-2106x's memory control register (WAIT). DRAM can only be implemented in external memory Bank 0; the PAGE signal can only be activated for Bank 0 accesses. In a multiprocessing system, PAGE is output by the bus master ADRCLK O/T Clock Output Reference. In a multiprocessing system, ADRCLK is output by the bus master. I/O/T SW Synchronous Write Select. This signal is used to interface the ADSP-2106x to synchronous memory devices (including other ADSP-2106xs). The ADSP-2106x asserts SW (low) to provide an early indication of an impending write cycle, which can be aborted if \overline{WR} is not later asserted (e.g., in a conditional write instruction). In a multiprocessing system, SW is output by the bus master and is input by all other ADSP-2106xs to determine if the multiprocessor memory access is a read or write. SW is asserted at the same time as the address output. A host processor using synchronous writes must assert this pin when writing to the ADSP-2106x(s).

Table 3. Pin Descriptions

A = Asynchronous, G = Ground, I = Input, O = Output, P = Power Supply, S = Synchronous, (A/D) = Active Drive, (O/D) = Open Drain, T = Three-State (when SBTS is asserted, or when the ADSP-2106x is a bus slave)

Table 3. Pin Descriptions (Continued)

Pin	Туре	Function
АСК	I/O/S	Memory Acknowledge. External devices can deassert ACK (low) to add wait states to an external memory access. ACK is used by I/O devices, memory controllers, or other peripherals to hold off completion of an external memory access. The ADSP-2106x deasserts ACK as an output to add waitstates to a synchronous access of its internal memory. In a multiprocessing system, a slave ADSP-2106x deasserts the bus master's ACK input to add wait state(s) to an access of its internal memory. The bus master has a keeper latch on its ACK pin that maintains the input at the level to which it was last driven.
<u>SBTS</u>	I/S	Suspend Bus Three-State. External devices can assert SBTS (low) to place the external bus address, data, selects, and strobes in a high impedance state for the following cycle. If the ADSP-2106x attempts to access external memory while SBTS is asserted, the processor will halt and the memory access will not be completed until SBTS is deasserted. SBTS should only be used to recover from host processor/ADSP-2106x deadlock, or used with a DRAM controller.
IRQ2-0	I/A	Interrupt Request Lines. May be either edge-triggered or level-sensitive.
FLAG3-0	I/O/A	Flag Pins. Each is configured via control bits as either an input or output. As an input, they can be tested as a condition. As an output, they can be used to signal external peripherals.
TIMEXP	0	Timer Expired. Asserted for four cycles when the timer is enabled and TCOUNT decrements to zero.
HBR	I/A	Host Bus Request. This pin must be asserted by a host processor to request control of the ADSP-2106x's external bus. When HBR is asserted in a multiprocessing system, the ADSP-2106x that is bus master will relinquish the bus and assert HBG. To relinquish the bus, the ADSP-2106x places the address, data, select and strobe lines in a high impedance state. HBR has priority over all ADSP-2106x bus requests BR6–1 in a multiprocessing system.
HBG	I/O	Host Bus Grant. Acknowledges a bus request, indicating that the host processor may take control of the external bus. HBG is asserted (held low) by the ADSP-2106x until HBR is released. In a multiprocessing system, HBG is output by the ADSP-2106x bus master and is monitored by all others.
CS	I/A	Chip Select. Asserted by host processor to select the ADSP-2106x.
REDY	O (O/D)	Host Bus Acknowledge. The ADSP-2106x deasserts REDY (low) to add wait states to an asynchronous access of its internal memory or IOP registers by a host. This pin is an open-drain output (O/D) by default; it can be programmed in the ADREDY bit of the SYSCON register to be active drive (A/D). REDY will only be output if the \overline{CS} and \overline{HBR} inputs are asserted.
DMAR2-1	I/A	DMA Request 1 (DMA Channel 7) and DMA Request 2 (DMA Channel 8).
DMAG2-1	O/T	DMA Grant 1 (DMA Channel 7) and DMA Grant 2 (DMA Channel 8).
BR6-1	I/O/S	Multiprocessing Bus Requests. Used by multiprocessing ADSP-2106xs to arbitrate for bus master-ship. An ADSP-2106x only drives its own BRx line (corresponding to the value of its ID2-0 inputs) and monitors all others. In a multiprocessor system with less than six ADSP-2106xs, the unused BRx pins should be pulled high; the processor's own BRx line must not be pulled high or low because it is an output.
ID2-0	O (O/D)	Multiprocessing ID. Determines which multiprocessing bus request ($\overline{BR1} - \overline{BR6}$) is used by ADSP-2106x. ID = 001 corresponds to $\overline{BR1}$, ID = 010 corresponds to $\overline{BR2}$, etc. ID = 000 in single-processor systems. These lines are a system configuration selection that should be hardwired or changed at reset only.
RPBA	I/S	Rotating Priority Bus Arbitration Select. When RPBA is high, rotating priority for multiprocessor bus arbitration is selected. When RPBA is low, fixed priority is selected. This signal is a system configuration selection that must be set to the same value on every ADSP-2106x. If the value of RPBA is changed during system operation, it must be changed in the same CLKIN cycle on every ADSP-2106x.
CPA	I/O (O/D)	Core Priority Access. Asserting its \overline{CPA} pin allows the core processor of an ADSP-2106x bus slave to interrupt background DMA transfers and gain access to the external bus. \overline{CPA} is an open drain output that is connected to all ADSP-2106xs in the system. The \overline{CPA} pin has an internal 5 k Ω pull-up resistor. If core access priority is not required in a system, the \overline{CPA} pin should be left unconnected.
DTx	0	Data Transmit (Serial Ports 0, 1). Each DT pin has a 50 k Ω internal pull-up resistor.
DRx	I	Data Receive (Serial Ports 0, 1). Each DR pin has a 50 k Ω internal pull-up resistor.
TCLKx	I/O	Transmit Clock (Serial Ports 0, 1). Each TCLK pin has a 50 k Ω internal pull-up resistor.
RCLKx	1/0	Receive Clock (Serial Ports 0, 1). Each RCLK pin has a 50 k Ω internal pull-up resistor.
A = Asynchronou	ıs, G = Ground	I, I = Input, $O = Output$, $P = Power Supply, S = Synchronous, (A/D) = Active Drive, (O/D) = Open Drain,$

T = Three-State (when SBTS is asserted, or when the ADSP-2106x is a bus slave)

Table 3. Pin Descriptions (Continued)

Pin	Type	Function						
TFSx	1/0	Transmit Frame Sync (Serial Ports 0, 1).						
RFSx	1/0	eceive Frame Sync (Serial Ports 0, 1).						
LxDAT3-0	I/O	Ik Port Data (Link Ports 0–5). Each LxDAT pin has a 50 k Ω internal pull-down resistor that is enabled or abled by the LPDRD bit of the LCOM register.						
LxCLK	I/O	Link Port Clock (Link Ports 0–5). Each LxCLK pin has a 50 k Ω internal pull-down resistor that is enabled or disabled by the LPDRD bit of the LCOM register.						
LxACK	I/O	Link Port Acknowledge (Link Ports 0–5). Each LxACK pin has a 50 k Ω internal pull-down resistor that is enabled or disabled by the LPDRD bit of the LCOM register.						
EBOOT	I	EPROM Boot Select. When EBOOT is high, the ADSP-2106x is configured for booting from an 8-bit EPROM. When EBOOT is low, the LBOOT and BMS inputs determine booting mode. See the table in the BMS pin description below. This signal is a system configuration selection that should be hardwired.						
LBOOT	1	Link Boot. When LBOOT is high, the ADSP-2106x is configured for link port booting. When LBOOT is low, the ADSP-2106x is configured for host processor booting or no booting. See the table in the BMS pin description below. This signal is a system configuration selection that should be hardwired.						
BMS	I/OT	Boot Memory Select. Output: Used as chip select for boot EPROM devices (when EBOOT = 1, LBOOT = 0). In a multiprocessor system, \overline{BMS} is output by the bus master. <i>Input</i> : When low, indicates that no booting will occur and that ADSP-2106x will begin executing instructions from external memory. See table below. This input is a system configuration selection that should be hardwired. *Three-statable only in EPROM boot mode (when \overline{BMS} is an output).						
		EBOOT LBOOT BMS Booting Mode						
		1 0 Output EPROM (Connect BMS to EPROM chip select.)						
		0 0 1 (Input) Host Processor						
		U I I (Input) Link Port						
		0 0 (input) No Booting. Processor executes from external memory.						
		1 1 x (Input) Reserved						
CLKIN	I	Clock In. External clock input to the ADSP-2106x. The instruction cycle rate is equal to CLKIN. CLKIN should not be halted, changed, or operated below the minimum specified frequency.						
RESET	I/A	Processor Reset. Resets the ADSP-2106x to a known state and begins program execution at the program memory location specified by the hardware reset vector address. This input must be asserted (low) at power-up.						
ТСК	I	Test Clock (JTAG). Provides an asynchronous clock for JTAG boundary scan.						
тмѕ	I/S	Test Mode Select (JTAG). Used to control the test state machine. TMS has a 20 k Ω internal pull-up resistor.						
TDI	I/S	Test Data Input (JTAG). Provides serial data for the boundary scan logic. TDI has a 20 k Ω internal pull-up resistor.						
TDO	0	Test Data Output (JTAG). Serial scan output of the boundary scan path.						
TRST	I/A	Test Reset (JTAG). Resets the test state machine. TRST must be asserted (pulsed low) after power-up or held low for proper operation of the ADSP-2106x. TRST has a 20 k Ω internal pull-up resistor.						
EMU	0	Emulation Status. Must be connected to the ADSP-2106x EZ-ICE target board connector only.						
ICSA	0	Reserved, leave unconnected.						
VDD	Р	Power Supply; nominally 5.0 V dc for 5 V devices or 3.3 V dc for 3.3 V devices. (30 pins).						
GND	G	Power Supply Return. (30 pins).						
NC		Do Not Connect. Reserved pins which must be left open and unconnected.						
A = Asynchronous	, G = Ground,	I = Input, O = Output, P = Power Supply, S = Synchronous, (A/D) = Active Drive, (O/D) = Open Drain,						

T = Three-State (when \overline{SBTS} is asserted, or when the ADSP-2106x is a bus slave)

TARGET BOARD CONNECTOR FOR EZ-ICE PROBE

The ADSP-2106x EZ-ICE[®] Emulator uses the IEEE 1149.1JTAG test access port of the ADSP-2106x to monitor and control the target board processor during emulation. The EZ-ICE probe requires the ADSP-2106x's CLKIN, TMS, TCK, TRST, TDI, TDO, EMU, and GND signals be made accessible on the target system via a 14-pin connector (a 2-row 7-pin strip header) such as that shown in Figure 5. The EZ-ICE probe plugs directly onto this connector for chip-on-board emulation. You must add this connector to your target board design if you intend to use the ADSP-2106x EZ-ICE. The total trace length between the EZ-ICE connector and the furthest device sharing the EZ-ICE JTAG pin should be limited to 15 inches maximum for guaranteed operation. This length restriction must include EZ-ICE JTAG signals that are routed to one or more ADSP-2106x devices, or a combination of ADSP-2106x devices and other JTAG devices on the chain.

Figure 5. Target Board Connector for ADSP-2106x EZ-ICE Emulator (Jumpers in Place)

The 14-pin, 2-row pin strip header is keyed at the Pin 3 location—Pin 3 must be removed from the header. The pins must be 0.025 inch square and at least 0.20 inch in length. Pin spacing should be 0.1×0.1 inches. Pin strip headers are available from vendors such as 3M, McKenzie, and Samtec. The BTMS, BTCK, BTRST, and BTDI signals are provided so that the test access port can also be used for board-level testing.

When the connector is not being used for emulation, place jumpers on the Bxxx pins as shown in Figure 5. If you are not going to use the test access port for board testing, tie $\overline{\text{BTRST}}$ to GND and tie or pull up BTCK to V_{DD}. The $\overline{\text{TRST}}$ pin must be asserted (pulsed low) after power-up (through $\overline{\text{BTRST}}$ on the connector) or held low for proper operation of the ADSP-2106x. None of the Bxxx pins (Pins 5, 7, 9, and 11) are connected on the EZ-ICE probe.

The JTAG signals are terminated on the EZ-ICE probe as shown in Table 4.

Signal	Termination
TMS	Driven Through 22 Ω Resistor (16 mA Driver)
TCK	Driven at 10 MHz Through 22 Ω Resistor (16 mA Driver)
TRST ¹	Active Low Driven Through 22 Ω Resistor (16 mA Driver) (Pulled-Up by On-Chip 20 k Ω Resistor)
TDI	Driven by 22 Ω Resistor (16 mA Driver)
TDO	One TTL Load, Split Termination (160/220)
CLKIN	One TTL Load, Split Termination (160/220)
EMU	Active Low 4.7 k Ω Pull-Up Resistor, One TTL Load (Open-Drain Output from the DSP)

¹TRST is driven low until the EZ-ICE probe is turned on by the emulator at software start-up. After software start-up, is driven high.

Figure 6 shows JTAG scan path connections for systems that contain multiple ADSP-2106x processors.

Connecting CLKIN to Pin 4 of the EZ-ICE header is optional. The emulator only uses CLKIN when directed to perform operations such as starting, stopping, and single-stepping multiple ADSP-2106xs in a synchronous manner. If you do not need these operations to occur synchronously on the multiple processors, simply tie Pin 4 of the EZ-ICE header to ground.

If synchronous multiprocessor operations are needed and CLKIN is connected, clock skew between the multiple ADSP-2106x processors and the CLKIN pin on the EZ-ICE header must be minimal. If the skew is too large, synchronous operations may be off by one or more cycles between processors. For synchronous multiprocessor operation TCK, TMS, CLKIN, and EMU should be treated as critical signals in terms of skew, and should be laid out as short as possible on your board. If TCK, TMS, and CLKIN are driving a large number of ADSP-2106xs (more than eight) in your system, then treat them as a "clock tree" using multiple drivers to minimize skew. (See Figure 7 and "JTAG Clock Tree" and "Clock Distribution" in the "High Frequency Design Considerations" section of the *ADSP-2106x User's Manual*, Revision 2.1.)

If synchronous multiprocessor operations are not needed (i.e., CLKIN is not connected), just use appropriate parallel termination on TCK and TMS. TDI, TDO, EMU and TRST are not critical signals in terms of skew.

For complete information on the SHARC EZ-ICE, see the *ADSP-21000 Family JTAG EZ-ICE User's Guide and Reference*.

INTERNAL POWER DISSIPATION (5 V)

These specifications apply to the internal power portion of $\rm V_{\rm DD}$ only. For a complete discussion of the code used to measure power dissipation, see the technical note "SHARC Power Dissipation Measurements."

Specifications are based on the operating scenarios.

Operation	Peak Activity (I _{DDINPEAK})	High Activity (I _{DDINHIGH})	Low Activity (I _{DDINLOW})
Instruction Type	Multifunction	Multifunction	Single Function
Instruction Fetch	Cache	Internal Memory	Internal Memory
Core memory Access	2 Per Cycle (DM and PM)	1 Per Cycle (DM)	None
Internal Memory DMA	1 Per Cycle	1 Per 2 Cycles	1 Per 2 Cycles

To estimate power consumption for a specific application, use the following equation where% is the amount of time your program spends in that state:

%PEAK $I_{DDINPEAK}$ +%HIGH $I_{DDINHIGH}$ +%LOW $I_{DDINLOW}$ +%IDLE I_{DDIDLE} = Power Consumption

Parameter	Test Conditions	Max	Unit
I _{DDINPEAK} Supply Current (Internal) ¹	$t_{CK} = 30 \text{ ns}, V_{DD} = Max$	745	mA
	$t_{CK} = 25 \text{ ns}, V_{DD} = Max$	850	mA
I _{DDINHIGH} Supply Current (Internal) ²	$t_{CK} = 30 \text{ ns}, V_{DD} = Max$	575	mA
	$t_{CK} = 25 \text{ ns}, V_{DD} = Max$	670	mA
I _{DDINLOW} Supply Current (Internal) ²	$t_{CK} = 30 \text{ ns}, V_{DD} = Max$	340	mA
	$t_{CK} = 25 \text{ ns}, V_{DD} = Max$	390	mA
I _{DDIDLE} Supply Current (Idle) ³	V _{DD} = Max	200	mA

¹The test program used to measure I_{DDINPEAK} represents worst case processor operation and is not sustainable under normal application conditions. Actual internal power measurements made using typical applications are less than specified.

²I_{DDINHIGH} is a composite average based on a range of high activity code. I_{DDINLOW} is a composite average based on a range of low activity code.

³Idle denotes ADSP-2106x state during execution of IDLE instruction.

ADSP-21060L/ADSP-21062L SPECIFICATIONS

Note that component specifications are subject to change without notice.

OPERATING CONDITIONS (3.3 V)

			A Grade		C Grade		K Grade	
Parameter	Description	Min	Max	Min	Max	Min	Max	Unit
V _{DD}	Supply Voltage	3.15	3.45	3.15	3.45	3.15	3.45	V
T _{CASE}	Case Operating Temperature	-40	+85	-40	+100	-40	+85	°C
$V_{IH}1^1$	High Level Input Voltage @ V _{DD} = Max	2.0	$V_{DD} + 0.5$	2.0	$V_{DD} + 0.5$	2.0	$V_{DD} + 0.5$	V
V _{IH} 2 ²	High Level Input Voltage @ V _{DD} = Max	2.2	$V_{DD} + 0.5$	2.2	$V_{DD} + 0.5$	2.2	$V_{DD} + 0.5$	V
V _{IL} ^{1, 2}	Low Level Input Voltage @ V _{DD} = Min	-0.5	+0.8	-0.5	+0.8	-0.5	+0.8	V

¹Applies to input and bidirectional pins: DATA47-0, ADDR31-0, RD, WR, SW, ACK, SBTS, IRQ2-0, FLAG3-0, HGB, CS, DMAR1, DMAR2, BR6-1, ID2-0, RPBA, CPA, TFS0, TFS1, RFS0, RFS1, LxDAT3-0, LxCLK, LxACK, EBOOT, LBOOT, BMS, TMS, TDI, TCK, HBR, DR0, DR1, TCLK0, TCLK1, RCLK0, RCLK1. ²Applies to input pins: CLKIN, RESET, TRST.

ELECTRICAL CHARACTERISTICS (3.3 V)

Parameter	Description	Test Conditions	Min	Max	Unit
V _{OH} ^{1, 2}	High Level Output Voltage	@ $V_{DD} = Min$, $I_{OH} = -2.0 \text{ mA}$	2.4		V
V _{OL} ^{1, 2}	Low Level Output Voltage	@ $V_{DD} = Min$, $I_{OL} = 4.0 \text{ mA}$		0.4	V
I _{IH} ^{3, 4}	High Level Input Current	$@V_{DD} = Max, V_{IN} = V_{DD} Max$		10	μA
I_{\parallel}^{3}	Low Level Input Current	@ $V_{DD} = Max, V_{IN} = 0 V$		10	μA
I _{ILP} ⁴	Low Level Input Current	@ $V_{DD} = Max, V_{IN} = 0 V$		150	μA
I _{OZH} ^{5, 6, 7, 8}	Three-State Leakage Current	$@V_{DD} = Max, V_{IN} = V_{DD} Max$		10	μΑ
I _{OZL} ^{5, 9}	Three-State Leakage Current	@ $V_{DD} = Max, V_{IN} = 0 V$		10	μΑ
I _{OZHP} 9	Three-State Leakage Current	$@V_{DD} = Max, V_{IN} = V_{DD} Max$		350	μΑ
l _{ozlc} ⁷	Three-State Leakage Current	@ $V_{DD} = Max, V_{IN} = 0 V$		1.5	mA
I _{OZLA} ¹⁰	Three-State Leakage Current	@ $V_{DD} = Max, V_{IN} = 1.5 V$		350	μA
I _{OZLAR} ⁸	Three-State Leakage Current	@ $V_{DD} = Max, V_{IN} = 0 V$		4.2	mA
I _{OZLS} ⁶	Three-State Leakage Current	@ $V_{DD} = Max, V_{IN} = 0 V$		150	μA
C _{IN} ^{11, 12}	Input Capacitance	$f_{IN} = 1 \text{ MHz}, T_{CASE} = 25^{\circ}\text{C}, V_{IN} = 2.5 \text{ V}$		4.7	pF

¹Applies to output and bidirectional pins: DATA47-0, ADDR31-0, MS3-0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAG3-0, TIMEXP, HBG, REDY, DMAG1, DMAG2, BR6-1, CPA, DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, LxDAT3-0, LxCLK, LxACK, BMS, TDO, EMU, ICSA.

²See Figure 35, Output Drive Currents 3.3 V, for typical drive current capabilities.

³Applies to input pins: ACK, <u>SBTS</u>, <u>IRQ2</u>–0, <u>HBR</u>, <u>CS</u>, <u>DMAR1</u>, <u>DMAR2</u>, ID2–0, RPBA, EBOOT, LBOOT, CLKIN, <u>RESET</u>, TCK.

⁴Applies to input pins with internal pull-ups: DR0, DR1, TRST, TMS, TDI.

⁵ Applies to three-statable pins: DATA47-0, ADDR31-0, MS3-0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAG3-0, HBG, REDY, DMAG1, DMAG2, BMS, BR6-1, TFSx, RFSx, TDO, $\overline{\text{EMU}}$. (Note that ACK is pulled up internally with 2 k Ω during reset in a multiprocessor system, when ID2–0 = 001 and another ADSP-2106x is not requesting bus mastership.)

⁶ Applies to three-statable pins with internal pull-ups: DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1.

⁷ Applies to \overline{CPA} pin.

 8 Applies to ACK pin when pulled up. (Note that ACK is pulled up internally with 2 k Ω during reset in a multiprocessor system, when ID2–0 = 001 and another ADSP-2106xL is not requesting bus mastership).

⁹Applies to three-statable pins with internal pull-downs: LxDAT3-0, LxCLK, LxACK.

¹⁰Applies to ACK pin when keeper latch enabled.

¹¹Applies to all signal pins.

¹²Guaranteed but not tested.

EXTERNAL POWER DISSIPATION (3.3 V)

Total power dissipation has two components, one due to internal circuitry and one due to the switching of external output drivers. Internal power dissipation is dependent on the instruction execution sequence and the data operands involved. Internal power dissipation is calculated in the following way:

$$P_{INT} = I_{DDIN} \times V_{DD}$$

The external component of total power dissipation is caused by the switching of output pins. Its magnitude depends on:

- the number of output pins that switch during each cycle (O)
- the maximum frequency at which they can switch (f)
- their load capacitance (C)
- their voltage swing $(\mathrm{V}_{\mathrm{DD}})$

and is calculated by:

 $P_{EXT} = O \times C \times V_{DD}^{2} \times f$

The load capacitance should include the processor's package capacitance (CIN). The switching frequency includes driving the load high and then back low. Address and data pins can

drive high and low at a maximum rate of $1/(2t_{CK})$. The write strobe can switch every cycle at a frequency of $1/t_{CK}$. Select pins switch at $1/(2t_{CK})$, but selects can switch on each cycle.

Example: Estimate P_{EXT} with the following assumptions:

- A system with one bank of external data memory RAM (32-bit)
- + Four 128K \times 8 RAM chips are used, each with a load of 10 pF
- External data memory writes occur every other cycle, a rate of $1/(4t_{CK})$, with 50% of the pins switching
- The instruction cycle rate is 40 MHz ($t_{CK} = 25$ ns)

The $P_{\mbox{\scriptsize EXT}}$ equation is calculated for each class of pins that can drive:

A typical power consumption can now be calculated for these conditions by adding a typical internal power dissipation:

$$P_{\text{TOTAL}} = P_{EXT} + (I_{DDIN2} \times 3.3 \text{ V})$$

Note that the conditions causing a worst-case P_{EXT} are different from those causing a worst-case P_{INT} . Maximum P_{INT} cannot occur while 100% of the output pins are switching from all ones to all zeros. Note also that it is not common for an application to have 100% or even 50% of the outputs switching simultaneously.

Pin Type	No. of Pins	% Switching	×C	×f	$\times V_{DD}^2$	= P _{EXT}
Address	15	50	× 44.7 pF	imes 10 MHz	× 10.9 V	= 0.037 W
MSO	1	0	× 44.7 pF	× 10 MHz	× 10.9 V	= 0.000 W
WR	1	-	× 44.7 pF	imes 20 MHz	× 10.9 V	= 0.010 W
Data	32	50	× 14.7 pF	imes 10 MHz	× 10.9 V	= 0.026 W
ADDRCLK	1	-	× 4.7 pF	imes 20 MHz	× 10.9 V	= 0.001 W

 $P_{EXT} = 0.074 W$

ABSOLUTE MAXIMUM RATINGS

Stresses greater than those listed Table 7 may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions greater

than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 7. Absolute Maximum Ratings

	ADSP-21060/ADSP-21060C ADSP-21062	ADSP-21060L/ADSP-21060LC ADSP-21062L
Parameter	5 V	3.3 V
Supply Voltage (V _{DD})	–0.3 V to +7.0 V	–0.3 V to +4.6 V
Input Voltage	-0.5 V to V _{DD} + 0.5 V	-0.5 V to V _{DD} $+0.5$ V
Output Voltage Swing	-0.5 V to V _{DD} + 0.5 V	-0.5 V to V _{DD} + 0.5 V
Load Capacitance	200 pF	200 pF
Storage Temperature Range	–65°C to +150°C	–65°C to +150°C
Lead Temperature (5 seconds)	280°C	280°C
Junction Temperature Under Bias	130°C	130°C

Table 6. External Power Calculations (3.3 V Devices)

Figure 15. Memory Write—Bus Master

Synchronous Read/Write—Bus Master

Use these specifications for interfacing to external memory systems that require CLKIN—relative timing or for accessing a slave ADSP-2106x (in multiprocessor memory space). These synchronous switching characteristics are also valid during asynchronous memory reads and writes except where noted (see Memory Read—Bus Master on Page 25 and Memory WriteBus Master on Page 26). When accessing a slave ADSP-2106x, these switching characteristics must meet the slave's timing requirements for synchronous read/writes (see Synchronous Read/Write—Bus Slave on Page 30). The slave ADSP-2106x must also meet these (bus master) timing requirements for data and acknowledge setup and hold times.

Table 16. Synchronous Read/Write-Bus Master

		5	5 V and 3.3 V	
Parameter		Min	Max	Unit
Timing Requirements				
t _{SSDATI}	Data Setup Before CLKIN	3 + DT/8		ns
t _{HSDATI}	Data Hold After CLKIN	3.5 – DT/8		ns
t _{DAAK}	ACK Delay After Address, Selects ^{1, 2}		14 + 7DT/8 + W	ns
t _{SACKC}	ACK Setup Before CLKIN ²	6.5+DT/4		ns
t _{HACK}	ACK Hold After CLKIN	-1 - DT/4		ns
Switching Characteristic	S			
t _{DADRO}	Address, MSx, BMS, SW Delay After CLKIN ¹		7 – DT/8	ns
t _{HADRO}	Address, MSx, BMS, SW Hold After CLKIN	-1 - DT/8		ns
t _{DPGC}	PAGE Delay After CLKIN	9 + DT/8	16 + DT/8	ns
t _{DRDO}	RD High Delay After CLKIN	-2 - DT/8	4 – DT/8	ns
t _{DWRO}	WR High Delay After CLKIN	-3 - 3DT/16	4 – 3DT/16	ns
t _{DRWL}	RD/WR Low Delay After CLKIN	8 + DT/4	12.5 + DT/4	ns
t _{SDDATO}	Data Delay After CLKIN		19 + 5DT/16	ns
t _{DATTR}	Data Disable After CLKIN ³	0 – DT/8	7 – DT/8	ns
t _{DADCCK}	ADRCLK Delay After CLKIN	4 + DT/8	10 + DT/8	ns
t _{ADRCK}	ADRCLK Period	t _{CK}		ns
t _{ADRCKH}	ADRCLK Width High	(t _{CK} /2 – 2)		ns
t _{ADRCKL}	ADRCLK Width Low	(t _{CK} /2 – 2)		ns

¹The falling edge of \overline{MSx} , \overline{SW} , \overline{BMS} is referenced.

² ACK delay/setup: user must meet t_{DAAK} or t_{DSAK} or synchronous specification t_{SAKC} for deassertion of ACK (low), all three specifications must be met for assertion of ACK (high).

³See Example System Hold Time Calculation on Page 48 for calculation of hold times given capacitive and dc loads.

Asynchronous Read/Write—Host to ADSP-2106x

Use these specifications for asynchronous host processor accesses of an ADSP-2106x, after the host has asserted \overline{CS} and \overline{HBR} (low). After \overline{HBG} is returned by the ADSP-2106x, the host can drive the \overline{RD} and \overline{WR} pins to access the ADSP-2106x's internal memory or IOP registers. \overline{HBR} and \overline{HBG} are assumed low for this timing. Not required if and address are valid t_{HBGRCSV} after goes low. For first access after asserted, ADDR31–0 must be a non-MMS value 1/2 t_{CLK} before or goes low or by $t_{HBGRCSV}$ after goes low. This is easily accomplished by driving an upper address signal high when is asserted. See the "Host Processor Control of the ADSP-2106x" section in the ADSP-2106x SHARC User's Manual, Revision 2.1.

Table 19. Read Cycle

		5 V and 3.3 V		
Parameter		Min	Max	Unit
Timing Requirem	ents			
t _{SADRDL}	Address Setup/CS Low Before RD Low ¹	0		ns
t _{HADRDH}	Address Hold/CS Hold Low After RD	0		ns
t _{WRWH}	RD/WR High Width	6		ns
t _{DRDHRDY}	RD High Delay After REDY (O/D) Disable	0		ns
t _{DRDHRDY}	RD High Delay After REDY (A/D) Disable	0		ns
Switching Charac	teristics			
t _{SDATRDY}	Data Valid Before REDY Disable from Low	2		ns
t _{DRDYRDL}	REDY (O/D) or (A/D) Low Delay After \overline{RD} Low ²		10	ns
t _{RDYPRD}	REDY (O/D) or (A/D) Low Pulse Width for Read	45 + 21DT/	16	ns
t _{HDARWH}	Data Disable After RD High ³	2	8	ns

¹Not required if RD and address are valid t_{HBGRCSV} after HBG goes low. For first access after HBR asserted, ADDR31-0 must be a non-MMS value 1/2 t_{CLK} before RD or WR goes low or by t_{HBGRCSV} after HBG goes low. This is easily accomplished by driving an upper address signal high when HBG is asserted. See the "Host Processor Control of the ADSP-2106x" section in the ADSP-2106x SHARC User's Manual, Revision 2.1.

²For ADSP-21060L, specification is 10.5 ns max; for ADSP-21060LC, specification is 12.5 ns max.

³For ADSP-21060L/ADSP-21060LC, specification is 2 ns min, 8.5 ns max.

Table 20. Write Cycle

		5 V and	3.3 V	
Parameter		Min	Max	Unit
Timing Requiremen	ts			
t _{SCSWRL}	CS Low Setup Before WR Low	0		ns
t _{HCSWRH}	CS Low Hold After WR High	0		ns
t _{SADWRH}	Address Setup Before WR High	5		ns
t _{HADWRH}	Address Hold After WR High	2		ns
t _{WWRL}	WR Low Width	7		ns
t _{WRWH}	RD/WR High Width	6		ns
t _{DWRHRDY}	WR High Delay After REDY (O/D) or (A/D) Disable	0		ns
t _{SDATWH}	Data Setup Before WR High	5		ns
t _{HDATWH}	Data Hold After WR High	1		ns
Switching Character	ristics			
t _{DRDYWRL}	REDY (O/D) or (A/D) Low Delay After WR/CS Low		10	ns
t _{RDYPWR}	REDY (O/D) or (A/D) Low Pulse Width for Write	15 + 7DT/16		ns
t _{SRDYCK}	REDY (O/D) or (A/D) Disable to CLKIN	1 + 7DT/16	8 + 7DT/16	ns

*MEMORY READ BUS MASTER, MEMORY WRITE BUS MASTER, OR SYNCHRONOUS READ/WRITE BUS MASTER TIMING SPECIFICATIONS FOR ADDR31–0, RD, WR, SW MS3–0, AND ACK ALSO APPLY HERE.

Figure 23. DMA Handshake

Table 27. Link Ports—Transmit

			5 V		3.3 V	
Parameter		Min	Max	Min	Max	Unit
Timing Require	ements					
t _{SLACH}	LACK Setup Before LCLK High	19		19		ns
t _{HLACH}	LACK Hold After LCLK High	-6.75		-6.5		ns
Switching Cha	racteristics					
t _{DLCLK}	Data Delay After CLKIN		8		8	ns
t _{DLDCH}	Data Delay After LCLK High ¹		2.25		2.25	ns
t _{HLDCH}	Data Hold After LCLK High ²	-2.0		-2		ns
t _{LCLKTWL}	LCLK Width Low ³	(t _{CK} /4) – 1	(t _{CK} /4) + 1.25	(t _{CK} /4) – 0.75	(t _{CK} /4) + 1.5	ns
t _{LCLKTWH}	LCLK Width High ⁴	(t _{CK} /4) – 1.25	(t _{CK} /4) + 1	(t _{CK} /4) – 1.5	(t _{CK} /4) + 1	ns
t _{DLACLK}	LCLK Low Delay After LACK High	(t _{CK} /4) + 9	$(3 \times t_{CK}/4) + 16.5$	(t _{CK} /4) + 9	(3 × t _{CK} /4) + 16.5	ns

¹For ADSP-21060/ADSP-21060C, specification is 2.5 ns max.

 2 For ADSP-21062L, specification is –2.25 ns min.

 3 For ADSP-21060, specification is (t_{CK}/4) - 1 ns min, (t_{CK}/4) + 1 ns max; for ADSP-21060C/ADSP-21062L, specification is (t_{CK}/4) - 1 ns min, (t_{CK}/4) + 1.5 ns max.

 4 For ADSP-21060, specification is (t_{CK}/4) - 1 ns min, (t_{CK}/4) + 1 ns max; for ADSP-21060C, specification is (t_{CK}/4) - 1.5 ns min, (t_{CK}/4) + 1 ns max.

THE t_{slach} requirement applies to the rising edge of LCLK only for the first nibble transmitted.

RECEIVE

LINK PORT ENABLE/THREE-STATE DELAY FROM INSTRUCTION

LINK PORT ENABLE OR THREE-STATE TAKES EFFECT 2 CYCLES AFTER A WRITE TO A LINK PORT CONTROL REGISTER.

LINK PORT INTERRUPT SETUP TIME

Figure 24. Link Ports—Receive

Serial Ports

For serial ports, see Table 28, Table 29, Table 30, Table 31, Table 32, Table 33, Table 35, Figure 26, and Figure 25. To determine whether communication is possible between two devices

Table 28. Serial Ports-External Clock

at clock speed n, the following specifications must be confirmed: 1) frame sync delay and frame sync setup and hold, 2) data delay and data setup and hold, and 3) SCLK width.

		5	V and 3.3 V	
Parameter		Min	Max	Unit
Timing Requ	irements			
t _{SFSE}	TFS/RFS Setup Before TCLK/RCLK ¹	3.5		ns
t _{HFSE}	TFS/RFS Hold After TCLK/RCLK ^{1, 2}	4		ns
t _{SDRE}	Receive Data Setup Before RCLK ¹	1.5		ns
t _{HDRE}	Receive Data Hold After RCLK ¹	6.5		ns
t _{SCLKW}	TCLK/RCLK Width ³	9		ns
t _{SCLK}	TCLK/RCLK Period	t _{CK}		ns

¹Referenced to sample edge.

 2 RFS hold after RCK when MCE = 1, MFD = 0 is 0 ns minimum from drive edge. TFS hold after TCK for late external TFS is 0 ns minimum from drive edge. 3 For ADSP-21060/ADSP-21060C/ADSP-21060LC, specification is 9.5 ns min.

Table 29. Serial Ports—Internal Clock

		5	5 V and 3.3 V	
Parameter		Min	Max	Unit
Timing Req	uirements			
t _{SFSI}	TFS Setup Before TCLK ¹ ; RFS Setup Before RCLK ¹	8		ns
t _{HFSI}	TFS/RFS Hold After TCLK/RCLK ^{1, 2}	1		ns
t _{SDRI}	Receive Data Setup Before RCLK ¹	3		ns
t _{HDRI}	Receive Data Hold After RCLK ¹	3		ns

¹Referenced to sample edge.

²RFS hold after RCK when MCE = 1, MFD = 0 is 0 ns minimum from drive edge. TFS hold after TCK for late external TFS is 0 ns minimum from drive edge.

Table 30. Serial Ports-External or Internal Clock

		5 V and 3.3 V		
Parameter		Min	Max	Unit
Switching Characteristics				
t _{DFSE}	RFS Delay After RCLK (Internally Generated RFS) ¹		13	ns
t _{HOFSE}	RFS Hold After RCLK (Internally Generated RFS) ¹	3		ns

¹Referenced to drive edge.

Table 31. Serial Ports—External Clock

			5 V and 3.3 V	
Parameter		Min	Max	Unit
Switching Ch	aracteristics			
t _{DFSE}	TFS Delay After TCLK (Internally Generated TFS) ¹		13	ns
t _{HOFSE}	TFS Hold After TCLK (Internally Generated TFS) ¹	3		ns
t _{DDTE}	Transmit Data Delay After TCLK ¹		16	ns
t _{HDTE}	Transmit Data Hold After TCLK ¹	5		ns

¹Referenced to drive edge.

JTAG Test Access Port and Emulation

For JTAG Test Access Port and Emulation, see Table 36 and Figure 27.

Table 36. JTAG Test Access Port and Emulation

Parameter		Min	Max	Unit
Timing Requirements				
t _{TCK}	TCK Period	t _{CK}		ns
t _{STAP}	TDI, TMS Setup Before TCK High	5		ns
t _{HTAP}	TDI, TMS Hold After TCK High	6		ns
t _{SSYS}	System Inputs Setup Before TCK Low ¹	7		ns
t _{HSYS}	System Inputs Hold After TCK Low ^{1, 2}	18		ns
t _{TRSTW}	TRST Pulse Width	4t _{CK}		ns
Switching Characte	pristics			
t _{DTDO}	TDO Delay from TCK Low		13	ns
t _{DSYS}	System Outputs Delay After TCK Low ³		18.5	ns

¹System Inputs = DATA63-0, ADDR31-0, RD, WR, ACK, SBTS, HBR, HBG, CS, DMAR1, DMAR2, BR6-1, ID2-0, RPBA, IRQ2-0, FLAG3-0, PA, BRST, DR0, DR1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, LxDAT7-0, LxCLK, LXACK, EBOOT, LBOOT, BMS, CLKIN, RESET.

² For ADSP-21060L/ADSP-21060LC/ADSP-21062L, specification is 18.5 ns min.

³ System Outputs = DATA63-0, ADDR31-0, MS3-0, RD, WR, ACK, PAGE, CLKOUT, HBG, REDY, DMAG1, DMAG2, BR6-1, PA, BRST, CIF, FLAG3-0, TIMEXP, DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, LxDAT7-0, LxCLK, LxACK, BMS.

Figure 27. JTAG Test Access Port and Emulation

Figure 41. 240-Lead Metric Quad Flat Package, Thermally Enhanced "PowerQuad" [MQFP_PQ4] (SP-240-2) Dimensions shown in millimeters

©2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00167-0-3/13(H)

www.analog.com