

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Detuns	
Product Status	Obsolete
Туре	Floating Point
Interface	Host Interface, Link Port, Serial Port
Clock Rate	40MHz
Non-Volatile Memory	External
On-Chip RAM	512kB
Voltage - I/O	3.30V
Voltage - Core	3.30V
Operating Temperature	0°C ~ 85°C (TC)
Mounting Type	Surface Mount
Package / Case	240-BFQFP Exposed Pad
Supplier Device Package	240-MQFP-EP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-21060lksz-160

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

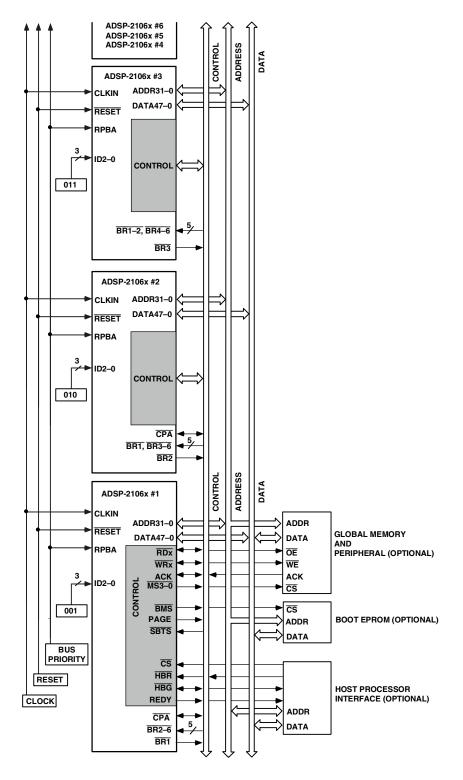


Figure 3. Shared Memory Multiprocessing System

Link Ports

The ADSP-2106x features six 4-bit link ports that provide additional I/O capabilities. The link ports can be clocked twice per cycle, allowing each to transfer eight bits of data per cycle. Linkport I/O is especially useful for point-to-point interprocessor communication in multiprocessing systems.

The link ports can operate independently and simultaneously, with a maximum data throughput of 240M bytes/s. Link port data is packed into 32- or 48-bit words, and can be directly read by the core processor or DMA-transferred to on-chip memory.

Each link port has its own double-buffered input and output registers. Clock/acknowledge handshaking controls link port transfers. Transfers are programmable as either transmit or receive.

Program Booting

The internal memory of the ADSP-2106x can be booted at system power-up from an 8-bit EPROM, a host processor, or through one of the link ports. Selection of the boot source is controlled by the BMS (boot memory select), EBOOT (EPROM Boot), and LBOOT (link/host boot) pins. 32-bit and 16-bit host processors can be used for booting. The processor also supports a no-boot mode in which instruction execution is sourced from the external memory.

DEVELOPMENT TOOLS

Analog Devices supports its processors with a complete line of software and hardware development tools, including integrated development environments (which include CrossCore[®] Embedded Studio and/or VisualDSP++[®]), evaluation products, emulators, and a wide variety of software add-ins.

Integrated Development Environments (IDEs)

For C/C++ software writing and editing, code generation, and debug support, Analog Devices offers two IDEs.

The newest IDE, CrossCore Embedded Studio, is based on the Eclipse[™] framework. Supporting most Analog Devices processor families, it is the IDE of choice for future processors, including multicore devices. CrossCore Embedded Studio seamlessly integrates available software add-ins to support real time operating systems, file systems, TCP/IP stacks, USB stacks, algorithmic software modules, and evaluation hardware board support packages. For more information visit www.analog.com/cces.

The other Analog Devices IDE, VisualDSP++, supports processor families introduced prior to the release of CrossCore Embedded Studio. This IDE includes the Analog Devices VDK real time operating system and an open source TCP/IP stack. For more information visit www.analog.com/visualdsp. Note that VisualDSP++ will not support future Analog Devices processors.

EZ-KIT Lite Evaluation Board

For processor evaluation, Analog Devices provides wide range of EZ-KIT Lite[®] evaluation boards. Including the processor and key peripherals, the evaluation board also supports on-chip emulation capabilities and other evaluation and development features. Also available are various EZ-Extenders[®], which are daughter cards delivering additional specialized functionality, including audio and video processing. For more information visit www.analog.com and search on "ezkit" or "ezextender".

EZ-KIT Lite Evaluation Kits

For a cost-effective way to learn more about developing with Analog Devices processors, Analog Devices offer a range of EZ-KIT Lite evaluation kits. Each evaluation kit includes an EZ-KIT Lite evaluation board, directions for downloading an evaluation version of the available IDE(s), a USB cable, and a power supply. The USB controller on the EZ-KIT Lite board connects to the USB port of the user's PC, enabling the chosen IDE evaluation suite to emulate the on-board processor in-circuit. This permits the customer to download, execute, and debug programs for the EZ-KIT Lite system. It also supports in-circuit programming of the on-board Flash device to store user-specific boot code, enabling standalone operation. With the full version of Cross-Core Embedded Studio or VisualDSP++ installed (sold separately), engineers can develop software for supported EZ-KITs or any custom system utilizing supported Analog Devices processors.

Software Add-Ins for CrossCore Embedded Studio

Analog Devices offers software add-ins which seamlessly integrate with CrossCore Embedded Studio to extend its capabilities and reduce development time. Add-ins include board support packages for evaluation hardware, various middleware packages, and algorithmic modules. Documentation, help, configuration dialogs, and coding examples present in these add-ins are viewable through the CrossCore Embedded Studio IDE once the add-in is installed.

Board Support Packages for Evaluation Hardware

Software support for the EZ-KIT Lite evaluation boards and EZ-Extender daughter cards is provided by software add-ins called Board Support Packages (BSPs). The BSPs contain the required drivers, pertinent release notes, and select example code for the given evaluation hardware. A download link for a specific BSP is located on the web page for the associated EZ-KIT or EZ-Extender product. The link is found in the *Product Download* area of the product web page.

Middleware Packages

Analog Devices separately offers middleware add-ins such as real time operating systems, file systems, USB stacks, and TCP/IP stacks. For more information see the following web pages:

- www.analog.com/ucos3
- www.analog.com/ucfs
- www.analog.com/ucusbd
- www.analog.com/lwip

Algorithmic Modules

To speed development, Analog Devices offers add-ins that perform popular audio and video processing algorithms. These are available for use with both CrossCore Embedded Studio and VisualDSP++. For more information visit www.analog.com and search on "Blackfin software modules" or "SHARC software modules".

Designing an Emulator-Compatible DSP Board (Target)

For embedded system test and debug, Analog Devices provides a family of emulators. On each JTAG DSP, Analog Devices supplies an IEEE 1149.1 JTAG Test Access Port (TAP). In-circuit emulation is facilitated by use of this JTAG interface. The emulator accesses the processor's internal features via the processor's TAP, allowing the developer to load code, set breakpoints, and view variables, memory, and registers. The processor must be halted to send data and commands, but once an operation is completed by the emulator, the DSP system is set to run at full speed with no impact on system timing. The emulators require the target board to include a header that supports connection of the DSP's JTAG port to the emulator.

For details on target board design issues including mechanical layout, single processor connections, signal buffering, signal termination, and emulator pod logic, see the *EE-68: Analog Devices JTAG Emulation Technical Reference* on the Analog Devices website (www.analog.com)—use site search on "EE-68." This document is updated regularly to keep pace with improvements to emulator support.

ADDITIONAL INFORMATION

This data sheet provides a general overview of the ADSP-2106x architecture and functionality. For detailed information on the ADSP-21000 family core architecture and instruction set, refer to the *ADSP-2106x SHARC User's Manual*, Revision 2.1.

RELATED SIGNAL CHAINS

A *signal chain* is a series of signal-conditioning electronic components that receive input (data acquired from sampling either real-time phenomena or from stored data) in tandem, with the output of one portion of the chain supplying input to the next. Signal chains are often used in signal processing applications to gather and process data or to apply system controls based on analysis of real-time phenomena. For more information about this term and related topics, see the "signal chain" entry in the Glossary of EE Terms on the Analog Devices website.

Analog Devices eases signal processing system development by providing signal processing components that are designed to work together well. A tool for viewing relationships between specific applications and related components is available on the www.analog.com website. The Application Signal Chains page in the Circuits from the LabTM site (http://www.analog.com/signalchains) provides:

- Graphical circuit block diagram presentation of signal chains for a variety of circuit types and applications
- Drill down links for components in each chain to selection guides and application information
- Reference designs applying best practice design techniques

Table 3. Pin Descriptions (Continued)

Pin	Туре	Function				
TFSx	I/O	Transmit Frame Sync (Serial Ports 0, 1).				
RFSx	I/O	Receive Frame Sync (Serial Ports 0, 1).				
LxDAT3-0	I/O	Link Port Data (Link Ports 0–5). Each LxDAT pin has a 50 k Ω internal pull-down resistor that is enabled or disabled by the LPDRD bit of the LCOM register.				
LxCLK	I/O	Link Port Clock (Link Ports 0–5). Each LxCLK pin has a 50 k Ω internal pull-down resistor that is enabled or disabled by the LPDRD bit of the LCOM register.				
LxACK	I/O	Link Port Acknowledge (Link Ports 0–5). Each LxACK pin has a 50 k Ω internal pull-down resistor that is enabled or disabled by the LPDRD bit of the LCOM register.				
EBOOT	1	EPROM Boot Select. When EBOOT is high, the ADSP-2106x is configured for booting from an 8-bit EPROM. When EBOOT is low, the LBOOT and BMS inputs determine booting mode. See the table in the BMS pin description below. This signal is a system configuration selection that should be hardwired.				
LBOOT	I	Link Boot. When LBOOT is high, the ADSP-2106x is configured for link port booting. When LBOOT is low, the ADSP-2106x is configured for host processor booting or no booting. See the table in the BMS pin description below. This signal is a system configuration selection that should be hardwired.				
BMS	I/OT	Boot Memory Select. <i>Output</i> : Used as chip select for boot EPROM devices (when EBOOT = 1, LBOOT = 0). In a multiprocessor system, BMS is output by the bus master. <i>Input</i> : When low, indicates that no booting will occur and that ADSP-2106x will begin executing instructions from external memory. See table below. This input is a system configuration selection that should be hardwired. *Three-statable only in EPROM boot mode (when BMS is an output).				
		EBOOT LBOOT BMS Booting Mode				
		1 0 Output EPROM (Connect BMS to EPROM chip select.)				
		0 0 1 (Input) Host Processor				
		0 1 1 (Input) Link Port				
		0 0 0 (Input) No Booting. Processor executes from external memory.				
		0 1 0 (Input) Reserved 1 1 x (Input) Reserved				
CLKIN	I	Clock In. External clock input to the ADSP-2106x. The instruction cycle rate is equal to CLKIN. CLKIN should not be halted, changed, or operated below the minimum specified frequency.				
RESET	I/A	Processor Reset. Resets the ADSP-2106x to a known state and begins program execution at the program memory location specified by the hardware reset vector address. This input must be asserted (low) at power-up.				
ТСК	1	Test Clock (JTAG). Provides an asynchronous clock for JTAG boundary scan.				
TMS	I/S	Test Mode Select (JTAG). Used to control the test state machine. TMS has a 20 k Ω internal pull-up resistor.				
TDI	I/S	Test Data Input (JTAG). Provides serial data for the boundary scan logic. TDI has a 20 k Ω internal pull-up resistor.				
TDO	0	Test Data Output (JTAG). Serial scan output of the boundary scan path.				
TRST	I/A	Test Reset (JTAG). Resets the test state machine. TRST must be asserted (pulsed low) after power-up or held low for proper operation of the ADSP-2106x. TRST has a 20 k Ω internal pull-up resistor.				
EMU	0	Emulation Status. Must be connected to the ADSP-2106x EZ-ICE target board connector only.				
ICSA	0	Reserved, leave unconnected.				
VDD	Р	Power Supply; nominally 5.0 V dc for 5 V devices or 3.3 V dc for 3.3 V devices. (30 pins).				
GND	G	Power Supply Return. (30 pins).				
NC		Do Not Connect. Reserved pins which must be left open and unconnected.				

T = Three-State (when \overline{SBTS} is asserted, or when the ADSP-2106x is a bus slave)

TARGET BOARD CONNECTOR FOR EZ-ICE PROBE

The ADSP-2106x EZ-ICE[®] Emulator uses the IEEE 1149.1JTAG test access port of the ADSP-2106x to monitor and control the target board processor during emulation. The EZ-ICE probe requires the ADSP-2106x's CLKIN, TMS, TCK, TRST, TDI, TDO, EMU, and GND signals be made accessible on the target system via a 14-pin connector (a 2-row 7-pin strip header) such as that shown in Figure 5. The EZ-ICE probe plugs directly onto this connector for chip-on-board emulation. You must add this connector to your target board design if you intend to use the ADSP-2106x EZ-ICE. The total trace length between the EZ-ICE connector and the furthest device sharing the EZ-ICE JTAG pin should be limited to 15 inches maximum for guaranteed operation. This length restriction must include EZ-ICE JTAG signals that are routed to one or more ADSP-2106x devices, or a combination of ADSP-2106x devices and other JTAG devices on the chain.

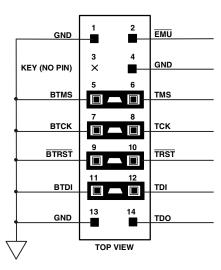


Figure 5. Target Board Connector for ADSP-2106x EZ-ICE Emulator (Jumpers in Place)

The 14-pin, 2-row pin strip header is keyed at the Pin 3 location—Pin 3 must be removed from the header. The pins must be 0.025 inch square and at least 0.20 inch in length. Pin spacing should be 0.1×0.1 inches. Pin strip headers are available from vendors such as 3M, McKenzie, and Samtec. The BTMS, BTCK, BTRST, and BTDI signals are provided so that the test access port can also be used for board-level testing.

When the connector is not being used for emulation, place jumpers on the Bxxx pins as shown in Figure 5. If you are not going to use the test access port for board testing, tie $\overline{\text{BTRST}}$ to GND and tie or pull up BTCK to V_{DD}. The $\overline{\text{TRST}}$ pin must be asserted (pulsed low) after power-up (through $\overline{\text{BTRST}}$ on the connector) or held low for proper operation of the ADSP-2106x. None of the Bxxx pins (Pins 5, 7, 9, and 11) are connected on the EZ-ICE probe.

The JTAG signals are terminated on the EZ-ICE probe as shown in Table 4.

Signal	Termination
TMS	Driven Through 22 Ω Resistor (16 mA Driver)
ТСК	Driven at 10 MHz Through 22 Ω Resistor (16 mA Driver)
TRST ¹	Active Low Driven Through 22 Ω Resistor (16 mA Driver) (Pulled-Up by On-Chip 20 k Ω Resistor)
TDI	Driven by 22 Ω Resistor (16 mA Driver)
TDO	One TTL Load, Split Termination (160/220)
CLKIN	One TTL Load, Split Termination (160/220)
EMU	Active Low 4.7 k Ω Pull-Up Resistor, One TTL Load (Open-Drain Output from the DSP)

¹TRST is driven low until the EZ-ICE probe is turned on by the emulator at software start-up. After software start-up, is driven high.

Figure 6 shows JTAG scan path connections for systems that contain multiple ADSP-2106x processors.

Connecting CLKIN to Pin 4 of the EZ-ICE header is optional. The emulator only uses CLKIN when directed to perform operations such as starting, stopping, and single-stepping multiple ADSP-2106xs in a synchronous manner. If you do not need these operations to occur synchronously on the multiple processors, simply tie Pin 4 of the EZ-ICE header to ground.

If synchronous multiprocessor operations are needed and CLKIN is connected, clock skew between the multiple ADSP-2106x processors and the CLKIN pin on the EZ-ICE header must be minimal. If the skew is too large, synchronous operations may be off by one or more cycles between processors. For synchronous multiprocessor operation TCK, TMS, CLKIN, and EMU should be treated as critical signals in terms of skew, and should be laid out as short as possible on your board. If TCK, TMS, and CLKIN are driving a large number of ADSP-2106xs (more than eight) in your system, then treat them as a "clock tree" using multiple drivers to minimize skew. (See Figure 7 and "JTAG Clock Tree" and "Clock Distribution" in the "High Frequency Design Considerations" section of the *ADSP-2106x User's Manual*, Revision 2.1.)

If synchronous multiprocessor operations are not needed (i.e., CLKIN is not connected), just use appropriate parallel termination on TCK and TMS. TDI, TDO, EMU and TRST are not critical signals in terms of skew.

For complete information on the SHARC EZ-ICE, see the *ADSP-21000 Family JTAG EZ-ICE User's Guide and Reference*.

EXTERNAL POWER DISSIPATION (3.3 V)

Total power dissipation has two components, one due to internal circuitry and one due to the switching of external output drivers. Internal power dissipation is dependent on the instruction execution sequence and the data operands involved. Internal power dissipation is calculated in the following way:

$$P_{INT} = I_{DDIN} \times V_{DD}$$

The external component of total power dissipation is caused by the switching of output pins. Its magnitude depends on:

- the number of output pins that switch during each cycle (O)
- the maximum frequency at which they can switch (f)
- their load capacitance (C)
- their voltage swing (V_{DD})

and is calculated by:

 $P_{EXT} = O \times C \times V_{DD}^{2} \times f$

The load capacitance should include the processor's package capacitance (CIN). The switching frequency includes driving the load high and then back low. Address and data pins can

drive high and low at a maximum rate of $1/(2t_{CK})$. The write strobe can switch every cycle at a frequency of $1/t_{CK}$. Select pins switch at $1/(2t_{CK})$, but selects can switch on each cycle.

Example: Estimate P_{EXT} with the following assumptions:

- A system with one bank of external data memory RAM (32-bit)
- + Four 128K \times 8 RAM chips are used, each with a load of 10 pF
- External data memory writes occur every other cycle, a rate of $1/(4t_{\mbox{\tiny CK}}),$ with 50% of the pins switching
- The instruction cycle rate is 40 MHz ($t_{CK} = 25$ ns)

The $P_{\mbox{\scriptsize EXT}}$ equation is calculated for each class of pins that can drive:

A typical power consumption can now be calculated for these conditions by adding a typical internal power dissipation:

$$P_{\text{TOTAL}} = P_{EXT} + (I_{DDIN2} \times 3.3 \text{ V})$$

Note that the conditions causing a worst-case P_{EXT} are different from those causing a worst-case P_{INT} . Maximum P_{INT} cannot occur while 100% of the output pins are switching from all ones to all zeros. Note also that it is not common for an application to have 100% or even 50% of the outputs switching simultaneously.

Pin Type	No. of Pins	% Switching	×C	×f	$\times V_{DD}^{2}$	= P _{EXT}
Address	15	50	× 44.7 pF	imes 10 MHz	× 10.9 V	= 0.037 W
MS0	1	0	× 44.7 pF	imes 10 MHz	× 10.9 V	= 0.000 W
WR	1	-	× 44.7 pF	imes 20 MHz	× 10.9 V	= 0.010 W
Data	32	50	× 14.7 pF	imes 10 MHz	× 10.9 V	= 0.026 W
ADDRCLK	1	-	× 4.7 pF	imes 20 MHz	× 10.9 V	= 0.001 W

P_{EXT} = 0.074 W

ABSOLUTE MAXIMUM RATINGS

Stresses greater than those listed Table 7 may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions greater

than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 7. Absolute Maximum Ratings

	ADSP-21060/ADSP-21060C ADSP-21062	ADSP-21060L/ADSP-21060LC ADSP-21062L
Parameter	5 V	3.3 V
Supply Voltage (V _{DD})	-0.3 V to +7.0 V	-0.3 V to +4.6 V
Input Voltage	-0.5 V to V _{DD} + 0.5 V	-0.5 V to V _{DD} $+0.5$ V
Output Voltage Swing	-0.5 V to V _{DD} + 0.5 V	-0.5 V to V _{DD} + 0.5 V
Load Capacitance	200 pF	200 pF
Storage Temperature Range	-65°C to +150°C	–65°C to +150°C
Lead Temperature (5 seconds)	280°C	280°C
Junction Temperature Under Bias	130°C	130°C

Table 6. External Power Calculations (3.3 V Devices)

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PACKAGE MARKING INFORMATION

Figure 8 and Table 8 provide information on detail contained within the package marking for the ADSP-2106x processors (actual marking format may vary). For a complete listing of product availability, see Ordering Guide on Page 62.

Figure 8. Typical Package Brand

Table 8. Package Brand Information

Brand Key	Field Description
t	Temperature Range
рр	Package Type
Z	Lead (Pb) Free Option
ссс	See Ordering Guide
vvvvv.x	Assembly Lot Code
n.n	Silicon Revision
yyww	Date Code

TIMING SPECIFICATIONS

The ADSP-2106x processors are available at maximum processor speeds of 33 MHz (–133), and 40 MHz (–160). The timing specifications are based on a CLKIN frequency of 40 MHz $t_{CK} = 25$ ns). The DT derating factor enables the calculation for timing specifications within the min to max range of the t_{CK} specification (see Table 9). DT is the difference between the derated CLKIN period and a CLKIN period of 25 ns:

$DT = t_{\rm CK} - 25 \text{ ns}$

Use the exact timing information given. Do not attempt to derive parameters from the addition or subtraction of others. While addition or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical variations and worst cases. Consequently, you cannot meaningfully add parameters to derive longer times.

For voltage reference levels, see Figure 28 on Page 48 under Test Conditions.

Timing Requirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read operation. Timing requirements guarantee that the processor operates correctly with other devices. (O/D) = Open Drain, (A/D) = Active Drive.

Switching Characteristics specify how the processor changes its signals. You have no control over this timing—circuitry external to the processor must be designed for compatibility with these signal characteristics. Switching characteristics tell you what the processor will do in a given circumstance. You can also use switching characteristics to ensure that any timing requirement of a device connected to the processor (such as memory) is satisfied.

Memory Write—Bus Master

Use these specifications for asynchronous interfacing to memories (and memory-mapped peripherals) without reference to CLKIN. These specifications apply when the ADSP-2106x is the

Table 15. Memory Write-Bus Master

bus master accessing external memory space in asynchronous access mode. Note that timing for ACK, DATA, $\overline{\text{RD}}$, $\overline{\text{WR}}$, and $\overline{\text{DMAGx}}$ strobe timing parameters only applies to asynchronous access mode.

		5	5 V and 3.3 V	
Parameter		Min	Max	Unit
Timing Req	uirements			
t _{DAAK}	ACK Delay from Address, Selects ^{1, 2}		14 + 7DT/8 + W	ns
t _{DSAK}	ACK Delay from WR Low ¹		8 + DT/2 + W	ns
Switching C	<i>Characteristics</i>			
t _{DAWH}	Address Selects to WR Deasserted ²	17 + 15DT/16 + W		ns
t _{DAWL}	Address Selects to WR Low ²	3 + 3DT/8		ns
t _{WW}	WR Pulse Width	12 + 9DT/16 + W		ns
t _{DDWH}	Data Setup Before WR High	7 + DT/2 + W		ns
t _{DWHA}	Address Hold After WR Deasserted	0.5 + DT/16 + H		ns
t _{DATRWH}	Data Disable After WR Deasserted ³	1 + DT/16 + H	6+DT/16+H	ns
t _{WWR}	WR High to WR, RD, DMAGx Low	8 + 7DT/16 + H		ns
t _{DDWR}	Data Disable Before WR or RD Low	5 + 3DT/8 + I		ns
t _{WDE}	WR Low to Data Enabled	-1 + DT/16		ns
t _{SADADC}	Address, Selects Setup Before ADRCLK High ²	0 + DT/4		ns

W = (number of wait states specified in WAIT register) \times t_{CK}.

 $H = t_{CK}$ (if an address hold cycle occurs, as specified in WAIT register; otherwise H = 0).

 $HI = t_{CK}$ (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).

 $I = t_{CK}$ (if a bus idle cycle occurs, as specified in WAIT register; otherwise I = 0).

¹ACK is not sampled on external memory accesses that use the internal wait state mode. For the first CLKIN cycle of a new external memory access, ACK must be valid by t_{DAAK} or t_{DSAK} or t_{DSAK} or synchronous specification t_{SACKC} for wait state modes external, either, or both (both, if the internal wait state is zero). For the second and subsequent cycles of a wait stated external memory access, synchronous specifications t_{SACKC} and t_{HACK} must be met for wait state modes external, either, or both (both, after internal wait states have completed).

² The falling edge of \overline{MSx} , \overline{SW} , \overline{BMS} is referenced.

³See Example System Hold Time Calculation on Page 48 for calculation of hold times given capacitive and dc loads.

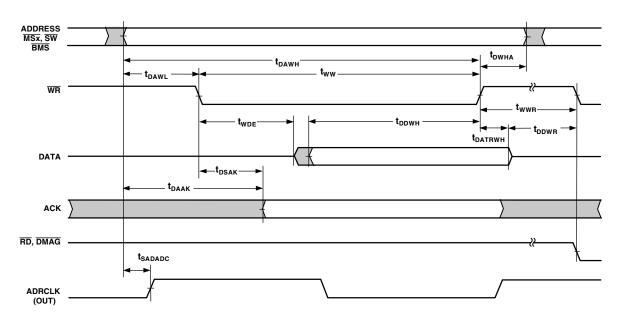


Figure 15. Memory Write—Bus Master

Synchronous Read/Write—Bus Slave

Use these specifications for bus master accesses of a slave's IOP registers or internal memory (in multiprocessor memory space). The bus master must meet the bus slave timing requirements.

Table 17. Synchronous Read/Write-Bus Slave

		5	V and 3.3 V	
Parameter		Min	Мах	Unit
Timing Requir	rements			
t _{SADRI}	Address, SW Setup Before CLKIN	15 + DT/2		ns
t _{HADRI}	Address, SW Hold After CLKIN		5 + DT/2	ns
t _{SRWLI}	RD/WR Low Setup Before CLKIN ¹	9.5 + 5DT/16		ns
t _{HRWLI}	RD/WR Low Hold After CLKIN ²	-4 - 5DT/16	8 + 7DT/16	ns
t _{RWHPI}	RD/WR Pulse High	3		ns
t _{SDATWH}	Data Setup Before WR High	5		ns
t _{HDATWH}	Data Hold After WR High	1		ns
Switching Cha	aracteristics			
t _{SDDATO}	Data Delay After CLKIN ³		18 + 5DT/16	ns
t _{DATTR}	Data Disable After CLKIN ⁴	0 – DT/8	7 – DT/8	ns
t _{DACKAD}	ACK Delay After Address, SW⁵		9	ns
t _{ACKTR}	ACK Disable After CLKIN ⁵	-1 - DT/8	6 – DT/8	ns

¹t_{SRWL1} (min) = 9.5 + 5DT/16 when Multiprocessor Memory Space Wait State (MMSWS bit in WAIT register) is disabled; when MMSWS is enabled, t_{SRWL1} (min) = 4 + DT/8. ² For ADSP-21060C specification is -3.5 - 5DT/16 ns min, 8 + 7DT/16 ns max; for ADSP-21060LC specification is -3.75 - 5DT/16 ns min, 8 + 7DT/16 ns max. ³ For ADSP-21062L/ADSP-21062L/ADSP-21060C specification is 19 + 5DT/16 ns max; for ADSP-21060LC specification is 19.25 + 5DT/16 ns max.

⁴See Example System Hold Time Calculation on Page 48 for calculation of hold times given capacitive and dc loads.

⁵ t_{DACKAD} is true only if the address and \overline{SW} inputs have setup times (before CLKIN) greater than 10 + DT/8 and less than 19 + 3DT/4. If the address and inputs have setup times greater than 19 + 3DT/4, then ACK is valid 14 + DT/4 (max) after CLKIN. A slave that sees an address with an M field match will respond with ACK regardless of the state of MMSWS or strobes. A slave will three-state ACK every cycle with t_{ACKTR}.

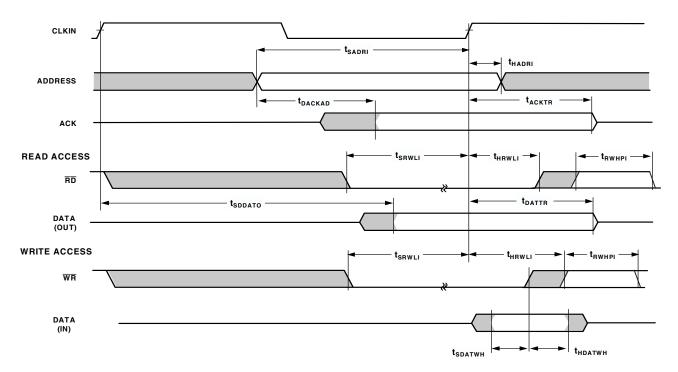


Figure 17. Synchronous Read/Write—Bus Slave

Asynchronous Read/Write—Host to ADSP-2106x

Use these specifications for asynchronous host processor accesses of an ADSP-2106x, after the host has asserted \overline{CS} and \overline{HBR} (low). After \overline{HBG} is returned by the ADSP-2106x, the host can drive the \overline{RD} and \overline{WR} pins to access the ADSP-2106x's internal memory or IOP registers. \overline{HBR} and \overline{HBG} are assumed low for this timing. Not required if and address are valid t_{HBGRCSV} after goes low. For first access after asserted, ADDR31–0 must be a non-MMS value 1/2 t_{CLK} before or goes low or by $t_{HBGRCSV}$ after goes low. This is easily accomplished by driving an upper address signal high when is asserted. See the "Host Processor Control of the ADSP-2106x" section in the ADSP-2106x SHARC User's Manual, Revision 2.1.

Table 19. Read Cycle

			5 V and 3.3 V	
Parameter		Min	Max	Unit
Timing Require	ements			
t _{SADRDL}	Address Setup/CS Low Before RD Low ¹	0		ns
t _{HADRDH}	Address Hold/CS Hold Low After RD	0		ns
t _{WRWH}	RD/WR High Width	6		ns
t _{DRDHRDY}	RD High Delay After REDY (O/D) Disable	0		ns
t _{DRDHRDY}	RD High Delay After REDY (A/D) Disable	0		ns
Switching Cha	aracteristics			
t _{SDATRDY}	Data Valid Before REDY Disable from Low	2		ns
t _{DRDYRDL}	REDY (O/D) or (A/D) Low Delay After $\overline{\text{RD}}$ Low ²		10	ns
t _{RDYPRD}	REDY (O/D) or (A/D) Low Pulse Width for Read	45 + 21DT/1	6	ns
t _{HDARWH}	Data Disable After RD High ³	2	8	ns

¹Not required if RD and address are valid t_{HBGRCSV} after HBG goes low. For first access after HBR asserted, ADDR31-0 must be a non-MMS value 1/2 t_{CLK} before RD or WR goes low or by t_{HBGRCSV} after HBG goes low. This is easily accomplished by driving an upper address signal high when HBG is asserted. See the "Host Processor Control of the ADSP-2106x" section in the ADSP-2106x SHARC User's Manual, Revision 2.1.

²For ADSP-21060L, specification is 10.5 ns max; for ADSP-21060LC, specification is 12.5 ns max.

³For ADSP-21060L/ADSP-21060LC, specification is 2 ns min, 8.5 ns max.

Table 20. Write Cycle

		5 V -	and 3.3 V	
Parameter		Min	Мах	Unit
Timing Require	ements			
t _{SCSWRL}	CS Low Setup Before WR Low	0		ns
t _{HCSWRH}	CS Low Hold After WR High	0		ns
t _{SADWRH}	Address Setup Before WR High	5		ns
t _{HADWRH}	Address Hold After WR High	2		ns
t _{WWRL}	WR Low Width	7		ns
t _{WRWH}	RD/WR High Width	6		ns
t _{DWRHRDY}	WR High Delay After REDY (O/D) or (A/D) Disable	0		ns
t _{SDATWH}	Data Setup Before WR High	5		ns
t _{HDATWH}	Data Hold After WR High	1		ns
Switching Cha	racteristics			
t _{DRDYWRL}	REDY (O/D) or (A/D) Low Delay After WR/CS Low		10	ns
t _{RDYPWR}	REDY (O/D) or (A/D) Low Pulse Width for Write	15 + 7DT/16		ns
t _{SRDYCK}	REDY (O/D) or (A/D) Disable to CLKIN	1 + 7DT/16	8 + 7DT/16	ns

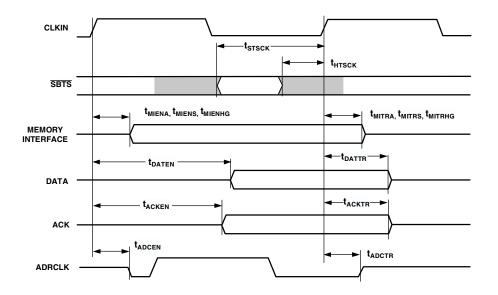


Figure 22. Three-State Timing (Bus Transition Cycle, SBTS Assertion)

		5 V			3.3 V	
Parameter		Min	Max	Min	Max	Unit
Timing Requi	irements					
t _{SLCK}	LACK/LCLK Setup Before CLKIN Low ¹	10		10		ns
t _{HLCK}	LACK/LCLK Hold After CLKIN Low ¹	2		2		ns

Table 25. Link Port Service Request Interrupts: 1× and 2× Speed Operations

¹Only required for interrupt recognition in the current cycle.

Link Ports $-2 \times CLK$ Speed Operation

Calculation of link receiver data setup and hold relative to link clock is required to determine the maximum allowable skew that can be introduced in the transmission path between LDATA and LCLK. Setup skew is the maximum delay that can be introduced in LDATA relative to LCLK:

Setup Skew = $t_{LCLKTWH} \min - t_{DLDCH} - t_{SLDCL}$

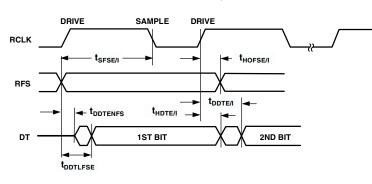
Hold skew is the maximum delay that can be introduced in LCLK relative to LDATA:

Hold Skew = $t_{LCLKTWL}$ min – t_{HLDCH} – t_{HLDCL}

Calculations made directly from 2 speed specifications will result in unrealistically small skew times because they include multiple tester guardbands.

Note that link port transfers at 2× CLK speed at 40 MHz ($t_{CK} = 25$ ns) may fail. However, 2× CLK speed link port transfers at 33 MHz ($t_{CK} = 30$ ns) work as specified.

Table 26. Link Ports-Receive


			3.3 V			
Parameter		Min	Min Max		Max	Unit
Timing Req	uirements					
t _{SLDCL}	Data Setup Before LCLK Low	2.5		2.25		ns
t _{HLDCL}	Data Hold After LCLK Low	2.25		2.25		ns
t _{LCLKIW}	LCLK Period (2× Operation)	t _{CK} /2		t _{CK} /2		ns
t _{LCLKRWL}	LCLK Width Low ¹	4.5		5.25		ns
t _{LCLKRWH}	LCLK Width High ²	4.25		4		ns
Switching (Characteristics					
t _{DLAHC}	LACK High Delay After CLKIN High ³	18 + DT/2	28.5 + DT/2	18 + DT/2	29.5 + DT/2	ns
t _{DLALC}	LACK Low Delay After LCLK High ⁴	6	16	6	16	ns

¹For ADSP-21060L, specification is 5 ns min.

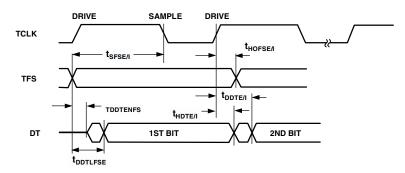
² For ADSP-21062, specification is 4 ns min, for ADSP-21060LC, specification is 4.5 ns min.

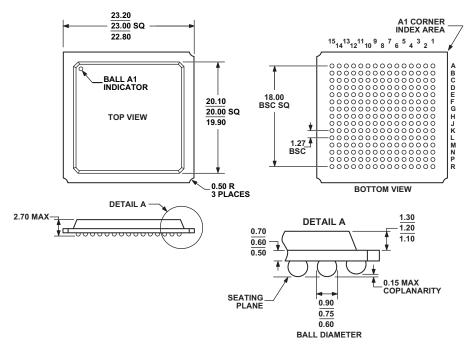
³LACK goes low with t_{DLALC} relative to rise of LCLK after first nibble, but does not go low if the receiver's link buffer is not about to fill.

⁴ For ADSP-21060L, specification is 6 ns min, 18 ns max. For ADSP-21060C, specification is 6 ns min, 16.5 ns max. For ADSP-21060LC, specification is 6 ns min, 18.5 ns max.

EXTERNAL RFS WITH MCE = 1, MFD = 0

LATE EXTERNAL TFS




Figure 26. Serial Ports—External Late Frame Sync

240-LEAD MQFP_PQ4/CQFP PIN CONFIGURATION

Din Nama	Din No.	Din Norma	Din No.	Din Norra	Din Ma	Din Norra	Din No.	Din Name	Din Na	Din Norro	Dim No
Pin Name	Pin No.	Pin Name	Pin No.								
TDI	1	ADDR20	41	TCLK0	81	DATA41	121	DATA14	161	L2DAT0	201
TRST	2	ADDR21	42	TFS0	82	DATA40	122	DATA13	162	L2CLK	202
V _{DD}	3	GND	43	DR0	83	DATA39	123	DATA12	163	L2ACK	203
TDO	4	ADDR22	44	RCLK0	84	V _{DD}	124	GND	164	NC	204
TIMEXP	5	ADDR23	45	RFS0	85	DATA38	125	DATA11	165	V _{DD}	205
EMU	6	ADDR24	46	V _{DD}	86	DATA37	126	DATA10	166	L3DAT3	206
ICSA	7	V _{DD}	47	V _{DD}	87	DATA36	127	DATA9	167	L3DAT2	207
FLAG3	8	GND	48	GND	88	GND	128	V _{DD}	168	L3DAT1	208
FLAG2	9	V _{DD}	49	ADRCLK	89	NC	129	DATA8	169	L3DAT0	209
FLAG1	10	ADDR25	50	REDY	90	DATA35	130	DATA7	170	L3CLK	210
FLAG0	11	ADDR26	51	HBG	91	DATA34	131	DATA6	171	L3ACK	211
GND	12	ADDR27	52		92	DATA33	132	GND	172	GND	212
ADDRO	13	GND	53	RD	93	V _{DD}	133	DATA5	173	L4DAT3	213
ADDR1	14	MS3	54	WR	94	V _{DD}	134	DATA4	174	L4DAT2	214
V _{DD}	15	MS2	55	GND	95	GND	135	DATA3	175	L4DAT1	215
ADDR2	16	MS1	56	V _{DD}	96	DATA32	136	V _{DD}	176	L4DAT0	216
ADDR3	17	MS0	57	GND	97	DATA31	137	DATA2	177	L4CLK	217
ADDR4	18	SW	58	CLKIN	98	DATA30	138	DATA1	178	L4ACK	218
GND	19	BMS	59	ACK	99	GND	139	DATA0	179	V _{DD}	219
ADDR5	20	ADDR28	60	DMAG2	100	DATA29	140	GND	180	GND	220
ADDR6	21	GND	61	DMAG1	101	DATA28	141	GND	181	V _{DD}	221
ADDR7	22	V _{DD}	62	PAGE	102	DATA27	142	L0DAT3	182	L5DAT3	222
V _{DD}	23	V _{DD}	63	V _{DD}	103	V _{DD}	143	L0DAT2	183	L5DAT2	223
ADDR8	24	ADDR29	64	BR6	104	V _{DD}	144	L0DAT1	184	L5DAT1	224
ADDR9	25	ADDR30	65	BR5	105	DATA26	145	L0DAT0	185	L5DAT0	225
ADDR10	26	ADDR31	66	BR4	106	DATA25	146	LOCLK	186	L5CLK	226
GND	27	GND	67	BR3	107	DATA24	147	LOACK	187	L5ACK	227
ADDR11	28	SBTS	68	BR2	108	GND	148	V _{DD}	188	GND	228
ADDR12	29	DMAR2	69	BR1	109	DATA23	149	L1DAT3	189	ID2	229
ADDR13	30	DMAR1	70	GND	110	DATA22	150	L1DAT2	190	ID1	230
V _{DD}	31	HBR	71	V _{DD}	111	DATA21	151	L1DAT1	191	ID0	231
ADDR14	32	DT1	72	GND	112	V _{DD}	152	L1DAT0	192	LBOOT	232
ADDR15	33	TCLK1	73	DATA47	113	DATA20	153	L1CLK	193	RPBA	233
GND	34	TFS1	74	DATA46	114	DATA19	154	L1ACK	194	RESET	234
ADDR16	35	DR1	75	DATA45	115	DATA18	155	GND	195	EBOOT	235
ADDR17	36	RCLK1	76	V _{DD}	116	GND	156	GND	196	IRQ2	236
ADDR18	37	RFS1	77	DATA44	117	DATA17	157	V _{DD}	197	IRQ1	237
V _{DD}	38	GND	78	DATA43	118	DATA16	158	L2DAT3	198	IRQ0	238
V _{DD}	39	CPA	79	DATA42	119	DATA15	159	L2DAT2	199	ТСК	239
ADDR19	40	DT0	80	GND	120	V _{DD}	160	L2DAT1	200	TMS	240

Table 41. ADSP-2106x MQFP_PQ4 and ADSP-21060CZ CQFP Pin Assignments (SP-240-2, QS-240-2A, QS-240-2B)

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-034-AAJ-2

Figure 40. 225-Ball Plastic Ball Grid Array [PBGA] (B-225-2) Dimensions shown in millimeters

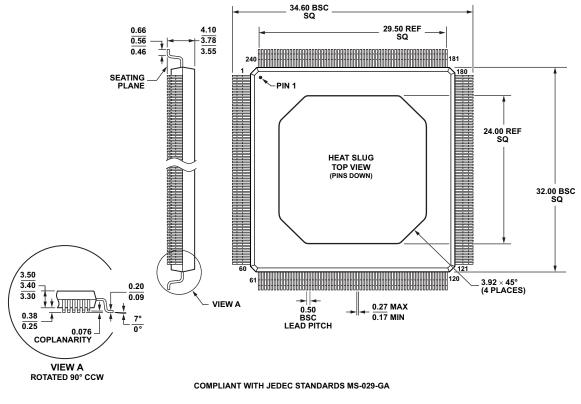


Figure 41. 240-Lead Metric Quad Flat Package, Thermally Enhanced "PowerQuad" [MQFP_PQ4] (SP-240-2) Dimensions shown in millimeters

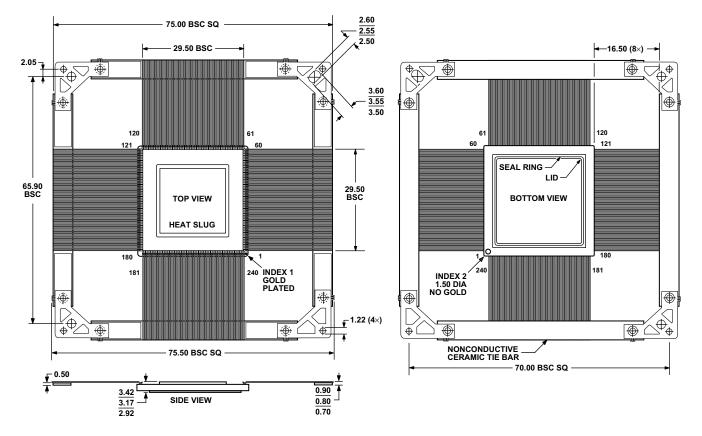


Figure 43. 240-Lead Ceramic Quad Flat Package, Mounted with Cavity Down [CQFP] (QS-240-2B) Dimensions shown in millimeters

ORDERING GUIDE

Model	Notes	Temperature Range	Instruction Rate 33 MHz	On-Chip SRAM 4M Bit	Operating Voltage	Package Description	Package Option
ASDP-21060CZ-133	1, 2	-40°C to +100°C			5 V	240-Lead CQFP [Heat Slug Up]	QS-240-2A
ASDP-21060CZ-155	1, 2	-40° C to $+100^{\circ}$ C	40 MHz	4M Bit	5 V	240-Lead CQFP [Heat Slug Up]	QS-240-2A QS-240-2A
ASDP-21060CW-133	1, 2	-40° C to $+100^{\circ}$ C	33 MHz	4M Bit	5 V	240-Lead CQFP [Heat Slug Down]	QS-240-2A QS-240-1A
ASDP-21060CW-160	1, 2	-40° C to $+100^{\circ}$ C	40 MHz	4M Bit	5 V	240-Lead CQFP [Heat Slug Down]	QS-240-1A
ADSP-21060KS-133		-40 C to +100 C	33 MHz	4M Bit	5 V	240-Lead MQFP PQ4	SP-240-1A
ADSP-21060KSZ-133	2	0°C to 85°C	33 MHz	4M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21060KS-160		0°C to 85°C	40 MHz	4M Bit	5 V	240-Lead MQFP_PQ4 240-Lead MQFP_PQ4	SP-240-2
ADSP-21060KSZ-160	2	0°C to 85°C	40 MHz	4M Bit	5 V	240-Lead MQFP_PQ4 240-Lead MQFP_PQ4	SP-240-2
ADSP-21060KB-160		0°C to 85°C	40 MHz	4M Bit	5 V	225-Ball PBGA	B-225-2
ADSP-21060KBZ-160	2	0°C to 85°C	40 MHz	4M Bit	5 V 5 V	225-Ball PBGA	В-225-2 В-225-2
ADSP-21060KBZ-160 ADSP-21060LKSZ-133	2	0°C to 85°C	40 MHz	4M Bit	3.3 V	240-Lead MQFP PQ4	Б-223-2 SP-240-2
ADSP-21060LKS2-155 ADSP-21060LKS-160		0°C to 85°C	40 MHz	4M Bit	3.3 V 3.3 V	240-Lead MQFP_PQ4 240-Lead MQFP_PQ4	SP-240-2 SP-240-2
ADSP-21060LKSZ-160	2	0°C to 85°C	40 MHz	4M Bit	3.3 V 3.3 V		SP-240-2 SP-240-2
ADSP-21060LKS2-160 ADSP-21060LKB-160		0°C to 85°C	40 MHz	4M Bit	3.3 V 3.3 V	240-Lead MQFP_PQ4 225-Ball PBGA	B-225-2
ADSP-21060LAB-160		-40°C to +85°C	40 MHz	4M Bit	3.3 V 3.3 V	225-Ball PBGA	В-225-2 В-225-2
	2		40 MHz		3.3 V 3.3 V		
ADSP-21060LABZ-160 ADSP-21060LCB-133		-40°C to +85°C -40°C to +100°C	40 MHZ 33 MHz	4M Bit 4M Bit	3.3 V 3.3 V	225-Ball PBGA 225-Ball PBGA	B-225-2 B-225-2
ADSP-21060LCB-133 ADSP-21060LCBZ-133	2	-40° C to $+100^{\circ}$ C	33 MHz	4M Bit	3.3 V 3.3 V	225-Ball PBGA	в-225-2 В-225-2
	1, 2						
ASDP-21060LCW-160	.,_	-40° C to $+100^{\circ}$ C	40 MHz	4M Bit	3.3 V 5 V	240-Lead CQFP [Heat Slug Down]	QS-240-1A
ADSP-21062KS-133	2	0°C to 85°C	33 MHz	2M Bit		240-Lead MQFP_PQ4	SP-240-2
ADSP-21062KSZ-133	-	0°C to 85°C	33 MHz	2M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062KS-160	2	0°C to 85°C	40 MHz	2M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062KSZ-160	2	0°C to 85°C	40 MHz	2M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062KB-160	2	0°C to 85°C	40 MHz	2M Bit	5 V	225-Ball PBGA	B-225-2
ADSP-21062KBZ-160	2	0°C to 85°C	40 MHz	2M Bit	5 V	225-Ball PBGA	B-225-2
ADSP-21062CS-160	2	-40°C to +100°C	40 MHz	2M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062CSZ-160	2	-40°C to +100°C	40 MHz	2M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062LKSZ-133	2	0°C to 85°C	33 MHz	2M Bit	3.3 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062LKS-160	2	0°C to 85°C	40 MHz	2M Bit	3.3 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062LKSZ-160	2	0°C to 85°C	40 MHz	2M Bit	3.3 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062LKB-160		0°C to 85°C	40 MHz	2M Bit	3.3 V	225-Ball PBGA	B-225-2
ADSP-21062LKBZ-160	2	0°C to 85°C	40 MHz	2M Bit	3.3 V	225-Ball PBGA	B-225-2
ADSP-21062LAB-160		–40°C to 85°C	40 MHz	2M Bit	3.3 V	225-Ball PBGA	B-225-2
ADSP-21062LABZ-160	2	–40°C to 85°C	40 MHz	2M Bit	3.3 V	225-Ball PBGA	B-225-2
ADSP-21062LCS-160		-40°C to +100°C	40 MHz	2M Bit	3.3 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062LCSZ-160	2	-40°C to +100°C	40 MHz	2M Bit	3.3 V	240-Lead MQFP_PQ4	SP-240-2

¹Model refers to package with formed leads. For model numbers of unformed lead versions (QS-240-1B, QS-240-2B), contact Analog Devices or an Analog Devices sales representative.

²RoHS compliant part.