

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	Floating Point
Interface	Host Interface, Link Port, Serial Port
Clock Rate	40MHz
Non-Volatile Memory	External
On-Chip RAM	256kB
Voltage - I/O	3.30V
Voltage - Core	3.30V
Operating Temperature	-40°C ~ 85°C (TC)
Mounting Type	Surface Mount
Package / Case	225-BBGA
Supplier Device Package	225-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-21062lab-160

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CONTENTS

Summary	1
General Description	4
SHARC Family Core Architecture	4
Memory and I/O Interface Features	5
Development Tools	8
Additional Information	9
Related Signal Chains	9
Pin Function Descriptions	10
Target Board Connector for EZ-ICE Probe	13
ADSP-21060/ADSP-21062 Specifications	15
Operating Conditions (5 V)	15
Electrical Characteristics (5 V)	15
Internal Power Dissipation (5 V)	16
External Power Dissipation (5 V)	17
ADSP-21060L/ADSP-21062L Specifications	18
Operating Conditions (3.3 V)	18

REVISION HISTORY

3/13—Rev. G to Rev. H
Updated Development Tools8
Corrected the power dissipation equation from $P_{\text{TOTAL}} = P_{EXT} + (I_{DDIN2} \times 5.0 \text{ V})$ to $P_{\text{TOTAL}} = P_{EXT} + (I_{DDIN2} \times 3.3 \text{ V})$
External Power Dissipation (3.3 V)

Electrical Characteristics (3.3 V)
Internal Power Dissipation (3.3 V) 19
External Power Dissipation (3.3 V) 20
Absolute Maximum Ratings 20
ESD Caution
Package Marking Information 21
Timing Specifications 21
Test Conditions 48
Environmental Conditions 51
225-Ball PBGA Ball Configuration 52
220 Duilt Doitt Duil Coningulation
240-Lead MQFP_PQ4/CQFP Pin Configuration54
240-Lead MQFP_PQ4/CQFP Pin Configuration54Outline Dimensions56
240-Lead MQFP_PQ4/CQFP Pin Configuration 54 Outline Dimensions 56 Surface-Mount Design 61

Single-Cycle Fetch of Instruction and Two Operands

The ADSP-2106x features an enhanced Harvard architecture in which the data memory (DM) bus transfers data and the program memory (PM) bus transfers both instructions and data (see Figure 1 on Page 1). With its separate program and data memory buses and on-chip instruction cache, the processor can simultaneously fetch two operands and an instruction (from the cache), all in a single cycle.

Instruction Cache

The ADSP-2106x includes an on-chip instruction cache that enables three-bus operation for fetching an instruction and two data values. The cache is selective—only the instructions whose fetches conflict with PM bus data accesses are cached. This allows full-speed execution of core, looped operations such as digital filter multiply-accumulates and FFT butterfly processing.

Data Address Generators with Hardware Circular Buffers

The ADSP-2106x's two data address generators (DAGs) implement circular data buffers in hardware. Circular buffers allow efficient programming of delay lines and other data structures required in digital signal processing, and are commonly used in digital filters and Fourier transforms. The two DAGs of the ADSP-2106x contain sufficient registers to allow the creation of up to 32 circular buffers (16 primary register sets, 16 secondary). The DAGs automatically handle address pointer wraparound, reducing overhead, increasing performance and simplifying implementation. Circular buffers can start and end at any memory location.

Flexible Instruction Set

The 48-bit instruction word accommodates a variety of parallel operations, for concise programming. For example, the ADSP-2106x can conditionally execute a multiply, an add, a subtract and a branch, all in a single instruction.

MEMORY AND I/O INTERFACE FEATURES

The ADSP-2106x processors add the following architectural features to the SHARC family core.

Dual-Ported On-Chip Memory

The ADSP-21062/ADSP-21062L contains two megabits of onchip SRAM, and the ADSP-21060/ADSP-21060L contains 4M bits of on-chip SRAM. The internal memory is organized as two equal sized blocks of 1M bit each for the ADSP-21062/ ADSP-21062L and two equal sized blocks of 2M bits each for the ADSP-21060/ADSP-21060L. Each can be configured for different combinations of code and data storage. Each memory block is dual-ported for single-cycle, independent accesses by the core processor and I/O processor or DMA controller. The dual-ported memory and separate on-chip buses allow two data transfers from the core and one from I/O, all in a single cycle.

On the ADSP-21062/ADSP-21062L, the memory can be configured as a maximum of 64k words of 32-bit data, 128k words of 16-bit data, 40k words of 48-bit instructions (or 40-bit data), or combinations of different word sizes up to two megabits. All of the memory can be accessed as 16-bit, 32-bit, or 48-bit words. On the ADSP-21060/ADSP-21060L, the memory can be configured as a maximum of 128k words of 32-bit data, 256k words of 16-bit data, 80k words of 48-bit instructions (or 40-bit data), or combinations of different word sizes up to four megabits. All of the memory can be accessed as 16-bit, 32-bit or 48-bit words.

A 16-bit floating-point storage format is supported, which effectively doubles the amount of data that can be stored on-chip. Conversion between the 32-bit floating-point and 16-bit floating-point formats is done in a single instruction.

While each memory block can store combinations of code and data, accesses are most efficient when one block stores data, using the DM bus for transfers, and the other block stores instructions and data, using the PM bus for transfers. Using the DM bus and PM bus in this way, with one dedicated to each memory block, assures single-cycle execution with two data transfers. In this case, the instruction must be available in the cache. Single-cycle execution is also maintained when one of the data operands is transferred to or from off-chip, via the ADSP-2106x's external port.

On-Chip Memory and Peripherals Interface

The ADSP-2106x's external port provides the processor's interface to off-chip memory and peripherals. The 4-gigaword offchip address space is included in the ADSP-2106x's unified address space. The separate on-chip buses—for PM addresses, PM data, DM addresses, DM data, I/O addresses, and I/O data—are multiplexed at the external port to create an external system bus with a single 32-bit address bus and a single 48-bit (or 32-bit) data bus.

Addressing of external memory devices is facilitated by on-chip decoding of high-order address lines to generate memory bank select signals. Separate control lines are also generated for simplified addressing of page-mode DRAM. The ADSP-2106x provides programmable memory wait states and external memory acknowledge controls to allow interfacing to DRAM and peripherals with variable access, hold and disable time requirements.

Host Processor Interface

The ADSP-2106x's host interface allows easy connection to standard microprocessor buses, both 16-bit and 32-bit, with little additional hardware required. Asynchronous transfers at speeds up to the full clock rate of the processor are supported. The host interface is accessed through the ADSP-2106x's external port and is memory-mapped into the unified address space. Four channels of DMA are available for the host interface; code and data transfers are accomplished with low software overhead.

The host processor requests the ADSP-2106x's external bus with the host bus request ($\overline{\text{HBR}}$), host bus grant ($\overline{\text{HBG}}$), and ready (REDY) signals. The host can directly read and write the internal memory of the ADSP-2106x, and can access the DMA channel setup and mailbox registers. Vector interrupt support is provided for efficient execution of host commands.

DMA Controller

The ADSP-2106x's on-chip DMA controller allows zero-overhead data transfers without processor intervention. The DMA controller operates independently and invisibly to the processor core, allowing DMA operations to occur while the core is simultaneously executing its program instructions.

DMA transfers can occur between the ADSP-2106x's internal memory and external memory, external peripherals, or a host processor. DMA transfers can also occur between the ADSP-2106x's internal memory and its serial ports or link ports. DMA transfers between external memory and external peripheral devices are another option. External bus packing to 16-, 32-, or 48-bit words is performed during DMA transfers.

Ten channels of DMA are available on the ADSP-2106x—two via the link ports, four via the serial ports, and four via the processor's external port (for either host processor, other ADSP-2106xs, memory, or I/O transfers). Four additional link port DMA channels are shared with Serial Port 1 and the external port. Programs can be downloaded to the ADSP-2106x using DMA transfers. Asynchronous off-chip peripherals can

control two DMA channels using DMA request/grant lines (DMAR1-2, DMAG1-2). Other DMA features include interrupt generation upon completion of DMA transfers and DMA chaining for automatic linked DMA transfers.

Multiprocessing

The ADSP-2106x offers powerful features tailored to multiprocessor DSP systems. The unified address space (see Figure 4) allows direct interprocessor accesses of each ADSP-2106x's internal memory. Distributed bus arbitration logic is included on-chip for simple, glueless connection of systems containing up to six ADSP-2106xs and a host processor. Master processor changeover incurs only one cycle of overhead. Bus arbitration is selectable as either fixed or rotating priority. Bus lock allows indivisible read-modify-write sequences for semaphores. A vector interrupt is provided for interprocessor commands. Maximum throughput for interprocessor data transfer is 240M bytes/s over the link ports or external port. Broadcast writes allow simultaneous transmission of data to all ADSP-2106xs and can be used to implement reflective semaphores.

NOTE: BANK SIZES ARE SELECTED BY

MSIZE BITS IN THE SYSCON REGISTER

Figure 4. Memory Map

PIN FUNCTION DESCRIPTIONS

The ADSP-2106x pin definitions are listed below. Inputs identified as synchronous (S) must meet timing requirements with respect to CLKIN (or with respect to TCK for TMS, TDI). Inputs identified as asynchronous (A) can be asserted asynchronously to CLKIN (or to TCK for TRST). Unused inputs should be tied or pulled to VDD or GND, except for ADDR31–0, DATA47–0, FLAG3–0, and inputs that have internal pull-up or pull-down resistors (CPA, ACK, DTx, DRx, TCLKx, RCLKx, LxDAT3–0, LxCLK, LxACK, TMS, and TDI)—these pins can be left floating. These pins have a logic-level hold circuit that prevents the input from floating internally.

Pin Type Function ADDR31-0 I/O/T External Bus Address. The ADSP-2106x outputs addresses for external memory and peripherals on these pins. In a multiprocessor system, the bus master outputs addresses for read/write of the internal memory or IOP registers of other ADSP-2106xs. The ADSP-2106x inputs addresses when a host processor or multiprocessing bus master is reading or writing its internal memory or IOP registers. I/O/T External Bus Data. The ADSP-2106x inputs and outputs data and instructions on these pins. 32-bit single-DATA47-0 precision floating-point data and 32-bit fixed-point data is transferred over bits 47-16 of the bus. 40-bit extended-precision floating-point data is transferred over bits 47-8 of the bus. 16-bit short word data is transferred over bits 31–16 of the bus. In PROM boot mode, 8-bit data is transferred over bits 23–16. Pull-up resistors on unused DATA pins are not necessary. O/T MS3-0 Memory Select Lines. These lines are asserted (low) as chip selects for the corresponding banks of external memory. Memory bank size must be defined in the ADSP-2106x's system control register (SYSCON). The MS3–0 lines are decoded memory address lines that change at the same time as the other address lines. When no external memory access is occurring, the MS3–0 lines are inactive; they are active however when a conditional memory access instruction is executed, whether or not the condition is true. MSO can be used with the PAGE signal to implement a bank of DRAM memory (Bank 0). In a multiprocessing system the MS3-0 lines are output by the bus master. RD I/O/T Memory Read Strobe. This pin is asserted (low) when the ADSP-2106x reads from external memory devices or from the internal memory of other ADSP-2106xs. External devices (including other ADSP-2106xs) must assert RD to read from the ADSP-2106x's internal memory. In a multiprocessing system, RD is output by the bus master and is input by all other ADSP-2106xs. WR I/O/T Memory Write Strobe. This pin is asserted (low) when the ADSP-2106x writes to external memory devices or to the internal memory of other ADSP-2106xs. External devices must assert \overline{WR} to write to the ADSP-2106x's internal memory. In a multiprocessing system, \overline{WR} is output by the bus master and is input by all other ADSP-2106xs. PAGE O/T DRAM Page Boundary. The ADSP-2106x asserts this pin to signal that an external DRAM page boundary has been crossed. DRAM page size must be defined in the ADSP-2106x's memory control register (WAIT). DRAM can only be implemented in external memory Bank 0; the PAGE signal can only be activated for Bank 0 accesses. In a multiprocessing system, PAGE is output by the bus master ADRCLK O/T Clock Output Reference. In a multiprocessing system, ADRCLK is output by the bus master. I/O/T SW Synchronous Write Select. This signal is used to interface the ADSP-2106x to synchronous memory devices (including other ADSP-2106xs). The ADSP-2106x asserts SW (low) to provide an early indication of an impending write cycle, which can be aborted if \overline{WR} is not later asserted (e.g., in a conditional write instruction). In a multiprocessing system, SW is output by the bus master and is input by all other ADSP-2106xs to determine if the multiprocessor memory access is a read or write. SW is asserted at the same time as the address output. A host processor using synchronous writes must assert this pin when writing to the ADSP-2106x(s).

Table 3. Pin Descriptions

A = Asynchronous, G = Ground, I = Input, O = Output, P = Power Supply, S = Synchronous, (A/D) = Active Drive, (O/D) = Open Drain, T = Three-State (when SBTS is asserted, or when the ADSP-2106x is a bus slave)

Table 3. Pin Descriptions (Continued)

Pin	Type	Function			
TFSx	1/0	Transmit Frame Sync (Serial Ports 0, 1).			
RFSx	1/0	Receive Frame Sync (Serial Ports 0, 1).			
LxDAT3-0	I/O	.ink Port Data (Link Ports 0–5). Each LxDAT pin has a 50 k Ω internal pull-down resistor that is enabled or disabled by the LPDRD bit of the LCOM register.			
LxCLK	I/O	Link Port Clock (Link Ports 0–5). Each LxCLK pin has a 50 k Ω internal pull-down resistor that is enabled or disabled by the LPDRD bit of the LCOM register.			
LxACK	I/O	Link Port Acknowledge (Link Ports 0–5). Each LxACK pin has a 50 k Ω internal pull-down resistor that is enabled or disabled by the LPDRD bit of the LCOM register.			
EBOOT	I	EPROM Boot Select. When EBOOT is high, the ADSP-2106x is configured for booting from an 8-bit EPROM. When EBOOT is low, the LBOOT and BMS inputs determine booting mode. See the table in the BMS pin description below. This signal is a system configuration selection that should be hardwired.			
LBOOT	1	Link Boot. When LBOOT is high, the ADSP-2106x is configured for link port booting. When LBOOT is low, the ADSP-2106x is configured for host processor booting or no booting. See the table in the BMS pin description below. This signal is a system configuration selection that should be hardwired.			
BMS	I/OT	Boot Memory Select. <i>Output</i> : Used as chip select for boot EPROM devices (when EBOOT = 1, LBOOT = 0). In a multiprocessor system, BMS is output by the bus master. <i>Input</i> : When low, indicates that no booting will occur and that ADSP-2106x will begin executing instructions from external memory. See table below. This input is a system configuration selection that should be hardwired. *Three-statable only in EPROM boot mode (when BMS is an output).			
		EBOOT LBOOT BMS Booting Mode			
		1 0 Output EPROM (Connect BMS to EPROM chip select.)			
		0 0 1 (Input) Host Processor			
		U I I (Input) Link Port			
		0 0 (input) No Booting. Processor executes from external memory.			
		1 1 x (Input) Reserved			
CLKIN	I	Clock In. External clock input to the ADSP-2106x. The instruction cycle rate is equal to CLKIN. CLKIN should not be halted, changed, or operated below the minimum specified frequency.			
RESET	I/A	Processor Reset. Resets the ADSP-2106x to a known state and begins program execution at the program memory location specified by the hardware reset vector address. This input must be asserted (low) at power-up.			
ТСК	I	Test Clock (JTAG). Provides an asynchronous clock for JTAG boundary scan.			
тмѕ	I/S	Test Mode Select (JTAG). Used to control the test state machine. TMS has a 20 k Ω internal pull-up resistor.			
TDI	I/S	Test Data Input (JTAG). Provides serial data for the boundary scan logic. TDI has a 20 k Ω internal pull-up resistor.			
TDO	0	Test Data Output (JTAG). Serial scan output of the boundary scan path.			
TRST	I/A	Test Reset (JTAG). Resets the test state machine. TRST must be asserted (pulsed low) after power-up or held low for proper operation of the ADSP-2106x. TRST has a 20 k Ω internal pull-up resistor.			
EMU	0	Emulation Status. Must be connected to the ADSP-2106x EZ-ICE target board connector only.			
ICSA	0	Reserved, leave unconnected.			
VDD	Р	Power Supply; nominally 5.0 V dc for 5 V devices or 3.3 V dc for 3.3 V devices. (30 pins).			
GND	G	Power Supply Return. (30 pins).			
NC		Do Not Connect. Reserved pins which must be left open and unconnected.			
A = Asynchronous	, G = Ground,	I = Input, O = Output, P = Power Supply, S = Synchronous, (A/D) = Active Drive, (O/D) = Open Drain,			

T = Three-State (when \overline{SBTS} is asserted, or when the ADSP-2106x is a bus slave)

Figure 6. JTAG Scan Path Connections for Multiple ADSP-2106x Systems

Figure 7. JTAG Clock Tree for Multiple ADSP-2106x Systems

INTERNAL POWER DISSIPATION (3.3 V)

These specifications apply to the internal power portion of $\rm V_{\rm DD}$ only. For a complete discussion of the code used to measure power dissipation, see the technical note "SHARC Power Dissipation Measurements."

Specifications are based on the operating scenarios.

Operation	Peak Activity (I _{DDINPEAK})	High Activity (I _{DDINHIGH})	Low Activity (I _{DDINLOW})
Instruction Type	Multifunction	Multifunction	Single Function
Instruction Fetch	Cache	Internal Memory	Internal Memory
Core memory Access	2 Per Cycle (DM and PM)	1 Per Cycle (DM)	None
Internal Memory DMA	1 Per Cycle	1 Per 2 Cycles	1 Per 2 Cycles

To estimate power consumption for a specific application, use the following equation where % is the amount of time your program spends in that state:

%PEAK I_{DDINPEAK} + %HIGH I_{DDINHIGH} + %LOW I_{DDINLOW} + %IDLE I_{DDIDLE} = Power Consumption

Parameter	Test Conditions	Max	Unit
I _{DDINPEAK} Supply Current (Internal) ¹	$t_{CK} = 30 \text{ ns}, V_{DD} = Max$	540	mA
	$t_{CK} = 25 \text{ ns}, V_{DD} = Max$	600	mA
I _{DDINHIGH} Supply Current (Internal) ²	$t_{CK} = 30 \text{ ns}, V_{DD} = Max$	425	mA
	$t_{CK} = 25 \text{ ns}, V_{DD} = Max$	475	mA
I _{DDINLOW} Supply Current (Internal) ²	$t_{CK} = 30 \text{ ns}, V_{DD} = Max$	250	mA
	$t_{CK} = 25 \text{ ns}, V_{DD} = Max$	275	mA
I _{DDIDLE} Supply Current (Idle) ³	$V_{DD} = Max$	180	mA

¹The test program used to measure I_{DDINPEAK} represents worst case processor operation and is not sustainable under normal application conditions. Actual internal power measurements made using typical applications are less than specified.

²I_{DDINHIGH} is a composite average based on a range of high activity code. I_{DDINLOW} is a composite average based on a range of low activity code.

³Idle denotes ADSP-2106xL state during execution of IDLE instruction.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PACKAGE MARKING INFORMATION

Figure 8 and Table 8 provide information on detail contained within the package marking for the ADSP-2106x processors (actual marking format may vary). For a complete listing of product availability, see Ordering Guide on Page 62.

Figure 8. Typical Package Brand

Table 8. Package Brand Information

Brand Key	Field Description
t	Temperature Range
рр	Package Type
Z	Lead (Pb) Free Option
ссс	See Ordering Guide
VVVVVXX	Assembly Lot Code
n.n	Silicon Revision
ууww	Date Code

TIMING SPECIFICATIONS

The ADSP-2106x processors are available at maximum processor speeds of 33 MHz (–133), and 40 MHz (–160). The timing specifications are based on a CLKIN frequency of 40 MHz $t_{CK} = 25$ ns). The DT derating factor enables the calculation for timing specifications within the min to max range of the t_{CK} specification (see Table 9). DT is the difference between the derated CLKIN period and a CLKIN period of 25 ns:

$DT = t_{\rm CK} - 25 \text{ ns}$

Use the exact timing information given. Do not attempt to derive parameters from the addition or subtraction of others. While addition or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical variations and worst cases. Consequently, you cannot meaningfully add parameters to derive longer times.

For voltage reference levels, see Figure 28 on Page 48 under Test Conditions.

Timing Requirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read operation. Timing requirements guarantee that the processor operates correctly with other devices. (O/D) = Open Drain, (A/D) = Active Drive.

Switching Characteristics specify how the processor changes its signals. You have no control over this timing—circuitry external to the processor must be designed for compatibility with these signal characteristics. Switching characteristics tell you what the processor will do in a given circumstance. You can also use switching characteristics to ensure that any timing requirement of a device connected to the processor (such as memory) is satisfied.

Synchronous Read/Write—Bus Slave

Use these specifications for bus master accesses of a slave's IOP registers or internal memory (in multiprocessor memory space). The bus master must meet the bus slave timing requirements.

Table 17. Synchronous Read/Write-Bus Slave

		5	V and 3.3 V	
Parameter		Min	Max	Unit
Timing Requi	rements			
t _{SADRI}	Address, SW Setup Before CLKIN	15 + DT/2		ns
t _{HADRI}	Address, SW Hold After CLKIN		5 + DT/2	ns
t _{SRWLI}	RD/WR Low Setup Before CLKIN ¹	9.5 + 5DT/16		ns
t _{HRWLI}	RD/WR Low Hold After CLKIN ²	-4 - 5DT/16	8 + 7DT/16	ns
t _{RWHPI}	RD/WR Pulse High	3		ns
t _{SDATWH}	Data Setup Before WR High	5		ns
t _{HDATWH}	Data Hold After WR High	1		ns
Switching Ch	aracteristics			
t _{SDDATO}	Data Delay After CLKIN ³		18 + 5DT/16	ns
t _{DATTR}	Data Disable After CLKIN ⁴	0 – DT/8	7 – DT/8	ns
t _{DACKAD}	ACK Delay After Address, SW⁵		9	ns
t _{ACKTR}	ACK Disable After CLKIN ⁵	-1 - DT/8	6 – DT/8	ns

¹t_{SRWL1} (min) = 9.5 + 5DT/16 when Multiprocessor Memory Space Wait State (MMSWS bit in WAIT register) is disabled; when MMSWS is enabled, t_{SRWL1} (min)= 4 + DT/8. ² For ADSP-21060C specification is -3.5 - 5DT/16 ns min, 8 + 7DT/16 ns max; for ADSP-21060LC specification is -3.75 - 5DT/16 ns min, 8 + 7DT/16 ns max. ³ For ADSP-21062L/ADSP-21062L/ADSP-21060C specification is 19 + 5DT/16 ns max; for ADSP-21060LC specification is 19.25 + 5DT/16 ns max.

⁴See Example System Hold Time Calculation on Page 48 for calculation of hold times given capacitive and dc loads.

 5 t_{DACKAD} is true only if the address and \overline{SW} inputs have setup times (before CLKIN) greater than 10 + DT/8 and less than 19 + 3DT/4. If the address and inputs have setup times greater than 19 + 3DT/4, then ACK is valid 14 + DT/4 (max) after CLKIN. A slave that sees an address with an M field match will respond with ACK regardless of the state of MMSWS or strobes. A slave will three-state ACK every cycle with t_{ACKTR}.

Figure 17. Synchronous Read/Write—Bus Slave

Multiprocessor Bus Request and Host Bus Request

Use these specifications for passing of bus mastership between multiprocessing ADSP-2106xs (\overline{BRx}) or a host processor, both synchronous and asynchronous (\overline{HBR} , \overline{HBG}).

Table 18. Multiprocessor Bus Request and Host Bus Request

		5 V an	d 3.3 V	
Parameter		Min	Мах	Unit
Timing Requiremen	nts			
t _{HBGRCSV}	HBG Low to RD/WR/CS Valid ¹		20 + 5DT/4	ns
t _{SHBRI}	HBR Setup Before CLKIN ²	20 + 3DT/4		ns
t _{HHBRI}	HBR Hold After CLKIN ²		14 + 3DT/4	ns
t _{SHBGI}	HBG Setup Before CLKIN	13 + DT/2		ns
t _{HHBGI}	HBG Hold After CLKIN High		6 + DT/2	ns
t _{SBRI}	BRx, CPA Setup Before CLKIN ³	13 + DT/2		ns
t _{HBRI}	BRx, CPA Hold After CLKIN High		6 + DT/2	ns
t _{SRPBAI}	RPBA Setup Before CLKIN	21 + 3DT/4		ns
t _{HRPBAI}	RPBA Hold After CLKIN		12 + 3DT/4	ns
Switching Characte	pristics			
t _{DHBGO}	HBG Delay After CLKIN		7 – DT/8	ns
t _{HHBGO}	HBG Hold After CLKIN	–2 – DT/8		ns
t _{DBRO}	BRx Delay After CLKIN		7 – DT/8	ns
t _{HBRO}	BRx Hold After CLKIN	–2 – DT/8		ns
t _{DCPAO}	CPA Low Delay After CLKIN ⁴		8 – DT/8	ns
t _{TRCPA}	CPA Disable After CLKIN	-2 - DT/8	4.5 – DT/8	ns
t _{DRDYCS}	REDY (O/D) or (A/D) Low from CS and HBR Low ^{5, 6}		8.5	ns
t _{TRDYHG}	REDY (O/D) Disable or REDY (A/D) High from HBG ^{6, 7}	44 + 23DT/16		ns
t _{ARDYTR}	REDY (A/D) Disable from CS or HBR High ⁶		10	ns

¹ For first asynchronous access after HBR and \overline{CS} asserted, ADDR31-0 must be a non-MMS value 1/2 t_{CK} before \overline{RD} or \overline{WR} goes low or by t_{HBGRCSV} after HBG goes low. This is easily accomplished by driving an upper address signal high when \overline{HBG} is asserted. See the "Host Processor Control of the ADSP-2106x" section in the ADSP-2106x SHARC User's Manual, Revision 2.1.

²Only required for recognition in the current cycle.

³ CPA assertion must meet the setup to CLKIN; deassertion does not need to meet the setup to CLKIN.

⁴For ADSP-21060LC, specification is 8.5 – DT/8 ns max.

⁵For ADSP-21060L, specification is 9.5 ns max, For ADSP-21060LC, specification is 11.0 ns max, For ADSP-21062L, specification is 8.75 ns max.

 $^{6}(O/D) = open drain, (A/D) = active drive.$

⁷ For ADSP-21060C/ADSP-21060LC, specification is 40 + 23DT/16 ns min.

Figure 20. Asynchronous Read/Write—Host to ADSP-2106x

DMA Handshake

These specifications describe the three DMA handshake modes. In all three modes, <u>DMARx</u> is used to initiate transfers. For Handshake mode, <u>DMAGx</u> controls the latching or enabling of data externally. For External handshake mode, the data transfer is controlled by the ADDR31–0, <u>RD</u>, <u>WR</u>, PAGE, <u>MS3–0</u>, ACK, and $\overline{\text{DMAGx}}$ signals. For Paced Master mode, the data transfer is controlled by ADDR31–0, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{MS3–0}}$, and ACK (not $\overline{\text{DMAG}}$). For Paced Master mode, the Memory Read-Bus Master, Memory Write-Bus Master, and Synchronous Read/Write-Bus Master timing specifications for ADDR31–0, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{MS3–0}}$, PAGE, DATA63–0, and ACK also apply.

Table 22. DMA Handshake

		5 V and 3.3 V		
Parameter		Min	Max	Unit
Timing Requ	uirements			
t _{SDRLC}	DMARx Low Setup Before CLKIN ¹	5		ns
t _{SDRHC}	DMARx High Setup Before CLKIN ¹	5		ns
t _{WDR}	DMARx Width Low (Nonsynchronous)	6		ns
t _{SDATDGL}	Data Setup After DMAGx Low ²		10 + 5DT/8	ns
t _{HDATIDG}	Data Hold After DMAGx High	2		ns
t _{DATDRH}	Data Valid After DMARx High ²		16 + 7DT/8	ns
t _{DMARLL}	DMARx Low Edge to Low Edge	23 + 7DT/8		ns
t _{DMARH}	DMARx Width High ²	6		ns
Switching C	haracteristics			
t _{DDGL}	DMAGx Low Delay After CLKIN	9 + DT/4	15 + DT/4	ns
t _{WDGH}	DMAGx High Width	6 + 3DT/8		ns
t _{WDGL}	DMAGx Low Width	12 + 5DT/8		ns
t _{HDGC}	DMAGx High Delay After CLKIN	-2 - DT/8	6 – DT/8	ns
t _{VDATDGH}	Data Valid Before DMAGx High ³	8 + 9DT/16		ns
t _{DATRDGH}	Data Disable After DMAGx High ⁴	0	7	ns
t _{DGWRL}	WR Low Before DMAGx Low ⁵	0	2	ns
t _{DGWRH}	DMAGx Low Before WR High	10 + 5DT/8 + W		ns
t _{DGWRR}	WR High Before DMAGx High	1 + DT/16	3 + DT/16	ns
t _{DGRDL}	RD Low Before DMAGx Low	0	2	ns
t _{DRDGH}	RD Low Before DMAGx High	11 + 9DT/16 + W		ns
t _{DGRDR}	RD High Before DMAGx High	0	3	ns
t _{DGWR}	DMAGx High to WR, RD, DMAGx Low	5 + 3DT/8 + HI		ns
t _{DADGH}	Address/Select Valid to DMAGx High	17 + DT		ns
t _{DDGHA}	Address/Select Hold After DMAGx High ⁶	-0.5		ns
W = (numb	er of wait states specified in WAIT register) \times t _{CK} .			
$HI = t_{CK}$ (if d	ata bus idle cycle occurs, as specified in WAIT register; o	therwise HI = 0).		

¹Only required for recognition in the current cycle.

² t_{SDATDGL} is the data setup requirement if DMARx is not being used to hold off completion of a write. Otherwise, if DMARx low holds off completion of the write, the data can be driven t_{DATDRH} after DMARx is brought high.

 3 t_{VDATDGH} is valid if \overline{DMARx} is not being used to hold off completion of a read. If \overline{DMARx} is used to prolong the read, then t_{VDATDGH} = t_{CK} - 0.25t_{CCLK} - 8 + (n × t_{CK}) where n equals the number of extra cycles that the access is prolonged.

⁴See Example System Hold Time Calculation on Page 48 for calculation of hold times given capacitive and dc loads.

⁵ For ADSP-21062/ADSP-21062L specification is –2.5 ns min, 2 ns max.

⁶For ADSP-21060L/ADSP-21062L specification is -1 ns min.

*MEMORY READ BUS MASTER, MEMORY WRITE BUS MASTER, OR SYNCHRONOUS READ/WRITE BUS MASTER TIMING SPECIFICATIONS FOR ADDR31–0, RD, WR, SW MS3–0, AND ACK ALSO APPLY HERE.

Figure 23. DMA Handshake

Table 32. Serial Ports—Internal Clock

Parameter		Min	Max	Unit
Switching Ch	vitching Characteristics			
t _{DFSI}	TFS Delay After TCLK (Internally Generated TFS) ¹		4.5	ns
t _{HOFSI}	TFS Hold After TCLK (Internally Generated TFS) ¹	-1.5		ns
t _{DDTI}	Transmit Data Delay After TCLK ¹		7.5	ns
t _{HDTI}	Transmit Data Hold After TCLK ¹	0		ns
t _{SCLKIW}	TCLK/RCLK Width ²	0.5t _{SCLK} – 2.5	0.5t _{SCLK} +2.5	ns

¹Referenced to drive edge.

 2 For ADSP-21060L/ADSP-21060C, specification is $0.5_{\rm TSCLK}$ – 2 ns min, $0.5t_{\rm SCLK}$ + 2 ns max.

Table 33. Serial Ports-Enable and Three-State

Parameter		Min	Мах	Unit
Switching Ch	aracteristics			
t _{DDTEN}	Data Enable from External TCLK ^{1, 2}	4		ns
t _{DDTTE}	Data Disable from External TCLK ^{1, 3}		10.5	ns
t _{DDTIN}	Data Enable from Internal TCLK ¹	0		ns
t _{DDTTI}	Data Disable from Internal TCLK ^{1, 4}		3	ns
t _{DCLK}	TCLK/RCLK Delay from CLKIN		22 + 3 DT/8	ns
t _{DPTR}	SPORT Disable After CLKIN		17	ns

¹Referenced to drive edge.

²For ADSP-21060L/ADSP-21060C, specification is 3.5 ns min; for ADSP-21062 specification is 4.5 ns min.

³For ADSP-21062L, specification is 16 ns max.

⁴For ADSP-21062L, specification is 7.5 ns max.

Table 34. Serial Ports—GATED SCLK with External TFS (Mesh Multiprocessing)¹

Parameter		Min	Max	Unit
Switching Characteristics				
t _{STFSCK}	TFS Setup Before CLKIN	4		ns
t _{HTFSCK}	TFS Hold After CLKIN		t _{CK} /2	ns

¹Applies only to gated serial clock mode used for serial port system I/O in mesh multiprocessing systems.

Table 35. Serial Ports-External Late Frame Sync

Parameter		Min	Max	Unit
Switching Cha	racteristics			
t _{DDTLFSE}	Data Delay from Late External TFS or External RFS with MCE = 1, MFD = $0^{1, 2}$		12	ns
t _{DDTENFS}	Data Enable from Late FS or MCE = 1, MFD = $0^{1, 3}$	3.5		ns

 1 MCE = 1, TFS enable and TFS valid follow t_{DDTLFSE} and t_{DDTENFS}.

² For ADSP-21062/ADSP-21062L, specification is 12.75 ns max; for ADSP-21060L/ADSP-21060LC, specification is 12.8 ns max.

³For ADSP-21060/ADSP-21060C, specification is 3 ns min.

NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.

NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.

Figure 25. Serial Ports

225-BALL PBGA BALL CONFIGURATION

	Ball		Ball		Ball		Ball		Ball
Ball Name	Number	Ball Name	Number	Ball Name	Number	Ball Name	Number	Ball Name	Number
BMS	A01	ADDR25	D01	ADDR14	G01	ADDR6	K01	EMU	N01
ADDR30	A02	ADDR26	D02	ADDR15	G02	ADDR5	K02	TDO	N02
DMAR2	A03	MS2	D03	ADDR16	G03	ADDR3	K03	IRQ0	N03
DT1	A04	ADDR29	D04	ADDR19	G04	ADDR0	K04	IRQ1	N04
RCLK1	A05	DMAR1	D05	GND	G05	ICSA	K05	ID2	N05
TCLK0	A06	TFS1	D06	V _{DD}	G06	GND	K06	L5DAT1	N06
RCLK0	A07	CPA	D07	V _{DD}	G07	V _{DD}	K07	L4CLK	N07
ADRCLK	A08	HBG	D08	V _{DD}	G08	V _{DD}	K08	L3CLK	N08
CS	A09	DMAG2	D09	V _{DD}	G09	V _{DD}	K09	L3DAT3	N09
CLKIN	A10	BR5	D10	V _{DD}	G10	GND	K10	L2DAT0	N10
PAGE	A11	BR1	D11	GND	G11	GND	K11	L1ACK	N11
BR3	A12	DATA40	D12	DATA22	G12	DATA8	K12	L1DAT3	N12
DATA47	A13	DATA37	D13	DATA25	G13	DATA11	K13	L0DAT3	N13
DATA44	A14	DATA35	D14	DATA24	G14	DATA13	K14	DATA1	N14
DATA42	A15	DATA34	D15	DATA23	G15	DATA14	K15	DATA3	N15
MS0	B01	ADDR21	E01	ADDR12	H01	ADDR2	L01	TRST	P01
SW	B02	ADDR22	E02	ADDR11	H02	ADDR1	L02	TMS	P02
ADDR31	B03	ADDR24	E03	ADDR13	H03	FLAG0	L03	EBOOT	P03
HBR	B04	ADDR27	E04	ADDR10	H04	FLAG3	L04	ID0	P04
DR1	B05	GND	E05	GND	H05	RPBA	L05	L5CLK	P05
DT0	B06	GND	E06	V _{DD}	H06	GND	L06	L5DAT3	P06
DR0	B07	GND	E07	V _{DD}	H07	GND	L07	L4DAT0	P07
REDY	B08	GND	E08	V _{DD}	H08	GND	L08	L4DAT3	P08
RD	B09	GND	E09	V _{DD}	H09	GND	L09	L3DAT2	P09
ACK	B10	GND	E10	V _{DD}	H10	GND	L10	L2CLK	P10
BR6	B11	NC	E11	GND	H11	NC	L11	L2DAT2	P11
BR2	B12	DATA33	E12	DATA18	H12	DATA4	L12	L1DAT0	P12
DATA45	B13	DATA30	E13	DATA19	H13	DATA7	L13	LOACK	P13
DATA43	B14	DATA32	E14	DATA21	H14	DATA9	L14	L0DAT1	P14
DATA39	B15	DATA31	E15	DATA20	H15	DATA10	L15	DATA0	P15
MS3	C01	ADDR17	F01	ADDR9	J01	FLAG1	M01	TCK	R01
MS1	C02	ADDR18	F02	ADDR8	J02	FLAG2	M02	IRQ2	R02
ADDR28	C03	ADDR20	F03	ADDR7	J03	TIMEXP	M03	RESET	R03
SBTS	C04	ADDR23	F04	ADDR4	J04	TDI	M04	ID1	R04
TCLK1	C05	GND	F05	GND	J05	LBOOT	M05	L5DAT0	R05
RFS1	C06	GND	F06	V _{DD}	J06	L5ACK	M06	L4ACK	R06
TFS0	C07	V _{DD}	F07	V _{DD}	J07	L5DAT2	M07	L4DAT1	R07
RFS0	C08	V _{DD}	F08	V _{DD}	J08	L4DAT2	M08	L3ACK	R08
WR	C09	V _{DD}	F09	V _{DD}	J09	L3DAT0	M09	L3DAT1	R09
DMAG1	C10	GND	F10	V _{DD}	J10	L2DAT3	M10	L2ACK	R10
BR4	C11	GND	F11	GND	J11	L1DAT1	M11	L2DAT1	R11
DATA46	C12	DATA29	F12	DATA12	J12	L0DAT0	M12	L1CLK	R12
DATA41	C13	DATA26	F13	DATA15	J13	DATA2	M13	L1DAT2	R13
DATA38	C14	DATA28	F14	DATA16	J14	DATA5	M14	LOCLK	R14
DATA36	C15	DATA27	F15	DATA17	J15	DATA6	M15	L0DAT2	R15

Table 40. ADSP-2106x 225-Ball Metric PBGA Ball Assignments (B-225-2)

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-034-AAJ-2

Figure 40. 225-Ball Plastic Ball Grid Array [PBGA] (B-225-2) Dimensions shown in millimeters

Figure 44. 240-Lead Ceramic Quad Flat Package, Heat Slug Down [CQFP] (QS-240-1A) Dimensions shown in millimeters

©2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00167-0-3/13(H)

www.analog.com