

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	Floating Point
Interface	Host Interface, Link Port, Serial Port
Clock Rate	40MHz
Non-Volatile Memory	External
On-Chip RAM	256kB
Voltage - I/O	5.00V
Voltage - Core	5.00V
Operating Temperature	-40°C ~ 100°C (TC)
Mounting Type	Surface Mount
Package / Case	240-BFQFP Exposed Pad
Supplier Device Package	240-MQFP-EP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-21062cs-160

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 3. Shared Memory Multiprocessing System

DMA Controller

The ADSP-2106x's on-chip DMA controller allows zero-overhead data transfers without processor intervention. The DMA controller operates independently and invisibly to the processor core, allowing DMA operations to occur while the core is simultaneously executing its program instructions.

DMA transfers can occur between the ADSP-2106x's internal memory and external memory, external peripherals, or a host processor. DMA transfers can also occur between the ADSP-2106x's internal memory and its serial ports or link ports. DMA transfers between external memory and external peripheral devices are another option. External bus packing to 16-, 32-, or 48-bit words is performed during DMA transfers.

Ten channels of DMA are available on the ADSP-2106x—two via the link ports, four via the serial ports, and four via the processor's external port (for either host processor, other ADSP-2106xs, memory, or I/O transfers). Four additional link port DMA channels are shared with Serial Port 1 and the external port. Programs can be downloaded to the ADSP-2106x using DMA transfers. Asynchronous off-chip peripherals can control two DMA channels using DMA request/grant lines (DMAR1-2, DMAG1-2). Other DMA features include interrupt generation upon completion of DMA transfers and DMA chaining for automatic linked DMA transfers.

Multiprocessing

The ADSP-2106x offers powerful features tailored to multiprocessor DSP systems. The unified address space (see Figure 4) allows direct interprocessor accesses of each ADSP-2106x's internal memory. Distributed bus arbitration logic is included on-chip for simple, glueless connection of systems containing up to six ADSP-2106xs and a host processor. Master processor changeover incurs only one cycle of overhead. Bus arbitration is selectable as either fixed or rotating priority. Bus lock allows indivisible read-modify-write sequences for semaphores. A vector interrupt is provided for interprocessor commands. Maximum throughput for interprocessor data transfer is 240M bytes/s over the link ports or external port. Broadcast writes allow simultaneous transmission of data to all ADSP-2106xs and can be used to implement reflective semaphores.

NOTE: BANK SIZES ARE SELECTED BY

MSIZE BITS IN THE SYSCON REGISTER

Figure 4. Memory Map

PIN FUNCTION DESCRIPTIONS

The ADSP-2106x pin definitions are listed below. Inputs identified as synchronous (S) must meet timing requirements with respect to CLKIN (or with respect to TCK for TMS, TDI). Inputs identified as asynchronous (A) can be asserted asynchronously to CLKIN (or to TCK for TRST). Unused inputs should be tied or pulled to VDD or GND, except for ADDR31–0, DATA47–0, FLAG3–0, and inputs that have internal pull-up or pull-down resistors (CPA, ACK, DTx, DRx, TCLKx, RCLKx, LxDAT3–0, LxCLK, LxACK, TMS, and TDI)—these pins can be left floating. These pins have a logic-level hold circuit that prevents the input from floating internally.

Pin Type Function ADDR31-0 I/O/T External Bus Address. The ADSP-2106x outputs addresses for external memory and peripherals on these pins. In a multiprocessor system, the bus master outputs addresses for read/write of the internal memory or IOP registers of other ADSP-2106xs. The ADSP-2106x inputs addresses when a host processor or multiprocessing bus master is reading or writing its internal memory or IOP registers. I/O/T External Bus Data. The ADSP-2106x inputs and outputs data and instructions on these pins. 32-bit single-DATA47-0 precision floating-point data and 32-bit fixed-point data is transferred over bits 47-16 of the bus. 40-bit extended-precision floating-point data is transferred over bits 47-8 of the bus. 16-bit short word data is transferred over bits 31–16 of the bus. In PROM boot mode, 8-bit data is transferred over bits 23–16. Pull-up resistors on unused DATA pins are not necessary. O/T MS3-0 Memory Select Lines. These lines are asserted (low) as chip selects for the corresponding banks of external memory. Memory bank size must be defined in the ADSP-2106x's system control register (SYSCON). The MS3–0 lines are decoded memory address lines that change at the same time as the other address lines. When no external memory access is occurring, the MS3–0 lines are inactive; they are active however when a conditional memory access instruction is executed, whether or not the condition is true. MSO can be used with the PAGE signal to implement a bank of DRAM memory (Bank 0). In a multiprocessing system the MS3-0 lines are output by the bus master. RD I/O/T Memory Read Strobe. This pin is asserted (low) when the ADSP-2106x reads from external memory devices or from the internal memory of other ADSP-2106xs. External devices (including other ADSP-2106xs) must assert RD to read from the ADSP-2106x's internal memory. In a multiprocessing system, RD is output by the bus master and is input by all other ADSP-2106xs. WR I/O/T Memory Write Strobe. This pin is asserted (low) when the ADSP-2106x writes to external memory devices or to the internal memory of other ADSP-2106xs. External devices must assert \overline{WR} to write to the ADSP-2106x's internal memory. In a multiprocessing system, \overline{WR} is output by the bus master and is input by all other ADSP-2106xs. PAGE O/T DRAM Page Boundary. The ADSP-2106x asserts this pin to signal that an external DRAM page boundary has been crossed. DRAM page size must be defined in the ADSP-2106x's memory control register (WAIT). DRAM can only be implemented in external memory Bank 0; the PAGE signal can only be activated for Bank 0 accesses. In a multiprocessing system, PAGE is output by the bus master ADRCLK O/T Clock Output Reference. In a multiprocessing system, ADRCLK is output by the bus master. I/O/T SW Synchronous Write Select. This signal is used to interface the ADSP-2106x to synchronous memory devices (including other ADSP-2106xs). The ADSP-2106x asserts SW (low) to provide an early indication of an impending write cycle, which can be aborted if \overline{WR} is not later asserted (e.g., in a conditional write instruction). In a multiprocessing system, SW is output by the bus master and is input by all other ADSP-2106xs to determine if the multiprocessor memory access is a read or write. SW is asserted at the same time as the address output. A host processor using synchronous writes must assert this pin when writing to the ADSP-2106x(s).

Table 3. Pin Descriptions

A = Asynchronous, G = Ground, I = Input, O = Output, P = Power Supply, S = Synchronous, (A/D) = Active Drive, (O/D) = Open Drain, T = Three-State (when SBTS is asserted, or when the ADSP-2106x is a bus slave)

TARGET BOARD CONNECTOR FOR EZ-ICE PROBE

The ADSP-2106x EZ-ICE[®] Emulator uses the IEEE 1149.1JTAG test access port of the ADSP-2106x to monitor and control the target board processor during emulation. The EZ-ICE probe requires the ADSP-2106x's CLKIN, TMS, TCK, TRST, TDI, TDO, EMU, and GND signals be made accessible on the target system via a 14-pin connector (a 2-row 7-pin strip header) such as that shown in Figure 5. The EZ-ICE probe plugs directly onto this connector for chip-on-board emulation. You must add this connector to your target board design if you intend to use the ADSP-2106x EZ-ICE. The total trace length between the EZ-ICE connector and the furthest device sharing the EZ-ICE JTAG pin should be limited to 15 inches maximum for guaranteed operation. This length restriction must include EZ-ICE JTAG signals that are routed to one or more ADSP-2106x devices, or a combination of ADSP-2106x devices and other JTAG devices on the chain.

Figure 5. Target Board Connector for ADSP-2106x EZ-ICE Emulator (Jumpers in Place)

The 14-pin, 2-row pin strip header is keyed at the Pin 3 location—Pin 3 must be removed from the header. The pins must be 0.025 inch square and at least 0.20 inch in length. Pin spacing should be 0.1×0.1 inches. Pin strip headers are available from vendors such as 3M, McKenzie, and Samtec. The BTMS, BTCK, BTRST, and BTDI signals are provided so that the test access port can also be used for board-level testing.

When the connector is not being used for emulation, place jumpers on the Bxxx pins as shown in Figure 5. If you are not going to use the test access port for board testing, tie $\overline{\text{BTRST}}$ to GND and tie or pull up BTCK to V_{DD}. The $\overline{\text{TRST}}$ pin must be asserted (pulsed low) after power-up (through $\overline{\text{BTRST}}$ on the connector) or held low for proper operation of the ADSP-2106x. None of the Bxxx pins (Pins 5, 7, 9, and 11) are connected on the EZ-ICE probe.

The JTAG signals are terminated on the EZ-ICE probe as shown in Table 4.

Signal	Termination
TMS	Driven Through 22 Ω Resistor (16 mA Driver)
TCK	Driven at 10 MHz Through 22 Ω Resistor (16 mA Driver)
TRST ¹	Active Low Driven Through 22 Ω Resistor (16 mA Driver) (Pulled-Up by On-Chip 20 k Ω Resistor)
TDI	Driven by 22 Ω Resistor (16 mA Driver)
TDO	One TTL Load, Split Termination (160/220)
CLKIN	One TTL Load, Split Termination (160/220)
EMU	Active Low 4.7 k Ω Pull-Up Resistor, One TTL Load (Open-Drain Output from the DSP)

¹TRST is driven low until the EZ-ICE probe is turned on by the emulator at software start-up. After software start-up, is driven high.

Figure 6 shows JTAG scan path connections for systems that contain multiple ADSP-2106x processors.

Connecting CLKIN to Pin 4 of the EZ-ICE header is optional. The emulator only uses CLKIN when directed to perform operations such as starting, stopping, and single-stepping multiple ADSP-2106xs in a synchronous manner. If you do not need these operations to occur synchronously on the multiple processors, simply tie Pin 4 of the EZ-ICE header to ground.

If synchronous multiprocessor operations are needed and CLKIN is connected, clock skew between the multiple ADSP-2106x processors and the CLKIN pin on the EZ-ICE header must be minimal. If the skew is too large, synchronous operations may be off by one or more cycles between processors. For synchronous multiprocessor operation TCK, TMS, CLKIN, and EMU should be treated as critical signals in terms of skew, and should be laid out as short as possible on your board. If TCK, TMS, and CLKIN are driving a large number of ADSP-2106xs (more than eight) in your system, then treat them as a "clock tree" using multiple drivers to minimize skew. (See Figure 7 and "JTAG Clock Tree" and "Clock Distribution" in the "High Frequency Design Considerations" section of the *ADSP-2106x User's Manual*, Revision 2.1.)

If synchronous multiprocessor operations are not needed (i.e., CLKIN is not connected), just use appropriate parallel termination on TCK and TMS. TDI, TDO, EMU and TRST are not critical signals in terms of skew.

For complete information on the SHARC EZ-ICE, see the *ADSP-21000 Family JTAG EZ-ICE User's Guide and Reference*.

ADSP-21060L/ADSP-21062L SPECIFICATIONS

Note that component specifications are subject to change without notice.

OPERATING CONDITIONS (3.3 V)

			A Grade		C Grade		K Grade	
Parameter	Description	Min	Max	Min	Max	Min	Max	Unit
V _{DD}	Supply Voltage	3.15	3.45	3.15	3.45	3.15	3.45	V
T _{CASE}	Case Operating Temperature	-40	+85	-40	+100	-40	+85	°C
$V_{IH}1^1$	High Level Input Voltage @ V _{DD} = Max	2.0	$V_{DD} + 0.5$	2.0	$V_{DD} + 0.5$	2.0	$V_{DD} + 0.5$	V
V _{IH} 2 ²	High Level Input Voltage @ V _{DD} = Max	2.2	V _{DD} + 0.5	2.2	$V_{DD} + 0.5$	2.2	$V_{DD} + 0.5$	V
V _{IL} ^{1, 2}	Low Level Input Voltage @ V _{DD} = Min	-0.5	+0.8	-0.5	+0.8	-0.5	+0.8	V

¹Applies to input and bidirectional pins: DATA47-0, ADDR31-0, RD, WR, SW, ACK, SBTS, IRQ2-0, FLAG3-0, HGB, CS, DMAR1, DMAR2, BR6-1, ID2-0, RPBA, CPA, TFS0, TFS1, RFS0, RFS1, LxDAT3-0, LxCLK, LxACK, EBOOT, LBOOT, BMS, TMS, TDI, TCK, HBR, DR0, DR1, TCLK0, TCLK1, RCLK0, RCLK1. ²Applies to input pins: CLKIN, RESET, TRST.

ELECTRICAL CHARACTERISTICS (3.3 V)

Parameter	Description	Test Conditions	Min	Max	Unit
V _{OH} ^{1, 2}	High Level Output Voltage	@ $V_{DD} = Min$, $I_{OH} = -2.0 \text{ mA}$	2.4		V
V _{OL} ^{1, 2}	Low Level Output Voltage	@ $V_{DD} = Min$, $I_{OL} = 4.0 \text{ mA}$		0.4	V
I _{IH} ^{3, 4}	High Level Input Current	$@V_{DD} = Max, V_{IN} = V_{DD} Max$		10	μA
I_{\parallel}^{3}	Low Level Input Current	@ $V_{DD} = Max, V_{IN} = 0 V$		10	μA
I _{ILP} ⁴	Low Level Input Current	@ $V_{DD} = Max, V_{IN} = 0 V$		150	μA
I _{OZH} ^{5, 6, 7, 8}	Three-State Leakage Current	$@V_{DD} = Max, V_{IN} = V_{DD} Max$		10	μΑ
I _{OZL} ^{5, 9}	Three-State Leakage Current	@ $V_{DD} = Max, V_{IN} = 0 V$		10	μΑ
I _{OZHP} 9	Three-State Leakage Current	$@V_{DD} = Max, V_{IN} = V_{DD} Max$		350	μΑ
l _{ozlc} ⁷	Three-State Leakage Current	@ $V_{DD} = Max, V_{IN} = 0 V$		1.5	mA
I _{OZLA} ¹⁰	Three-State Leakage Current	@ $V_{DD} = Max, V_{IN} = 1.5 V$		350	μA
I _{OZLAR} ⁸	Three-State Leakage Current	@ $V_{DD} = Max, V_{IN} = 0 V$		4.2	mA
I _{OZLS} ⁶	Three-State Leakage Current	@ $V_{DD} = Max, V_{IN} = 0 V$		150	μA
C _{IN} ^{11, 12}	Input Capacitance	$f_{IN} = 1 \text{ MHz}, T_{CASE} = 25^{\circ}\text{C}, V_{IN} = 2.5 \text{ V}$		4.7	рF

¹Applies to output and bidirectional pins: DATA47-0, ADDR31-0, MS3-0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAG3-0, TIMEXP, HBG, REDY, DMAG1, DMAG2, BR6-1, CPA, DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, LxDAT3-0, LxCLK, LxACK, BMS, TDO, EMU, ICSA.

²See Figure 35, Output Drive Currents 3.3 V, for typical drive current capabilities.

³Applies to input pins: ACK, <u>SBTS</u>, <u>IRQ2</u>–0, <u>HBR</u>, <u>CS</u>, <u>DMAR1</u>, <u>DMAR2</u>, ID2–0, RPBA, EBOOT, LBOOT, CLKIN, <u>RESET</u>, TCK.

⁴Applies to input pins with internal pull-ups: DR0, DR1, TRST, TMS, TDI.

⁵ Applies to three-statable pins: DATA47-0, ADDR31-0, MS3-0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAG3-0, HBG, REDY, DMAG1, DMAG2, BMS, BR6-1, TFSx, RFSx, TDO, $\overline{\text{EMU}}$. (Note that ACK is pulled up internally with 2 k Ω during reset in a multiprocessor system, when ID2–0 = 001 and another ADSP-2106x is not requesting bus mastership.)

⁶ Applies to three-statable pins with internal pull-ups: DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1.

⁷ Applies to \overline{CPA} pin.

 8 Applies to ACK pin when pulled up. (Note that ACK is pulled up internally with 2 k Ω during reset in a multiprocessor system, when ID2–0 = 001 and another ADSP-2106xL is not requesting bus mastership).

⁹Applies to three-statable pins with internal pull-downs: LxDAT3-0, LxCLK, LxACK.

¹⁰Applies to ACK pin when keeper latch enabled.

¹¹Applies to all signal pins.

¹²Guaranteed but not tested.

EXTERNAL POWER DISSIPATION (3.3 V)

Total power dissipation has two components, one due to internal circuitry and one due to the switching of external output drivers. Internal power dissipation is dependent on the instruction execution sequence and the data operands involved. Internal power dissipation is calculated in the following way:

$$P_{INT} = I_{DDIN} \times V_{DD}$$

The external component of total power dissipation is caused by the switching of output pins. Its magnitude depends on:

- the number of output pins that switch during each cycle (O)
- the maximum frequency at which they can switch (f)
- their load capacitance (C)
- their voltage swing $(\mathrm{V}_{\mathrm{DD}})$

and is calculated by:

 $P_{EXT} = O \times C \times V_{DD}^{2} \times f$

The load capacitance should include the processor's package capacitance (CIN). The switching frequency includes driving the load high and then back low. Address and data pins can

drive high and low at a maximum rate of $1/(2t_{CK})$. The write strobe can switch every cycle at a frequency of $1/t_{CK}$. Select pins switch at $1/(2t_{CK})$, but selects can switch on each cycle.

Example: Estimate P_{EXT} with the following assumptions:

- A system with one bank of external data memory RAM (32-bit)
- + Four 128K \times 8 RAM chips are used, each with a load of 10 pF
- External data memory writes occur every other cycle, a rate of $1/(4t_{CK})$, with 50% of the pins switching
- The instruction cycle rate is 40 MHz ($t_{CK} = 25$ ns)

The $P_{\mbox{\scriptsize EXT}}$ equation is calculated for each class of pins that can drive:

A typical power consumption can now be calculated for these conditions by adding a typical internal power dissipation:

$$P_{\text{TOTAL}} = P_{EXT} + (I_{DDIN2} \times 3.3 \text{ V})$$

Note that the conditions causing a worst-case P_{EXT} are different from those causing a worst-case P_{INT} . Maximum P_{INT} cannot occur while 100% of the output pins are switching from all ones to all zeros. Note also that it is not common for an application to have 100% or even 50% of the outputs switching simultaneously.

Pin Type	No. of Pins	% Switching	×C	×f	$\times V_{DD}^2$	= P _{EXT}
Address	15	50	× 44.7 pF	imes 10 MHz	× 10.9 V	= 0.037 W
MSO	1	0	× 44.7 pF	× 10 MHz	× 10.9 V	= 0.000 W
WR	1	-	× 44.7 pF	imes 20 MHz	× 10.9 V	= 0.010 W
Data	32	50	× 14.7 pF	imes 10 MHz	× 10.9 V	= 0.026 W
ADDRCLK	1	-	× 4.7 pF	imes 20 MHz	× 10.9 V	= 0.001 W

 $P_{EXT} = 0.074 W$

ABSOLUTE MAXIMUM RATINGS

Stresses greater than those listed Table 7 may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions greater

than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 7. Absolute Maximum Ratings

	ADSP-21060/ADSP-21060C ADSP-21062	ADSP-21060L/ADSP-21060LC ADSP-21062L
Parameter	5 V	3.3 V
Supply Voltage (V _{DD})	–0.3 V to +7.0 V	–0.3 V to +4.6 V
Input Voltage	-0.5 V to V _{DD} + 0.5 V	-0.5 V to V _{DD} $+0.5$ V
Output Voltage Swing	-0.5 V to V _{DD} + 0.5 V	-0.5 V to V _{DD} + 0.5 V
Load Capacitance	200 pF	200 pF
Storage Temperature Range	–65°C to +150°C	–65°C to +150°C
Lead Temperature (5 seconds)	280°C	280°C
Junction Temperature Under Bias	130°C	130°C

Table 6. External Power Calculations (3.3 V Devices)

Memory Write—Bus Master

Use these specifications for asynchronous interfacing to memories (and memory-mapped peripherals) without reference to CLKIN. These specifications apply when the ADSP-2106x is the

Table 15. Memory Write-Bus Master

bus master accessing external memory space in asynchronous access mode. Note that timing for ACK, DATA, RD, WR, and DMAGx strobe timing parameters only applies to asynchronous access mode.

		5	V and 3.3 V	
Parameter		Min	Max	Unit
Timing Requ	irements			
t _{DAAK}	ACK Delay from Address, Selects ^{1, 2}		14 + 7DT/8 + W	ns
t _{DSAK}	ACK Delay from WR Low ¹		8 + DT/2 + W	ns
Switching Cl	naracteristics			
t _{DAWH}	Address Selects to WR Deasserted ²	17 + 15DT/16 + W		ns
t _{DAWL}	Address Selects to WR Low ²	3 + 3DT/8		ns
t _{WW}	WR Pulse Width	12 + 9DT/16 + W		ns
t _{DDWH}	Data Setup Before WR High	7 + DT/2 + W		ns
t _{DWHA}	Address Hold After WR Deasserted	0.5 + DT/16 + H		ns
t _{DATRWH}	Data Disable After WR Deasserted ³	1 + DT/16 + H	6 + DT/16 + H	ns
t _{WWR}	WR High to WR, RD, DMAGx Low	8 + 7DT/16 + H		ns
t _{DDWR}	Data Disable Before WR or RD Low	5 + 3DT/8 + I		ns
t _{WDE}	WR Low to Data Enabled	-1 + DT/16		ns
t _{SADADC}	Address, Selects Setup Before ADRCLK High ²	0 + DT/4		ns

W = (number of wait states specified in WAIT register) \times t_{CK}.

 $H = t_{CK}$ (if an address hold cycle occurs, as specified in WAIT register; otherwise H = 0).

 $HI = t_{CK}$ (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).

 $I = t_{CK}$ (if a bus idle cycle occurs, as specified in WAIT register; otherwise I = 0).

¹ACK is not sampled on external memory accesses that use the internal wait state mode. For the first CLKIN cycle of a new external memory access, ACK must be valid by t_{DAAK} or t_{DSAK} or t_{DSAK} or synchronous specification t_{SACKC} for wait state modes external, either, or both (both, if the internal wait state is zero). For the second and subsequent cycles of a wait stated external memory access, synchronous specifications t_{SACKC} and t_{HACK} must be met for wait state modes external, either, or both (both, after internal wait states have completed).

² The falling edge of \overline{MSx} , \overline{SW} , \overline{BMS} is referenced.

³See Example System Hold Time Calculation on Page 48 for calculation of hold times given capacitive and dc loads.

Synchronous Read/Write—Bus Master

Use these specifications for interfacing to external memory systems that require CLKIN—relative timing or for accessing a slave ADSP-2106x (in multiprocessor memory space). These synchronous switching characteristics are also valid during asynchronous memory reads and writes except where noted (see Memory Read—Bus Master on Page 25 and Memory WriteBus Master on Page 26). When accessing a slave ADSP-2106x, these switching characteristics must meet the slave's timing requirements for synchronous read/writes (see Synchronous Read/Write—Bus Slave on Page 30). The slave ADSP-2106x must also meet these (bus master) timing requirements for data and acknowledge setup and hold times.

Table 16. Synchronous Read/Write—Bus Master

		5	5 V and 3.3 V		
Parameter		Min	Max	Unit	
Timing Requirements	S				
t _{SSDATI}	Data Setup Before CLKIN	3 + DT/8		ns	
t _{HSDATI}	Data Hold After CLKIN	3.5 – DT/8		ns	
t _{DAAK}	ACK Delay After Address, Selects ^{1, 2}		14 + 7DT/8 + W	ns	
t _{SACKC}	ACK Setup Before CLKIN ²	6.5+DT/4		ns	
t _{HACK}	ACK Hold After CLKIN	-1 - DT/4		ns	
Switching Characteri	istics				
t _{DADRO}	Address, MSx, BMS, SW Delay After CLKIN ¹		7 – DT/8	ns	
t _{HADRO}	Address, MSx, BMS, SW Hold After CLKIN	-1 - DT/8		ns	
t _{DPGC}	PAGE Delay After CLKIN	9 + DT/8	16 + DT/8	ns	
t _{DRDO}	RD High Delay After CLKIN	-2 - DT/8	4 – DT/8	ns	
t _{DWRO}	WR High Delay After CLKIN	-3 - 3DT/16	4 – 3DT/16	ns	
t _{DRWL}	RD/WR Low Delay After CLKIN	8 + DT/4	12.5 + DT/4	ns	
t _{SDDATO}	Data Delay After CLKIN		19 + 5DT/16	ns	
t _{DATTR}	Data Disable After CLKIN ³	0 – DT/8	7 – DT/8	ns	
t _{DADCCK}	ADRCLK Delay After CLKIN	4 + DT/8	10 + DT/8	ns	
t _{ADRCK}	ADRCLK Period	t _{CK}		ns	
t _{ADRCKH}	ADRCLK Width High	(t _{CK} /2 – 2)		ns	
t _{ADRCKL}	ADRCLK Width Low	(t _{CK} /2 – 2)		ns	

¹The falling edge of \overline{MSx} , \overline{SW} , \overline{BMS} is referenced.

² ACK delay/setup: user must meet t_{DAAK} or t_{DSAK} or synchronous specification t_{SAKC} for deassertion of ACK (low), all three specifications must be met for assertion of ACK (high).

³See Example System Hold Time Calculation on Page 48 for calculation of hold times given capacitive and dc loads.

Link Ports $-1 \times CLK$ Speed Operation

Table 23. Link Ports—Receive

			5 V		3.3 V	
Parameter		Min	Max	Min	Max	Unit
Timing Requi	rements					
t _{SLDCL}	Data Setup Before LCLK Low ¹	3.5		3		ns
t _{HLDCL}	Data Hold After LCLK Low	3		3		ns
t _{LCLKIW}	LCLK Period (1× Operation)	t _{CK}		t _{CK}		ns
t _{LCLKRWL}	LCLK Width Low	6		6		ns
t _{LCLKRWH}	LCLK Width High	5		5		ns
Switching Ch	aracteristics					
t _{DLAHC}	LACK High Delay After CLKIN High ^{2, 3}	18 + DT/2	28.5 + DT/2	18 + DT/2	28.5 + DT/2	ns
t _{DLALC}	LACK Low Delay After LCLK High	-3	+13	-3	+13	ns
t _{ENDLK}	LACK Enable From CLKIN	5 + DT/2		5 + DT/2		ns
t _{TDLK}	LACK Disable From CLKIN		20 + DT/2		20 + DT/2	ns

¹For ADSP-21062, specification is 3 ns min.

²LACK goes low with t_{DLALC} relative to rise of LCLK after first nibble, but does not go low if the receiver's link buffer is not about to fill.

³ For ADSP-21060C, specification is 18 + DT/2 ns min, 29 + DT/2 ns max.

Table 24. Link Ports—Transmit

		5	V	3.	3 V	
Parameter		Min	Max	Min	Max	Unit
Timing Requireme	nts					
t _{SLACH}	LACK Setup Before LCLK High ¹	18		18		ns
t _{HLACH}	LACK Hold After LCLK High	-7		-7		ns
Switching Charact	eristics					
t _{DLCLK}	Data Delay After CLKIN (1 \times Operation) ²		15.5		15.5	ns
t _{DLDCH}	Data Delay After LCLK High ³		3		2.5	ns
t _{HLDCH}	Data Hold After LCLK High	-3		-3		ns
t _{LCLKTWL}	LCLK Width Low ⁴	(t _{CK} /2) – 2	(t _{CK} /2) + 2	(t _{CK} /2) – 1	(t _{CK} /2) + 1.25	ns
t _{LCLKTWH}	LCLK Width High⁵	(t _{CK} /2) – 2	(t _{CK} /2) + 2	(t _{CK} /2) – 1.25	(t _{CK} /2) + 1	ns
t _{DLACLK}	LCLK Low Delay After LACK High ⁶	(t _{CK} /2) + 8.5	$(3 \times t_{CK}/2) + 17$	$(t_{CK}/2) + 8$	$(3 \times t_{CK}/2) + 17.5$	ns
t _{ENDLK}	LACK Enable From CLKIN	5 + DT/2		5 + DT/2		ns
t _{TDLK}	LACK Disable From CLKIN		20 + DT/2		20 + DT/2	ns

¹For ADSP-21060L/ADSP-21060LC, specification is 20 ns min.

² For ADSP-21060L, specification is 16.5 ns max; for ADSP-21060LC, specification is 16.75 ns max.

³For ADSP-21062, specification is 2.5 ns max.

⁴ For ADSP-21062, specification is $(t_{CK}/2) - 1$ ns min, $(t_{CK}/2) + 1.25$ ns max; for ADSP-21062L, specification is $(t_{CK}/2) - 1$ ns min, $(t_{CK}/2) + 1.5$ ns max; for ADSP-21060LC specification is $(t_{CK}/2) - 1$ ns min, $(t_{CK}/2) + 2.25$ ns max.

⁵ For ADSP-21062, specification is $(t_{CK}/2) - 1.25$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21062L, specification is $(t_{CK}/2) - 1.5$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) - 2.25$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) - 2.25$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) - 2.25$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) - 1.25$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) - 1.25$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) - 1.25$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) - 1.25$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) - 1.25$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) - 1.25$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) - 1.25$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) - 1.25$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) - 1.25$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) - 1.25$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) - 1.25$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) - 1.25$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) - 1.25$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) - 1.25$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) - 1.25$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) - 1.25$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) - 1.25$ ns min, $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is $(t_{CK}/2) + 1$ ns max; for ADSP-21060C specification is

⁶ For ADSP-21062, specification is $(t_{CK}/2) + 8.75$ ns min, $(3 \times t_{CK}/2) + 17$ ns max; for ADSP-21062L, specification is $(t_{CK}/2) + 8$ ns min, $(3 \times t_{CK}/2) + 17$ ns max; for ADSP-21060LC specification is $(t_{CK}/2) + 8$ ns min, $(3 \times t_{CK}/2) + 18.5$ ns max.

		5 V			3.3 V	
Parameter		Min	Max	Min	Max	Unit
Timing Require	ements					
t _{SLCK}	LACK/LCLK Setup Before CLKIN Low ¹	10		10		ns
t _{HLCK}	LACK/LCLK Hold After CLKIN Low ¹	2		2		ns

Table 25. Link Port Service Request Interrupts: 1× and 2× Speed Operations

¹Only required for interrupt recognition in the current cycle.

Link Ports $-2 \times CLK$ Speed Operation

Calculation of link receiver data setup and hold relative to link clock is required to determine the maximum allowable skew that can be introduced in the transmission path between LDATA and LCLK. Setup skew is the maximum delay that can be introduced in LDATA relative to LCLK:

Setup Skew = $t_{LCLKTWH} \min - t_{DLDCH} - t_{SLDCL}$

Hold skew is the maximum delay that can be introduced in LCLK relative to LDATA:

Hold Skew = $t_{LCLKTWL}$ min – t_{HLDCH} – t_{HLDCL}

Calculations made directly from 2 speed specifications will result in unrealistically small skew times because they include multiple tester guardbands.

Note that link port transfers at 2× CLK speed at 40 MHz ($t_{CK} = 25$ ns) may fail. However, 2× CLK speed link port transfers at 33 MHz ($t_{CK} = 30$ ns) work as specified.

Table 26. Link Ports-Receive

		5	S V	3.		
Parameter		Min	Max	Min	Max	Unit
Timing Requ	irements					
t _{SLDCL}	Data Setup Before LCLK Low	2.5		2.25		ns
t _{HLDCL}	Data Hold After LCLK Low	2.25		2.25		ns
t _{LCLKIW}	LCLK Period (2× Operation)	t _{CK} /2		t _{CK} /2		ns
t _{LCLKRWL}	LCLK Width Low ¹	4.5		5.25		ns
t _{LCLKRWH}	LCLK Width High ²	4.25		4		ns
Switching Characteristics						
t _{DLAHC}	LACK High Delay After CLKIN High ³	18 + DT/2	28.5 + DT/2	18 + DT/2	29.5 + DT/2	ns
t _{DLALC}	LACK Low Delay After LCLK High ⁴	6	16	6	16	ns

¹For ADSP-21060L, specification is 5 ns min.

² For ADSP-21062, specification is 4 ns min, for ADSP-21060LC, specification is 4.5 ns min.

³LACK goes low with t_{DLALC} relative to rise of LCLK after first nibble, but does not go low if the receiver's link buffer is not about to fill.

⁴ For ADSP-21060L, specification is 6 ns min, 18 ns max. For ADSP-21060C, specification is 6 ns min, 16.5 ns max. For ADSP-21060LC, specification is 6 ns min, 18.5 ns max.

EXTERNAL RFS WITH MCE = 1, MFD = 0

LATE EXTERNAL TFS

Figure 26. Serial Ports—External Late Frame Sync

TEST CONDITIONS

For the ac signal specifications (timing parameters), see Timing Specifications on Page 21. These specifications include output disable time, output enable time, and capacitive loading. The timing specifications for the DSP apply for the voltage reference levels in Figure 28.

Figure 28. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

Output Disable Time

Output pins are considered to be disabled when they stop driving, go into a high impedance state, and start to decay from their output high or low voltage. The time for the voltage on the bus to decay by ΔV is dependent on the capacitive load, C_L , and the load current, I_L . This decay time can be approximated by the following equation:

$$P_{EXT} = \frac{C_L \Delta V}{I_L}$$

The output disable time t_{DIS} is the difference between $t_{MEASURED}$ and t_{DECAY} as shown in Figure 29. The time $t_{MEASURED}$ is the interval from when the reference signal switches to when the output voltage decays ΔV from the measured output high or output low voltage. t_{DECAY} is calculated with test loads C_L and I_L , and with ΔV equal to 0.5 V.

Figure 29. Output Enable/Disable

Output Enable Time

Output pins are considered to be enabled when they have made a transition from a high impedance state to when they start driving. The output enable time t_{ENA} is the interval from when a reference signal reaches a high or low voltage level to when the

output has reached a specified high or low trip point, as shown in the Output Enable/Disable diagram (Figure 29). If multiple pins (such as the data bus) are enabled, the measurement value is that of the first pin to start driving.

Example System Hold Time Calculation

To determine the data output hold time in a particular system, first calculate t_{DECAY} using the equation given above. Choose ΔV to be the difference between the ADSP-2106x's output voltage and the input threshold for the device requiring the hold time. A typical ΔV will be 0.4 V. C_L is the total bus capacitance (per data line), and I_L is the total leakage or three-state current (per data line). The hold time will be t_{DECAY} plus the minimum disable time (i.e., t_{DATRWH} for the write cycle).

Capacitive Loading

Output delays and holds are based on standard capacitive loads: 50 pF on all pins (see Figure 30). The delay and hold specifications given should be derated by a factor of 1.5 ns/50 pF for loads other than the nominal value of 50 pF. Figure 32, Figure 33, Figure 37, and Figure 38 show how output rise time varies with capacitance. Figure 34 and Figure 36 show graphically how output delays and holds vary with load capacitance. (Note that this graph or derating does not apply to output disable delays; see the previous section Output Disable Time under Test Conditions.) The graphs of Figure 32, Figure 33, Figure 37, and Figure 38 may not be linear outside the ranges shown.

Figure 30. Equivalent Device Loading for AC Measurements (Includes All Fixtures)

Output Drive Characteristics

Figure 31 shows typical I-V characteristics for the output drivers of the ADSP-2106x. The curves represent the current drive capability of the output drivers as a function of output voltage.

Output Characteristics (5 V)

Figure 31. ADSP-21062 Typical Output Drive Currents ($V_{DD} = 5 V$)

Figure 32. Typical Output Rise Time (10% to 90% V_{DD}) vs. Load Capacitance $(V_{DD} = 5 V)$

Figure 33. Typical Output Rise Time (0.8 V to 2.0 V) vs. Load Capacitance $(V_{DD} = 5 V)$

Figure 34. Typical Output Delay or Hold vs. Load Capacitance (at Maximum Case Temperature) ($V_{DD} = 5 V$)

225-BALL PBGA BALL CONFIGURATION

	Ball		Ball	Ball			Ball	Ball		
Ball Name	Number	Ball Name	Number	Ball Name	Number	Ball Name	Number	Ball Name	Number	
BMS	A01	ADDR25	D01	ADDR14	G01	ADDR6	K01	EMU	N01	
ADDR30	A02	ADDR26	D02	ADDR15	G02	ADDR5	K02	TDO	N02	
DMAR2	A03	MS2	D03	ADDR16	G03	ADDR3	K03	IRQ0	N03	
DT1	A04	ADDR29	D04	ADDR19	G04	ADDR0	K04	IRQ1	N04	
RCLK1	A05	DMAR1	D05	GND	G05	ICSA	K05	ID2	N05	
TCLK0	A06	TFS1	D06	V _{DD}	G06	GND	K06	L5DAT1	N06	
RCLK0	A07	CPA	D07	V _{DD}	G07	V _{DD}	K07	L4CLK	N07	
ADRCLK	A08	HBG	D08	V _{DD}	G08	V _{DD}	K08	L3CLK	N08	
CS	A09	DMAG2	D09	V _{DD}	G09	V _{DD}	K09	L3DAT3	N09	
CLKIN	A10	BR5	D10	V _{DD}	G10	GND	K10	L2DAT0	N10	
PAGE	A11	BR1	D11	GND	G11	GND	K11	L1ACK	N11	
BR3	A12	DATA40	D12	DATA22	G12	DATA8	K12	L1DAT3	N12	
DATA47	A13	DATA37	D13	DATA25	G13	DATA11	K13	L0DAT3	N13	
DATA44	A14	DATA35	D14	DATA24	G14	DATA13	K14	DATA1	N14	
DATA42	A15	DATA34	D15	DATA23	G15	DATA14	K15	DATA3	N15	
MS0	B01	ADDR21	E01	ADDR12	H01	ADDR2	L01	TRST	P01	
SW	B02	ADDR22	E02	ADDR11	H02	ADDR1	L02	TMS	P02	
ADDR31	B03	ADDR24	E03	ADDR13	H03	FLAG0	L03	EBOOT	P03	
HBR	B04	ADDR27	E04	ADDR10	H04	FLAG3	L04	ID0	P04	
DR1	B05	GND	E05	GND	H05	RPBA	L05	L5CLK	P05	
DT0	B06	GND	E06	V _{DD}	H06	GND	L06	L5DAT3	P06	
DR0	B07	GND	E07	V _{DD}	H07	GND	L07	L4DAT0	P07	
REDY	B08	GND	E08	V _{DD}	H08	GND	L08	L4DAT3	P08	
RD	B09	GND	E09	V _{DD}	H09	GND	L09	L3DAT2	P09	
ACK	B10	GND	E10	V _{DD}	H10	GND	L10	L2CLK	P10	
BR6	B11	NC	E11	GND	H11	NC	L11	L2DAT2	P11	
BR2	B12	DATA33	E12	DATA18	H12	DATA4	L12	L1DAT0	P12	
DATA45	B13	DATA30	E13	DATA19	H13	DATA7	L13	LOACK	P13	
DATA43	B14	DATA32	E14	DATA21	H14	DATA9	L14	L0DAT1	P14	
DATA39	B15	DATA31	E15	DATA20	H15	DATA10	L15	DATA0	P15	
MS3	C01	ADDR17	F01	ADDR9	J01	FLAG1	M01	TCK	R01	
MS1	C02	ADDR18	F02	ADDR8	J02	FLAG2	M02	IRQ2	R02	
ADDR28	C03	ADDR20	F03	ADDR7	J03	TIMEXP	M03	RESET	R03	
SBTS	C04	ADDR23	F04	ADDR4	J04	TDI	M04	ID1	R04	
TCLK1	C05	GND	F05	GND	J05	LBOOT	M05	L5DAT0	R05	
RFS1	C06	GND	F06	V _{DD}	J06	L5ACK	M06	L4ACK	R06	
TFS0	C07	V _{DD}	F07	V _{DD}	J07	L5DAT2	M07	L4DAT1	R07	
RFS0	C08	V _{DD}	F08	V _{DD}	J08	L4DAT2	M08	L3ACK	R08	
WR	C09	V _{DD}	F09	V _{DD}	J09	L3DAT0	M09	L3DAT1	R09	
DMAG1	C10	GND	F10	V _{DD}	J10	L2DAT3	M10	L2ACK	R10	
BR4	C11	GND	F11	GND	J11	L1DAT1	M11	L2DAT1	R11	
DATA46	C12	DATA29	F12	DATA12	J12	L0DAT0	M12	L1CLK	R12	
DATA41	C13	DATA26	F13	DATA15	J13	DATA2	M13	L1DAT2	R13	
DATA38	C14	DATA28	F14	DATA16	J14	DATA5	M14	LOCLK	R14	
DATA36	C15	DATA27	F15	DATA17	J15	DATA6	M15	L0DAT2	R15	

Table 40. ADSP-2106x 225-Ball Metric PBGA Ball Assignments (B-225-2)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
DATA42	DATA44	DATA47	BR3	PAGE	CLKIN	cs	ADRCLK	RCLK0	TCLK0	RCLK1	DT1	DMAR2	ADDR30	BMS	Α
DATA39	DATA43	DATA45	BR2	BR6	ACK	RD	REDY	DR0	DTO	DR1	HBR	ADDR31	SW	MSO	в
DATA36	DATA38	DATA41	DATA46	BR4	DMAG1	WR	RFS0	TFS0	RFS1	TCLK1	SBTS	ADDR28	MS1	MS3	С
DATA34	DATA35	DATA37	DATA40	BR1	BR5	DMAG2	HBG	CPA	TFS1	DMAR1	ADDR29	MS2	ADDR26	ADDR25	D
DATA31	DATA32	DATA30	DATA33	NC	GND	GND	GND	GND	GND	GND	ADDR27	ADDR24	ADDR22	ADDR21	Е
DATA27	DATA28	DATA26	DATA29	GND	GND	v _{DD}	v _{DD}	v _{DD}	GND	GND	ADDR23	ADDR20	ADDR18	ADDR17	F
DATA23	DATA24	DATA25	DATA22	GND	v _{DD}	GND	ADDR19	ADDR16	ADDR15	ADDR14	G				
DATA20	DATA21	DATA19	DATA18	GND	v _{DD}	GND	ADDR10	ADDR13	ADDR11	ADDR12	н				
DATA17	DATA16	DATA15	DATA12	GND	v _{DD}	GND	ADDR4	ADDR7	ADDR8	ADDR9	J				
DATA14	DATA13	DATA11	DATA8	GND	GND	v _{DD}	v _{DD}	v _{DD}	GND	ICSA	ADDR0	ADDR3	ADDR5	ADDR6	к
DATA10	DATA9	DATA7	DATA4	NC	GND	GND	GND	GND	GND	RPBA	FLAG3	FLAG0	ADDR1	ADDR2	L
DATA6	DATA5	DATA2	LODATO	L1DAT1	L2DAT3	L3DAT0	L4DAT2	L5DAT2	L5ACK	LBOOT	TDI	TIMEXP	FLAG2	FLAG1	м
DATA3	DATA1	L0DAT3	L1DAT3	L1ACK	L2DAT0	L3DAT3	L3CLK	L4CLK	L5DAT1	ID2	IRQ1	IRQ0	TDO	EMU	Ν
DATA0	L0DAT1	LOACK	L1DAT0	L2DAT2	L2CLK	L3DAT2	L4DAT3	L4DAT0	L5DAT3	L5CLK	ID0	ЕВООТ	тмз	TRST	Р
L0DAT2	LOCLK	L1DAT2	L1CLK	L2DAT1	L2ACK	L3DAT1	L3ACK	L4DAT1	L4ACK	L5DAT0	ID1	RESET	IRQ2	тск	R

Figure 39. ADSP-21060/ADSP-21062 PBGA Ball Assignments (Top View, Summary)

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-034-AAJ-2

Figure 40. 225-Ball Plastic Ball Grid Array [PBGA] (B-225-2) Dimensions shown in millimeters

Figure 42. 240-Lead Ceramic Quad Flat Package, Heat Slug Up [CQFP] (QS-240-2A) Dimensions shown in millimeters

Figure 45. 240-Lead Ceramic Quad Flat Package, Mounted with Cavity Up [CQFP] (QS-240-1B) Dimensions shown in millimeters

SURFACE-MOUNT DESIGN

Table 43 is provided as an aide to PCB design. For industrystandard design recommendations, refer to IPC-7351, *Generic Requirements for Surface-Mount Design and Land Pattern Standard*.

Table 43. BGA Data for Use with Surface-Mount Design

Package	Ball Attach Type	Solder Mask Opening	Ball Pad Size
225-Ball Grid Array (PBGA)	Solder Mask Defined	0.63 mm diameter	0.76 mm diameter

ORDERING GUIDE

		Temperature	Instruction	On-Chip	Operating		Package
Model	Notes	Range	Rate	SRAM	Voltage	Package Description	Option
ASDP-21060CZ-133	1, 2	-40°C to +100°C	33 MHz	4M Bit	5 V	240-Lead CQFP [Heat Slug Up]	QS-240-2A
ASDP-21060CZ-160	1, 2	-40°C to +100°C	40 MHz	4M Bit	5 V	240-Lead CQFP [Heat Slug Up]	QS-240-2A
ASDP-21060CW-133	1, 2	-40°C to +100°C	33 MHz	4M Bit	5 V	240-Lead CQFP [Heat Slug Down]	QS-240-1A
ASDP-21060CW-160	1, 2	-40°C to +100°C	40 MHz	4M Bit	5 V	240-Lead CQFP [Heat Slug Down]	QS-240-1A
ADSP-21060KS-133		0°C to 85°C	33 MHz	4M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21060KSZ-133	2	0°C to 85°C	33 MHz	4M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21060KS-160		0°C to 85°C	40 MHz	4M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21060KSZ-160	2	0°C to 85°C	40 MHz	4M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21060KB-160		0°C to 85°C	40 MHz	4M Bit	5 V	225-Ball PBGA	B-225-2
ADSP-21060KBZ-160	2	0°C to 85°C	40 MHz	4M Bit	5 V	225-Ball PBGA	B-225-2
ADSP-21060LKSZ-133	2	0°C to 85°C	33 MHz	4M Bit	3.3 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21060LKS-160		0°C to 85°C	40 MHz	4M Bit	3.3 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21060LKSZ-160	2	0°C to 85°C	40 MHz	4M Bit	3.3 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21060LKB-160		0°C to 85°C	40 MHz	4M Bit	3.3 V	225-Ball PBGA	B-225-2
ADSP-21060LAB-160		–40°C to +85°C	40 MHz	4M Bit	3.3 V	225-Ball PBGA	B-225-2
ADSP-21060LABZ-160	2	–40°C to +85°C	40 MHz	4M Bit	3.3 V	225-Ball PBGA	B-225-2
ADSP-21060LCB-133		-40°C to +100°C	33 MHz	4M Bit	3.3 V	225-Ball PBGA	B-225-2
ADSP-21060LCBZ-133	2	-40°C to +100°C	33 MHz	4M Bit	3.3 V	225-Ball PBGA	B-225-2
ASDP-21060LCW-160	1, 2	-40°C to +100°C	40 MHz	4M Bit	3.3 V	240-Lead CQFP [Heat Slug Down]	QS-240-1A
ADSP-21062KS-133		0°C to 85°C	33 MHz	2M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062KSZ-133	2	0°C to 85°C	33 MHz	2M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062KS-160		0°C to 85°C	40 MHz	2M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062KSZ-160	2	0°C to 85°C	40 MHz	2M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062KB-160		0°C to 85°C	40 MHz	2M Bit	5 V	225-Ball PBGA	B-225-2
ADSP-21062KBZ-160	2	0°C to 85°C	40 MHz	2M Bit	5 V	225-Ball PBGA	B-225-2
ADSP-21062CS-160		-40°C to +100°C	40 MHz	2M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062CSZ-160	2	-40°C to +100°C	40 MHz	2M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062LKSZ-133	2	0°C to 85°C	33 MHz	2M Bit	3.3 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062LKS-160		0°C to 85°C	40 MHz	2M Bit	3.3 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062LKSZ-160	2	0°C to 85°C	40 MHz	2M Bit	3.3 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062LKB-160		0°C to 85°C	40 MHz	2M Bit	3.3 V	225-Ball PBGA	B-225-2
ADSP-21062LKBZ-160	2	0°C to 85°C	40 MHz	2M Bit	3.3 V	225-Ball PBGA	B-225-2
ADSP-21062LAB-160		–40°C to 85°C	40 MHz	2M Bit	3.3 V	225-Ball PBGA	B-225-2
ADSP-21062LABZ-160	2	–40°C to 85°C	40 MHz	2M Bit	3.3 V	225-Ball PBGA	B-225-2
ADSP-21062LCS-160		-40°C to +100°C	40 MHz	2M Bit	3.3 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062LCSZ-160	2	-40°C to +100°C	40 MHz	2M Bit	3.3 V	240-Lead MQFP_PQ4	SP-240-2

¹Model refers to package with formed leads. For model numbers of unformed lead versions (QS-240-1B, QS-240-2B), contact Analog Devices or an Analog Devices sales representative.

²RoHS compliant part.

©2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00167-0-3/13(H)

www.analog.com