

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Detuns	
Product Status	Obsolete
Туре	Floating Point
Interface	Host Interface, Link Port, Serial Port
Clock Rate	40MHz
Non-Volatile Memory	External
On-Chip RAM	256kB
Voltage - I/O	3.30V
Voltage - Core	3.30V
Operating Temperature	0°C ~ 85°C (TC)
Mounting Type	Surface Mount
Package / Case	240-BFQFP Exposed Pad
Supplier Device Package	240-MQFP-EP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-21062lksz-160

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

GENERAL DESCRIPTION

The ADSP-2106x SHARC[®]—Super Harvard Architecture Computer—is a 32-bit signal processing microcomputer that offers high levels of DSP performance. The ADSP-2106x builds on the ADSP-21000 DSP core to form a complete system-on-a-chip, adding a dual-ported on-chip SRAM and integrated I/O peripherals supported by a dedicated I/O bus.

Fabricated in a high speed, low power CMOS process, the ADSP-2106x has a 25 ns instruction cycle time and operates at 40 MIPS. With its on-chip instruction cache, the processor can execute every instruction in a single cycle. Table 2 shows performance benchmarks for the ADSP-2106x.

The ADSP-2106x SHARC represents a new standard of integration for signal computers, combining a high performance floating-point DSP core with integrated, on-chip system features including up to 4M bit SRAM memory (see Table 1), a host processor interface, DMA controller, serial ports and link port, and parallel bus connectivity for glueless DSP multiprocessing.

Table 2. Benchmarks (at 40 MHz)

Benchmark Algorithm	Speed	Cycles
1024 Point Complex FFT (Radix 4, with reversal)	0.46 μs	18,221
FIR Filter (per tap)	25 ns	1
IIR Filter (per biquad)	100 ns	4
Divide (y/x)	150 ns	6
Inverse Square Root	225 ns	9
DMA Transfer Rate	240 Mbytes/s	

The ADSP-2106x continues SHARC's industry-leading standards of integration for DSPs, combining a high performance 32-bit DSP core with integrated, on-chip system features.

The block diagram on Page 1 illustrates the following architectural features:

- Computation units (ALU, multiplier and shifter) with a shared data register file
- Data address generators (DAG1, DAG2)
- Program sequencer with instruction cache
- PM and DM buses capable of supporting four 32-bit data transfers between memory and the core at every core processor cycle
- Interval timer
- On-chip SRAM
- External port for interfacing to off-chip memory and peripherals
- Host port and multiprocessor Interface
- DMA controller

- Serial ports and link ports
- JTAG Test Access Port

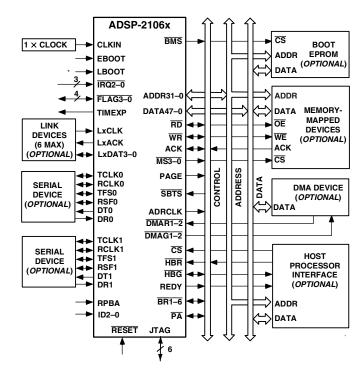


Figure 2. ADSP-2106x System Sample Configuration

SHARC FAMILY CORE ARCHITECTURE

The ADSP-2106x includes the following architectural features of the ADSP-21000 family core.

Independent, Parallel Computation Units

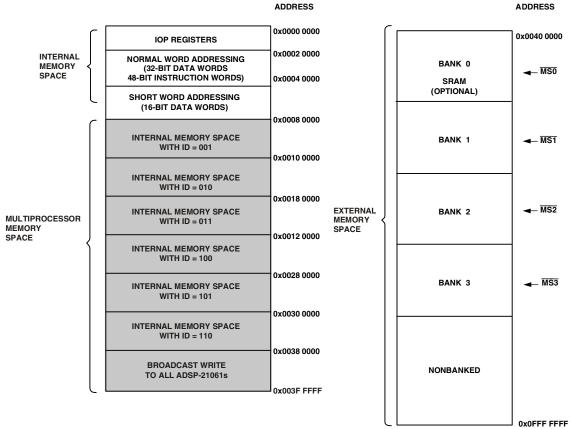
The arithmetic/logic unit (ALU), multiplier and shifter all perform single-cycle instructions. The three units are arranged in parallel, maximizing computational throughput. Single multifunction instructions execute parallel ALU and multiplier operations. These computation units support IEEE 32-bit singleprecision floating-point, extended precision 40-bit floatingpoint, and 32-bit fixed-point data formats.

Data Register File

A general-purpose data register file is used for transferring data between the computation units and the data buses, and for storing intermediate results. This 10-port, 32-register (16 primary, 16 secondary) register file, combined with the ADSP-21000 Harvard architecture, allows unconstrained data flow between computation units and internal memory.

DMA Controller

The ADSP-2106x's on-chip DMA controller allows zero-overhead data transfers without processor intervention. The DMA controller operates independently and invisibly to the processor core, allowing DMA operations to occur while the core is simultaneously executing its program instructions.


DMA transfers can occur between the ADSP-2106x's internal memory and external memory, external peripherals, or a host processor. DMA transfers can also occur between the ADSP-2106x's internal memory and its serial ports or link ports. DMA transfers between external memory and external peripheral devices are another option. External bus packing to 16-, 32-, or 48-bit words is performed during DMA transfers.

Ten channels of DMA are available on the ADSP-2106x—two via the link ports, four via the serial ports, and four via the processor's external port (for either host processor, other ADSP-2106xs, memory, or I/O transfers). Four additional link port DMA channels are shared with Serial Port 1 and the external port. Programs can be downloaded to the ADSP-2106x using DMA transfers. Asynchronous off-chip peripherals can

control two DMA channels using DMA request/grant lines (DMAR1-2, DMAG1-2). Other DMA features include interrupt generation upon completion of DMA transfers and DMA chaining for automatic linked DMA transfers.

Multiprocessing

The ADSP-2106x offers powerful features tailored to multiprocessor DSP systems. The unified address space (see Figure 4) allows direct interprocessor accesses of each ADSP-2106x's internal memory. Distributed bus arbitration logic is included on-chip for simple, glueless connection of systems containing up to six ADSP-2106xs and a host processor. Master processor changeover incurs only one cycle of overhead. Bus arbitration is selectable as either fixed or rotating priority. Bus lock allows indivisible read-modify-write sequences for semaphores. A vector interrupt is provided for interprocessor commands. Maximum throughput for interprocessor data transfer is 240M bytes/s over the link ports or external port. Broadcast writes allow simultaneous transmission of data to all ADSP-2106xs and can be used to implement reflective semaphores.

NOTE: BANK SIZES ARE SELECTED BY

MSIZE BITS IN THE SYSCON REGISTER

Figure 4. Memory Map

Table 3. Pin Descriptions (Continued)

Pin	Туре	Function
АСК	I/O/S	Memory Acknowledge. External devices can deassert ACK (low) to add wait states to an external memory access. ACK is used by I/O devices, memory controllers, or other peripherals to hold off completion of an external memory access. The ADSP-2106x deasserts ACK as an output to add waitstates to a synchronous access of its internal memory. In a multiprocessing system, a slave ADSP-2106x deasserts the bus master's ACK input to add wait state(s) to an access of its internal memory. The bus master has a keeper latch on its ACK pin that maintains the input at the level to which it was last driven.
<u>SBTS</u>	I/S	Suspend Bus Three-State. External devices can assert SBTS (low) to place the external bus address, data, selects, and strobes in a high impedance state for the following cycle. If the ADSP-2106x attempts to access external memory while SBTS is asserted, the processor will halt and the memory access will not be completed until SBTS is deasserted. SBTS should only be used to recover from host processor/ADSP-2106x deadlock, or used with a DRAM controller.
IRQ2-0	I/A	Interrupt Request Lines. May be either edge-triggered or level-sensitive.
FLAG3–0	I/O/A	Flag Pins. Each is configured via control bits as either an input or output. As an input, they can be tested as a condition. As an output, they can be used to signal external peripherals.
TIMEXP	0	Timer Expired. Asserted for four cycles when the timer is enabled and TCOUNT decrements to zero.
HBR	I/A	Host Bus Request. This pin must be asserted by a host processor to request control of the ADSP-2106x's external bus. When HBR is asserted in a multiprocessing system, the ADSP-2106x that is bus master will relinquish the bus and assert HBG. To relinquish the bus, the ADSP-2106x places the address, data, select and strobe lines in a high impedance state. HBR has priority over all ADSP-2106x bus requests BR6–1 in a multiprocessing system.
HBG	I/O	Host Bus Grant. Acknowledges a bus request, indicating that the host processor may take control of the external bus. HBG is asserted (held low) by the ADSP-2106x until HBR is released. In a multiprocessing system HBG is output by the ADSP-2106x bus master and is monitored by all others.
CS	I/A	Chip Select. Asserted by host processor to select the ADSP-2106x.
REDY	O (O/D)	Host Bus Acknowledge. The ADSP-2106x deasserts REDY (low) to add wait states to an asynchronous access of its internal memory or IOP registers by a host. This pin is an open-drain output (O/D) by default; it can be programmed in the ADREDY bit of the SYSCON register to be active drive (A/D). REDY will only be output if the $\overline{\text{CS}}$ and $\overline{\text{HBR}}$ inputs are asserted.
DMAR2-1	I/A	DMA Request 1 (DMA Channel 7) and DMA Request 2 (DMA Channel 8).
DMAG2-1	O/T	DMA Grant 1 (DMA Channel 7) and DMA Grant 2 (DMA Channel 8).
BR6-1	I/O/S	Multiprocessing Bus Requests. Used by multiprocessing ADSP-2106xs to arbitrate for bus master-ship. Ar ADSP-2106x only drives its own BRx line (corresponding to the value of its ID2-0 inputs) and monitors all others. In a multiprocessor system with less than six ADSP-2106xs, the unused BRx pins should be pulled high; the processor's own BRx line must not be pulled high or low because it is an output.
ID2-0	O (O/D)	Multiprocessing ID. Determines which multiprocessing bus request ($\overline{BR1} - \overline{BR6}$) is used by ADSP-2106x. ID = 001 corresponds to $\overline{BR1}$, ID = 010 corresponds to $\overline{BR2}$, etc. ID = 000 in single-processor systems. These lines are a system configuration selection that should be hardwired or changed at reset only.
RPBA	I/S	Rotating Priority Bus Arbitration Select. When RPBA is high, rotating priority for multiprocessor bus arbitration is selected. When RPBA is low, fixed priority is selected. This signal is a system configuration selection that must be set to the same value on every ADSP-2106x. If the value of RPBA is changed during system operation, it must be changed in the same CLKIN cycle on every ADSP-2106x.
CPA	I/O (O/D)	Core Priority Access. Asserting its \overline{CPA} pin allows the core processor of an ADSP-2106x bus slave to interrupt background DMA transfers and gain access to the external bus. \overline{CPA} is an open drain output that is connected to all ADSP-2106xs in the system. The \overline{CPA} pin has an internal 5 k Ω pull-up resistor. If core access priority is not required in a system, the \overline{CPA} pin should be left unconnected.
DTx	0	Data Transmit (Serial Ports 0, 1). Each DT pin has a 50 k Ω internal pull-up resistor.
DRx	I	Data Receive (Serial Ports 0, 1). Each DR pin has a 50 k Ω internal pull-up resistor.
TCLKx	I/O	Transmit Clock (Serial Ports 0, 1). Each TCLK pin has a 50 k Ω internal pull-up resistor.
RCLKx	I/O	Receive Clock (Serial Ports 0, 1). Each RCLK pin has a 50 k Ω internal pull-up resistor.

T = Three-State (when SBTS is asserted, or when the ADSP-2106x is a bus slave)

TARGET BOARD CONNECTOR FOR EZ-ICE PROBE

The ADSP-2106x EZ-ICE[®] Emulator uses the IEEE 1149.1JTAG test access port of the ADSP-2106x to monitor and control the target board processor during emulation. The EZ-ICE probe requires the ADSP-2106x's CLKIN, TMS, TCK, TRST, TDI, TDO, EMU, and GND signals be made accessible on the target system via a 14-pin connector (a 2-row 7-pin strip header) such as that shown in Figure 5. The EZ-ICE probe plugs directly onto this connector for chip-on-board emulation. You must add this connector to your target board design if you intend to use the ADSP-2106x EZ-ICE. The total trace length between the EZ-ICE connector and the furthest device sharing the EZ-ICE JTAG pin should be limited to 15 inches maximum for guaranteed operation. This length restriction must include EZ-ICE JTAG signals that are routed to one or more ADSP-2106x devices, or a combination of ADSP-2106x devices and other JTAG devices on the chain.

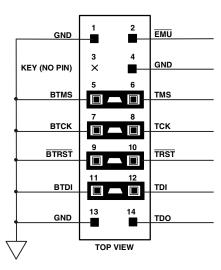


Figure 5. Target Board Connector for ADSP-2106x EZ-ICE Emulator (Jumpers in Place)

The 14-pin, 2-row pin strip header is keyed at the Pin 3 location—Pin 3 must be removed from the header. The pins must be 0.025 inch square and at least 0.20 inch in length. Pin spacing should be 0.1×0.1 inches. Pin strip headers are available from vendors such as 3M, McKenzie, and Samtec. The BTMS, BTCK, BTRST, and BTDI signals are provided so that the test access port can also be used for board-level testing.

When the connector is not being used for emulation, place jumpers on the Bxxx pins as shown in Figure 5. If you are not going to use the test access port for board testing, tie $\overline{\text{BTRST}}$ to GND and tie or pull up BTCK to V_{DD}. The $\overline{\text{TRST}}$ pin must be asserted (pulsed low) after power-up (through $\overline{\text{BTRST}}$ on the connector) or held low for proper operation of the ADSP-2106x. None of the Bxxx pins (Pins 5, 7, 9, and 11) are connected on the EZ-ICE probe.

The JTAG signals are terminated on the EZ-ICE probe as shown in Table 4.

Signal	Termination
TMS	Driven Through 22 Ω Resistor (16 mA Driver)
ТСК	Driven at 10 MHz Through 22 Ω Resistor (16 mA Driver)
TRST ¹	Active Low Driven Through 22 Ω Resistor (16 mA Driver) (Pulled-Up by On-Chip 20 k Ω Resistor)
TDI	Driven by 22 Ω Resistor (16 mA Driver)
TDO	One TTL Load, Split Termination (160/220)
CLKIN	One TTL Load, Split Termination (160/220)
EMU	Active Low 4.7 k Ω Pull-Up Resistor, One TTL Load (Open-Drain Output from the DSP)

¹TRST is driven low until the EZ-ICE probe is turned on by the emulator at software start-up. After software start-up, is driven high.

Figure 6 shows JTAG scan path connections for systems that contain multiple ADSP-2106x processors.

Connecting CLKIN to Pin 4 of the EZ-ICE header is optional. The emulator only uses CLKIN when directed to perform operations such as starting, stopping, and single-stepping multiple ADSP-2106xs in a synchronous manner. If you do not need these operations to occur synchronously on the multiple processors, simply tie Pin 4 of the EZ-ICE header to ground.

If synchronous multiprocessor operations are needed and CLKIN is connected, clock skew between the multiple ADSP-2106x processors and the CLKIN pin on the EZ-ICE header must be minimal. If the skew is too large, synchronous operations may be off by one or more cycles between processors. For synchronous multiprocessor operation TCK, TMS, CLKIN, and EMU should be treated as critical signals in terms of skew, and should be laid out as short as possible on your board. If TCK, TMS, and CLKIN are driving a large number of ADSP-2106xs (more than eight) in your system, then treat them as a "clock tree" using multiple drivers to minimize skew. (See Figure 7 and "JTAG Clock Tree" and "Clock Distribution" in the "High Frequency Design Considerations" section of the *ADSP-2106x User's Manual*, Revision 2.1.)

If synchronous multiprocessor operations are not needed (i.e., CLKIN is not connected), just use appropriate parallel termination on TCK and TMS. TDI, TDO, EMU and TRST are not critical signals in terms of skew.

For complete information on the SHARC EZ-ICE, see the *ADSP-21000 Family JTAG EZ-ICE User's Guide and Reference*.

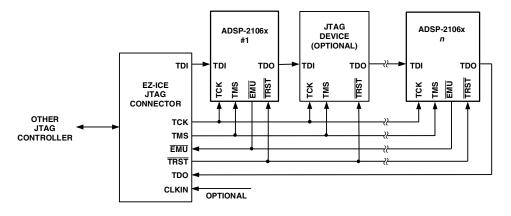


Figure 6. JTAG Scan Path Connections for Multiple ADSP-2106x Systems

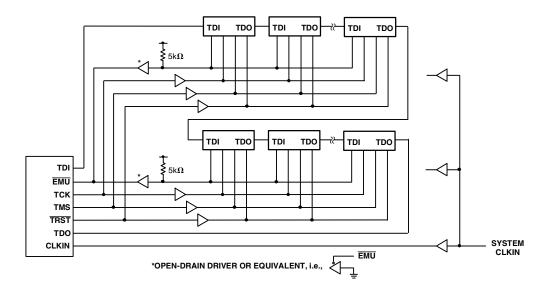


Figure 7. JTAG Clock Tree for Multiple ADSP-2106x Systems

EXTERNAL POWER DISSIPATION (5 V)

Total power dissipation has two components, one due to internal circuitry and one due to the switching of external output drivers. Internal power dissipation is dependent on the instruction execution sequence and the data operands involved. Internal power dissipation is calculated in the following way:

$$P_{INT} = I_{DDIN} \times V_{DD}$$

The external component of total power dissipation is caused by the switching of output pins. Its magnitude depends on:

- the number of output pins that switch during each cycle (O)
- the maximum frequency at which they can switch (f)
- their load capacitance (C)
- their voltage swing (V_{DD})

and is calculated by:

 $P_{EXT} = O \times C \times V_{DD}^{2} \times f$

The load capacitance should include the processor's package capacitance (CIN). The switching frequency includes driving the load high and then back low. Address and data pins can

drive high and low at a maximum rate of $1/(2t_{CK})$. The write strobe can switch every cycle at a frequency of $1/t_{CK}$. Select pins switch at $1/(2t_{CK})$, but selects can switch on each cycle.

Example: Estimate P_{EXT} with the following assumptions:

- A system with one bank of external data memory RAM (32-bit)
- + Four 128K \times 8 RAM chips are used, each with a load of 10 pF
- External data memory writes occur every other cycle, a rate of 1/(4t_{CK}), with 50% of the pins switching
- The instruction cycle rate is 40 MHz ($t_{CK} = 25 \text{ ns}$)

The $\mathrm{P}_{\mathrm{EXT}}$ equation is calculated for each class of pins that can drive:

A typical power consumption can now be calculated for these conditions by adding a typical internal power dissipation:

$$P_{TOTAL} = P_{EXT} + (I_{DDIN2} \times 5.0 \text{ V})$$

Note that the conditions causing a worst-case P_{EXT} are different from those causing a worst-case P_{INT} . Maximum P_{INT} cannot occur while 100% of the output pins are switching from all ones to all zeros. Note also that it is not common for an application to have 100% or even 50% of the outputs switching simultaneously.

Pin Type	No. of Pins	% Switching	×C	×f	$\times V_{DD}^2$	= P _{EXT}
Address	15	50	× 44.7 pF	imes 10 MHz	× 25 V	= 0.084 W
MS0	1	0	× 44.7 pF	imes 10 MHz	× 25 V	= 0.000 W
WR	1	-	× 44.7 pF	imes 20 MHz	× 25 V	= 0.022 W
Data	32	50	× 14.7 pF	imes 10 MHz	× 25 V	= 0.059 W
ADDRCLK	1	-	× 4.7 pF	imes 20 MHz	× 25 V	= 0.002 W

Table 5. External Power Calculations (5 V Devices)

P_{EXT} = 0.167 W

EXTERNAL POWER DISSIPATION (3.3 V)

Total power dissipation has two components, one due to internal circuitry and one due to the switching of external output drivers. Internal power dissipation is dependent on the instruction execution sequence and the data operands involved. Internal power dissipation is calculated in the following way:

$$P_{INT} = I_{DDIN} \times V_{DD}$$

The external component of total power dissipation is caused by the switching of output pins. Its magnitude depends on:

- the number of output pins that switch during each cycle (O)
- the maximum frequency at which they can switch (f)
- their load capacitance (C)
- their voltage swing (V_{DD})

and is calculated by:

 $P_{EXT} = O \times C \times V_{DD}^{2} \times f$

The load capacitance should include the processor's package capacitance (CIN). The switching frequency includes driving the load high and then back low. Address and data pins can

drive high and low at a maximum rate of $1/(2t_{CK})$. The write strobe can switch every cycle at a frequency of $1/t_{CK}$. Select pins switch at $1/(2t_{CK})$, but selects can switch on each cycle.

Example: Estimate P_{EXT} with the following assumptions:

- A system with one bank of external data memory RAM (32-bit)
- + Four 128K \times 8 RAM chips are used, each with a load of 10 pF
- External data memory writes occur every other cycle, a rate of $1/(4t_{\mbox{\tiny CK}}),$ with 50% of the pins switching
- The instruction cycle rate is 40 MHz ($t_{CK} = 25$ ns)

The $P_{\mbox{\scriptsize EXT}}$ equation is calculated for each class of pins that can drive:

A typical power consumption can now be calculated for these conditions by adding a typical internal power dissipation:

$$P_{\text{TOTAL}} = P_{EXT} + (I_{DDIN2} \times 3.3 \text{ V})$$

Note that the conditions causing a worst-case P_{EXT} are different from those causing a worst-case P_{INT} . Maximum P_{INT} cannot occur while 100% of the output pins are switching from all ones to all zeros. Note also that it is not common for an application to have 100% or even 50% of the outputs switching simultaneously.

Pin Type	No. of Pins	% Switching	×C	×f	$\times V_{DD}^{2}$	= P _{EXT}
Address	15	50	× 44.7 pF	imes 10 MHz	× 10.9 V	= 0.037 W
MS0	1	0	× 44.7 pF	imes 10 MHz	× 10.9 V	= 0.000 W
WR	1	-	× 44.7 pF	imes 20 MHz	× 10.9 V	= 0.010 W
Data	32	50	× 14.7 pF	imes 10 MHz	× 10.9 V	= 0.026 W
ADDRCLK	1	-	× 4.7 pF	imes 20 MHz	× 10.9 V	= 0.001 W

P_{EXT} = 0.074 W

ABSOLUTE MAXIMUM RATINGS

Stresses greater than those listed Table 7 may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions greater

than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 7. Absolute Maximum Ratings

	ADSP-21060/ADSP-21060C ADSP-21062	ADSP-21060L/ADSP-21060LC ADSP-21062L
Parameter	5 V	3.3 V
Supply Voltage (V _{DD})	–0.3 V to +7.0 V	-0.3 V to +4.6 V
Input Voltage	-0.5 V to V _{DD} + 0.5 V	-0.5 V to V _{DD} $+0.5$ V
Output Voltage Swing	-0.5 V to V _{DD} + 0.5 V	-0.5 V to V _{DD} + 0.5 V
Load Capacitance	200 pF	200 pF
Storage Temperature Range	-65°C to +150°C	–65°C to +150°C
Lead Temperature (5 seconds)	280°C	280°C
Junction Temperature Under Bias	130°C	130°C

Table 6. External Power Calculations (3.3 V Devices)

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PACKAGE MARKING INFORMATION

Figure 8 and Table 8 provide information on detail contained within the package marking for the ADSP-2106x processors (actual marking format may vary). For a complete listing of product availability, see Ordering Guide on Page 62.

Figure 8. Typical Package Brand

Table 8. Package Brand Information

Brand Key	Field Description
t	Temperature Range
рр	Package Type
Z	Lead (Pb) Free Option
ссс	See Ordering Guide
vvvvv.x	Assembly Lot Code
n.n	Silicon Revision
yyww	Date Code

TIMING SPECIFICATIONS

The ADSP-2106x processors are available at maximum processor speeds of 33 MHz (–133), and 40 MHz (–160). The timing specifications are based on a CLKIN frequency of 40 MHz $t_{CK} = 25$ ns). The DT derating factor enables the calculation for timing specifications within the min to max range of the t_{CK} specification (see Table 9). DT is the difference between the derated CLKIN period and a CLKIN period of 25 ns:

$DT = t_{\rm CK} - 25 \text{ ns}$

Use the exact timing information given. Do not attempt to derive parameters from the addition or subtraction of others. While addition or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical variations and worst cases. Consequently, you cannot meaningfully add parameters to derive longer times.

For voltage reference levels, see Figure 28 on Page 48 under Test Conditions.

Timing Requirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read operation. Timing requirements guarantee that the processor operates correctly with other devices. (O/D) = Open Drain, (A/D) = Active Drive.

Switching Characteristics specify how the processor changes its signals. You have no control over this timing—circuitry external to the processor must be designed for compatibility with these signal characteristics. Switching characteristics tell you what the processor will do in a given circumstance. You can also use switching characteristics to ensure that any timing requirement of a device connected to the processor (such as memory) is satisfied.

Memory Read—Bus Master

Use these specifications for asynchronous interfacing to memories (and memory-mapped peripherals) without reference to CLKIN. These specifications apply when the ADSP-2106x is the

Table 14. Memory Read—Bus Master

bus master accessing external memory space in asynchronous access mode. Note that timing for ACK, DATA, RD, WR, and DMAGx strobe timing parameters only applies to asynchronous access mode.

			5 V and 3.3 V	
Paramete	er	Min	Max	Unit
Timing Re	quirements			
t _{DAD}	Address Selects Delay to Data Valid ^{1, 2}		18 + DT+W	ns
t _{DRLD}	RD Low to Data Valid ¹		12 + 5DT/8 + W	ns
t _{HDA}	Data Hold from Address, Selects ³	0.5		ns
t _{HDRH}	Data Hold from RD High ³	2.0		ns
t _{DAAK}	ACK Delay from Address, Selects ^{2, 4}		14 + 7DT/8 + W	ns
t _{DSAK}	ACK Delay from RD Low ⁴		8 + DT/2 + W	ns
Switching	Characteristics			
t _{DRHA}	Address Selects Hold After RD High	0+H		ns
t _{DARL}	Address Selects to RD Low ²	2 + 3DT/8		ns
t _{RW}	RD Pulse Width	12.5 + 5DT/8 +	W	ns
t _{RWR}	RD High to WR, RD, DMAGx Low	8 + 3DT/8 + HI		ns
t _{SADADC}	Address, Selects Setup Before ADRCLK High ²	0 + DT/4		ns

W = (number of wait states specified in WAIT register) \times t_{CK}.

 $HI = t_{CK}$ (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).

 $H = t_{CK}$ (if an address hold cycle occurs as specified in WAIT register; otherwise H = 0).

 $^1\text{Data}$ delay/setup: user must meet t_{DAD} or t_{DRLD} or synchronous spec t_{SSDATI}

² The falling edge of \overline{MSx} , \overline{SW} , \overline{BMS} is referenced.

³ Data hold: user must meet t_{HDA} or t_{HDRH} or synchronous spec t_{HSDATI}. See Example System Hold Time Calculation on Page 48 for the calculation of hold times given capacitive and dc loads.

⁴ACK is not sampled on external memory accesses that use the internal wait state mode. For the first CLKIN cycle of a new external memory access, ACK must be valid by t_{DAAK} or t_{DSAK} or t_{DSAK} or synchronous specification t_{SACKC} for wait state modes external, either, or both (both, if the internal wait state is zero). For the second and subsequent cycles of a wait stated external memory access, synchronous specifications t_{SACKC} and t_{HACK} must be met for wait state modes external, either, or both (both, after internal wait states have completed).

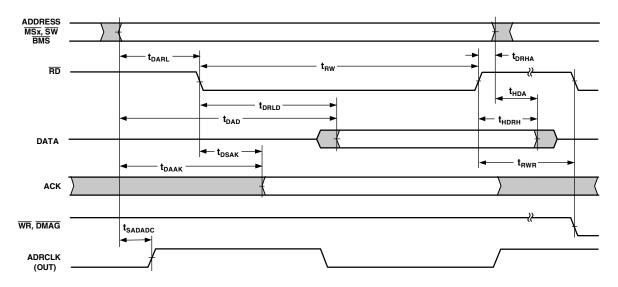
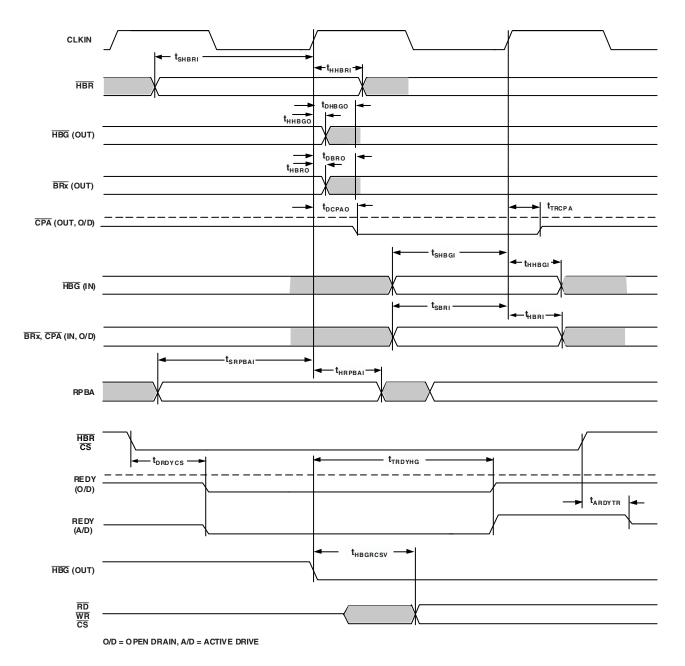


Figure 14. Memory Read—Bus Master

Synchronous Read/Write—Bus Master

Use these specifications for interfacing to external memory systems that require CLKIN—relative timing or for accessing a slave ADSP-2106x (in multiprocessor memory space). These synchronous switching characteristics are also valid during asynchronous memory reads and writes except where noted (see Memory Read—Bus Master on Page 25 and Memory WriteBus Master on Page 26). When accessing a slave ADSP-2106x, these switching characteristics must meet the slave's timing requirements for synchronous read/writes (see Synchronous Read/Write—Bus Slave on Page 30). The slave ADSP-2106x must also meet these (bus master) timing requirements for data and acknowledge setup and hold times.


Table 16. Synchronous Read/Write—Bus Master

		5	V and 3.3 V	
Parameter		Min	Max	Uni
Timing Requireme	nts			
t _{SSDATI}	Data Setup Before CLKIN	3 + DT/8		ns
t _{HSDATI}	Data Hold After CLKIN	3.5 – DT/8		ns
t _{DAAK}	ACK Delay After Address, Selects ^{1, 2}		14 + 7DT/8 + W	ns
t _{SACKC}	ACK Setup Before CLKIN ²	6.5+DT/4		ns
t _{HACK}	ACK Hold After CLKIN	-1 - DT/4		ns
Switching Charact	eristics			
t _{DADRO}	Address, MSx, BMS, SW Delay After CLKIN ¹		7 – DT/8	ns
t _{HADRO}	Address, MSx, BMS, SW Hold After CLKIN	-1 - DT/8		ns
t _{DPGC}	PAGE Delay After CLKIN	9 + DT/8	16 + DT/8	ns
t _{DRDO}	RD High Delay After CLKIN	-2 - DT/8	4 – DT/8	ns
t _{DWRO}	WR High Delay After CLKIN	-3 - 3DT/16	4 – 3DT/16	ns
t _{DRWL}	RD/WR Low Delay After CLKIN	8 + DT/4	12.5 + DT/4	ns
t _{SDDATO}	Data Delay After CLKIN		19 + 5DT/16	ns
t _{DATTR}	Data Disable After CLKIN ³	0 – DT/8	7 – DT/8	ns
t _{DADCCK}	ADRCLK Delay After CLKIN	4 + DT/8	10 + DT/8	ns
t _{ADRCK}	ADRCLK Period	t _{CK}		ns
t _{ADRCKH}	ADRCLK Width High	(t _{CK} /2 – 2)		ns
t _{ADRCKL}	ADRCLK Width Low	(t _{CK} /2 – 2)		ns

¹The falling edge of \overline{MSx} , \overline{SW} , \overline{BMS} is referenced.

² ACK delay/setup: user must meet t_{DAAK} or t_{DSAK} or synchronous specification t_{SAKC} for deassertion of ACK (low), all three specifications must be met for assertion of ACK (high).

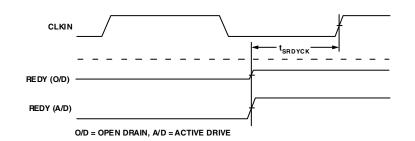
³See Example System Hold Time Calculation on Page 48 for calculation of hold times given capacitive and dc loads.

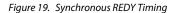
Asynchronous Read/Write—Host to ADSP-2106x

Use these specifications for asynchronous host processor accesses of an ADSP-2106x, after the host has asserted \overline{CS} and \overline{HBR} (low). After \overline{HBG} is returned by the ADSP-2106x, the host can drive the \overline{RD} and \overline{WR} pins to access the ADSP-2106x's internal memory or IOP registers. \overline{HBR} and \overline{HBG} are assumed low for this timing. Not required if and address are valid t_{HBGRCSV} after goes low. For first access after asserted, ADDR31–0 must be a non-MMS value 1/2 t_{CLK} before or goes low or by $t_{HBGRCSV}$ after goes low. This is easily accomplished by driving an upper address signal high when is asserted. See the "Host Processor Control of the ADSP-2106x" section in the ADSP-2106x SHARC User's Manual, Revision 2.1.

Table 19. Read Cycle

			5 V and 3.3 V	
Parameter		Min	Max	Unit
Timing Require	ements			
t _{SADRDL}	Address Setup/CS Low Before RD Low ¹	0		ns
t _{HADRDH}	Address Hold/CS Hold Low After RD	0		ns
t _{WRWH}	RD/WR High Width	6		ns
t _{DRDHRDY}	RD High Delay After REDY (O/D) Disable	0		ns
t _{DRDHRDY}	RD High Delay After REDY (A/D) Disable	0		ns
Switching Cha	racteristics			
t _{SDATRDY}	Data Valid Before REDY Disable from Low	2		ns
t _{DRDYRDL}	REDY (O/D) or (A/D) Low Delay After $\overline{\text{RD}}$ Low ²		10	ns
t _{RDYPRD}	REDY (O/D) or (A/D) Low Pulse Width for Read	45 + 21DT/1	6	ns
t _{HDARWH}	Data Disable After RD High ³	2	8	ns


¹Not required if RD and address are valid t_{HBGRCSV} after HBG goes low. For first access after HBR asserted, ADDR31-0 must be a non-MMS value 1/2 t_{CLK} before RD or WR goes low or by t_{HBGRCSV} after HBG goes low. This is easily accomplished by driving an upper address signal high when HBG is asserted. See the "Host Processor Control of the ADSP-2106x" section in the ADSP-2106x SHARC User's Manual, Revision 2.1.


²For ADSP-21060L, specification is 10.5 ns max; for ADSP-21060LC, specification is 12.5 ns max.

³For ADSP-21060L/ADSP-21060LC, specification is 2 ns min, 8.5 ns max.

Table 20. Write Cycle

		5 V a	and 3.3 V	Unit	
Parameter		Min	Max		
Timing Require	ements				
t _{SCSWRL}	CS Low Setup Before WR Low	0		ns	
t _{HCSWRH}	CS Low Hold After WR High	0		ns	
t _{SADWRH}	Address Setup Before WR High	5		ns	
t _{HADWRH}	Address Hold After WR High	2		ns	
t _{WWRL}	WR Low Width	7		ns	
t _{WRWH}	RD/WR High Width	6		ns	
t _{DWRHRDY}	WR High Delay After REDY (O/D) or (A/D) Disable	0		ns	
t _{SDATWH}	Data Setup Before WR High	5		ns	
t _{HDATWH}	Data Hold After WR High	1		ns	
Switching Chai	racteristics				
t _{DRDYWRL}	REDY (O/D) or (A/D) Low Delay After WR/CS Low		10	ns	
t _{RDYPWR}	REDY (O/D) or (A/D) Low Pulse Width for Write	15 + 7DT/16		ns	
t _{SRDYCK}	REDY (O/D) or (A/D) Disable to CLKIN	1 + 7DT/16	8 + 7DT/16	ns	

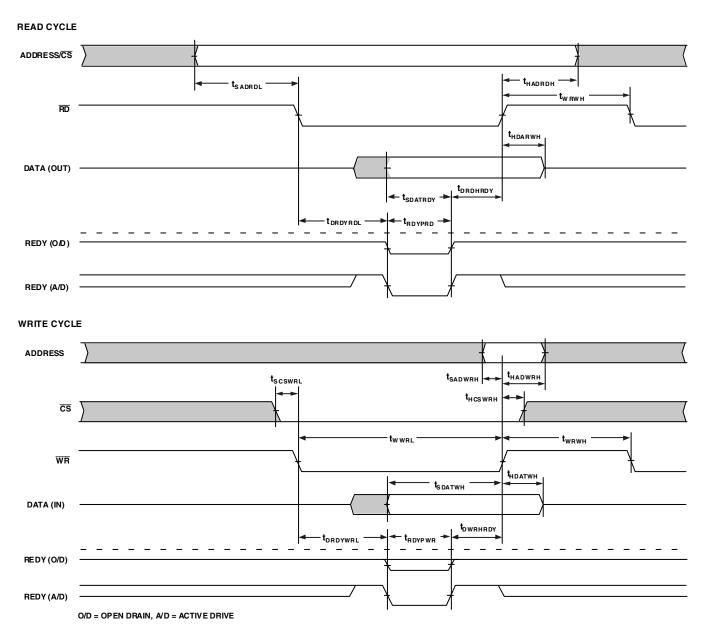
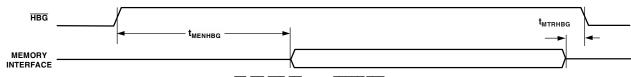


Figure 20. Asynchronous Read/Write—Host to ADSP-2106x

Three-State Timing—Bus Master, Bus Slave

These specifications show how the memory interface is disabled (stops driving) or enabled (resumes driving) relative to CLKIN and the SBTS pin. This timing is applicable to bus master transition cycles (BTC) and host transition cycles (HTC) as well as the SBTS pin.

Table 21. Three-State Timing-Bus Master, Bus Slave


		5 \	5 V and 3.3 V	
Parameter		Min	Max	Unit
Timing Requi	rements			
t _{STSCK}	SBTS Setup Before CLKIN	12 + DT/2		ns
t _{HTSCK}	SBTS Hold Before CLKIN		6 + DT/2	ns
Switching Ch	aracteristics			
t _{MIENA}	Address/Select Enable After CLKIN ¹	-1.5 - DT/8		ns
t _{MIENS}	Strobes Enable After CLKIN ²	-1.5 - DT/8		ns
t _{MIENHG}	HBG Enable After CLKIN	-1.5 - DT/8		ns
t _{MITRA}	Address/Select Disable After CLKIN ³		0 – DT/4	ns
t _{MITRS}	Strobes Disable After CLKIN ²		1.5 – DT/4	ns
t _{MITRHG}	HBG Disable After CLKIN		2.0 – DT/4	ns
t _{DATEN}	Data Enable After CLKIN ⁴	9 + 5DT/16		ns
t _{DATTR}	Data Disable After CLKIN ⁴	0 – DT/8	7 – DT/8	ns
t _{ACKEN}	ACK Enable After CLKIN ⁴	7.5 + DT/4		ns
t _{ACKTR}	ACK Disable After CLKIN ⁴	-1 - DT/8	6 – DT/8	ns
t _{ADCEN}	ADRCLK Enable After CLKIN	-2 - DT/8		ns
t _{ADCTR}	ADRCLK Disable After CLKIN		8 – DT/4	ns
t _{MTRHBG}	Memory Interface Disable Before HBG Low ⁵	0 + DT/8		ns
t _{MENHBG}	Memory Interface Enable After HBG High ⁵	19 + DT		ns

¹For ADSP-21060L/ADSP-21060LC/ADSP-21062L, specification is -1.25 - DT/8 ns min, for ADSP-21062, specification is -1 - DT/8 ns min. ²Strobes = RD, WR, PAGE, DMAG, BMS, SW.

³For ADSP-21060LC, specification is 0.25 – DT/4 ns max.

⁴In addition to bus master transition cycles, these specs also apply to bus master and bus slave synchronous read/write.

⁵Memory Interface = Address, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{MSx}}$, $\overline{\text{SW}}$, PAGE, $\overline{\text{DMAGx}}$, and $\overline{\text{BMS}}$ (in EPROM boot mode).

MEMORY INTERFACE = ADDRESS, RD, WR, MSx, SW, PAGE, DMAGx. BMS (IN EPROM BOOT MODE)

Figure 21. Three-State Timing (Bus Transition Cycle, SBTS Assertion)

Output Characteristics (5 V)

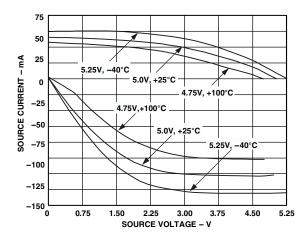


Figure 31. ADSP-21062 Typical Output Drive Currents ($V_{DD} = 5 V$)

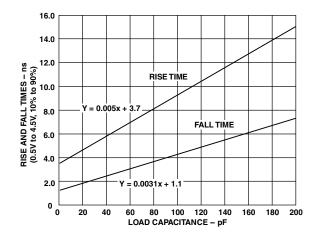


Figure 32. Typical Output Rise Time (10% to 90% V_{DD}) vs. Load Capacitance ($V_{DD} = 5 V$)

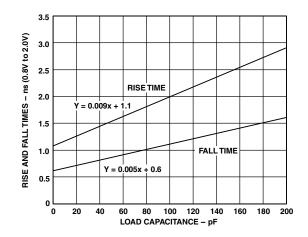


Figure 33. Typical Output Rise Time (0.8 V to 2.0 V) vs. Load Capacitance $(V_{DD} = 5 V)$

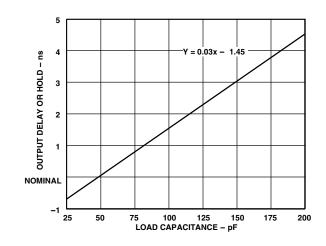
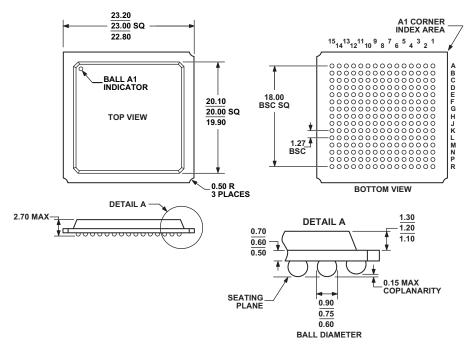



Figure 34. Typical Output Delay or Hold vs. Load Capacitance (at Maximum Case Temperature) ($V_{DD} = 5 V$)

Pin Name	Pin No.										
GND	1	DATA29	41	DMAG2	81	ADDR28	121	ADDR5	161	GND	201
DATA0	2	GND	42	ACK	82	BMS	122	GND	162	V _{DD}	202
DATA1	3	DATA30	43	CLKIN	83	SW	123	ADDR4	163	L4ACK	203
DATA2	4	DATA31	44	GND	84	MS0	124	ADDR3	164	L4CLK	204
V _{DD}	5	DATA32	45	V _{DD}	85	MS1	125	ADDR2	165	L4DAT0	205
DATA3	6	GND	46	GND	86	MS2	126	V _{DD}	166	L4DAT1	206
DATA4	7	V _{DD}	47	WR	87	MS3	127	ADDR1	167	L4DAT2	207
DATA5	8	V _{DD}	48	RD	88	GND	128	ADDR0	168	L4DAT3	208
GND	9	DATA33	49	CS	89	ADDR27	129	GND	169	GND	209
DATA6	10	DATA34	50	HBG	90	ADDR26	130	FLAG0	170	L3ACK	210
DATA7	11	DATA35	51	REDY	91	ADDR25	131	FLAG1	171	L3CLK	211
DATA8	12	NC	52	ADRCLK	92	V _{DD}	132	FLAG2	172	L3DAT0	212
V _{DD}	13	GND	53	GND	93	GND	133	FLAG3	173	L3DAT1	213
DATA9	14	DATA36	54	V _{DD}	94	V _{DD}	134	ICSA	174	L3DAT2	214
DATA10	15	DATA37	55	V _{DD}	95	ADDR24	135	EMU	175	L3DAT3	215
DATA11	16	DATA38	56	RFS0	96	ADDR23	136	TIMEXP	176	V _{DD}	216
GND	17	V _{DD}	57	RCLK0	97	ADDR22	137	TDO	177	NC	217
DATA12	18	DATA39	58	DR0	98	GND	138	V _{DD}	178	L2ACK	218
DATA13	19	DATA40	59	TFS0	99	ADDR21	139	TRST	179	L2CLK	219
DATA14	20	DATA41	60	TCLK0	100	ADDR20	140	TDI	180	L2DAT0	220
V _{DD}	21	GND	61	DT0	101	ADDR19	141	TMS	181	L2DAT1	221
DATA15	22	DATA42	62	CPA	102	V _{DD}	142	ТСК	182	L2DAT2	222
DATA16	23	DATA43	63	GND	103	V _{DD}	143	IRQ0	183	L2DAT3	223
DATA17	24	DATA44	64	RFS1	104	ADDR18	144	IRQ1	184	V _{DD}	224
GND	25	V _{DD}	65	RCLK1	105	ADDR17	145	IRQ2	185	GND	225
DATA18	26	DATA45	66	DR1	106	ADDR16	146	EBOOT	186	GND	226
DATA19	27	DATA46	67	TFS1	107	GND	147	RESET	187	L1ACK	227
DATA20	28	DATA47	68	TCLK1	108	ADDR15	148	RPBA	188	L1CLK	228
V _{DD}	29	GND	69	DT1	109	ADDR14	149	LBOOT	189	L1DAT0	229
DATA21	30	V _{DD}	70	HBR	110	V _{DD}	150	ID0	190	L1DAT1	230
DATA22	31	GND	71	DMAR1	111	ADDR13	151	ID1	191	L1DAT2	231
DATA23	32	BR1	72	DMAR2	112	ADDR12	152	ID2	192	L1DAT3	232
GND	33	BR2	73	SBTS	113	ADDR11	153	GND	193	V _{DD}	233
DATA24	34	BR3	74	GND	114	GND	154	L5ACK	194	LOACK	234
DATA25	35	BR4	75	ADDR31	115	ADDR10	155	L5CLK	195	LOCLK	235
DATA26	36	BR5	76	ADDR30	116	ADDR9	156	L5DAT0	196	L0DAT0	236
V _{DD}	37	BR6	77	ADDR29	117	ADDR8	157	L5DAT1	197	L0DAT1	237
V _{DD}	38	V _{DD}	78	V _{DD}	118	V _{DD}	158	L5DAT2	198	L0DAT2	238
DATA27	39	PAGE	79	V _{DD}	119	ADDR7	159	L5DAT3	199	L0DAT3	239
DATA28	40	DMAG1	80	GND	120	ADDR6	160	V _{DD}	200	GND	240

Table 42. ADSP-21060CW/21060LCW CQFP Pin Assignments (QS-240-1A, QS-240-1B)

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-034-AAJ-2

Figure 40. 225-Ball Plastic Ball Grid Array [PBGA] (B-225-2) Dimensions shown in millimeters

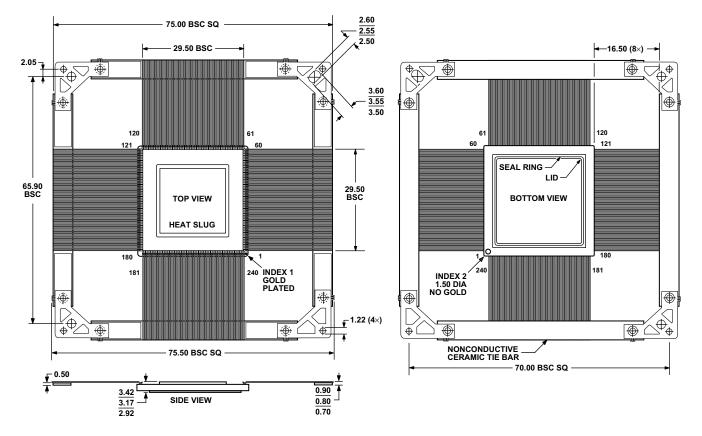


Figure 43. 240-Lead Ceramic Quad Flat Package, Mounted with Cavity Down [CQFP] (QS-240-2B) Dimensions shown in millimeters

ORDERING GUIDE

Model	Notes	Temperature Range	Instruction Rate	On-Chip SRAM	Operating Voltage	Package Description	Package Option
ASDP-21060CZ-133	1, 2	-40°C to +100°C	33 MHz	4M Bit	5 V	240-Lead CQFP [Heat Slug Up]	QS-240-2A
ASDP-21060CZ-155	1, 2	-40° C to $+100^{\circ}$ C	40 MHz	4M Bit	5 V	240-Lead CQFP [Heat Slug Up]	QS-240-2A QS-240-2A
ASDP-21060CW-133	1, 2	-40° C to $+100^{\circ}$ C	33 MHz	4M Bit	5 V	240-Lead CQFP [Heat Slug Down]	QS-240-2A QS-240-1A
ASDP-21060CW-160	1, 2	-40° C to $+100^{\circ}$ C	40 MHz	4M Bit	5 V	240-Lead CQFP [Heat Slug Down]	QS-240-1A
ADSP-21060KS-133		-40 C to +100 C	33 MHz	4M Bit	5 V	240-Lead MQFP PQ4	SP-240-1A
ADSP-21060KSZ-133	2	0°C to 85°C	33 MHz	4M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21060KS-160		0°C to 85°C	40 MHz	4M Bit	5 V	240-Lead MQFP_PQ4 240-Lead MQFP_PQ4	SP-240-2
ADSP-21060KSZ-160	2	0°C to 85°C	40 MHz	4M Bit	5 V	240-Lead MQFP_PQ4 240-Lead MQFP_PQ4	SP-240-2
ADSP-21060KB-160		0°C to 85°C	40 MHz	4M Bit	5 V	225-Ball PBGA	B-225-2
ADSP-21060KBZ-160	2	0°C to 85°C	40 MHz	4M Bit	5 V 5 V	225-Ball PBGA	В-225-2 В-225-2
ADSP-21060KBZ-160 ADSP-21060LKSZ-133	2	0°C to 85°C	40 MHz	4M Bit	3.3 V	240-Lead MQFP PQ4	Б-223-2 SP-240-2
ADSP-21060LKS2-155 ADSP-21060LKS-160		0°C to 85°C	40 MHz	4M Bit	3.3 V 3.3 V	240-Lead MQFP_PQ4 240-Lead MQFP_PQ4	SP-240-2 SP-240-2
ADSP-21060LKSZ-160	2	0°C to 85°C	40 MHz	4M Bit	3.3 V 3.3 V		SP-240-2 SP-240-2
ADSP-21060LKS2-160 ADSP-21060LKB-160		0°C to 85°C	40 MHz	4M Bit	3.3 V 3.3 V	240-Lead MQFP_PQ4 225-Ball PBGA	B-225-2
ADSP-21060LAB-160		-40°C to +85°C	40 MHz	4M Bit	3.3 V 3.3 V	225-Ball PBGA	В-225-2 В-225-2
	2		40 MHz		3.3 V 3.3 V		
ADSP-21060LABZ-160 ADSP-21060LCB-133		-40°C to +85°C -40°C to +100°C	40 MHZ 33 MHz	4M Bit 4M Bit	3.3 V 3.3 V	225-Ball PBGA 225-Ball PBGA	B-225-2 B-225-2
ADSP-21060LCB-133 ADSP-21060LCBZ-133	2	-40° C to $+100^{\circ}$ C	33 MHz	4M Bit	3.3 V 3.3 V	225-Ball PBGA	в-225-2 В-225-2
	1, 2						
ASDP-21060LCW-160	.,_	-40° C to $+100^{\circ}$ C	40 MHz	4M Bit	3.3 V 5 V	240-Lead CQFP [Heat Slug Down]	QS-240-1A
ADSP-21062KS-133	2	0°C to 85°C	33 MHz	2M Bit		240-Lead MQFP_PQ4	SP-240-2
ADSP-21062KSZ-133	-	0°C to 85°C	33 MHz	2M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062KS-160	2	0°C to 85°C	40 MHz	2M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062KSZ-160	2	0°C to 85°C	40 MHz	2M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062KB-160	2	0°C to 85°C	40 MHz	2M Bit	5 V	225-Ball PBGA	B-225-2
ADSP-21062KBZ-160	2	0°C to 85°C	40 MHz	2M Bit	5 V	225-Ball PBGA	B-225-2
ADSP-21062CS-160	2	-40°C to +100°C	40 MHz	2M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062CSZ-160	2	-40°C to +100°C	40 MHz	2M Bit	5 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062LKSZ-133	2	0°C to 85°C	33 MHz	2M Bit	3.3 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062LKS-160	2	0°C to 85°C	40 MHz	2M Bit	3.3 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062LKSZ-160	2	0°C to 85°C	40 MHz	2M Bit	3.3 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062LKB-160		0°C to 85°C	40 MHz	2M Bit	3.3 V	225-Ball PBGA	B-225-2
ADSP-21062LKBZ-160	2	0°C to 85°C	40 MHz	2M Bit	3.3 V	225-Ball PBGA	B-225-2
ADSP-21062LAB-160		–40°C to 85°C	40 MHz	2M Bit	3.3 V	225-Ball PBGA	B-225-2
ADSP-21062LABZ-160	2	–40°C to 85°C	40 MHz	2M Bit	3.3 V	225-Ball PBGA	B-225-2
ADSP-21062LCS-160		-40°C to +100°C	40 MHz	2M Bit	3.3 V	240-Lead MQFP_PQ4	SP-240-2
ADSP-21062LCSZ-160	2	-40°C to +100°C	40 MHz	2M Bit	3.3 V	240-Lead MQFP_PQ4	SP-240-2

¹Model refers to package with formed leads. For model numbers of unformed lead versions (QS-240-1B, QS-240-2B), contact Analog Devices or an Analog Devices sales representative.

²RoHS compliant part.

©2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00167-0-3/13(H)

www.analog.com