

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512efe064-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0				
31:24	NVMKEY<31:24>											
00.40	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0				
23:16	NVMKEY<23:16>											
45.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0				
15:8		•		NVMK	EY<15:8>							
7.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0				
7:0	NVMKEY<7:0>											

REGISTER 5-3: NVMKEY: PROGRAMMING UNLOCK REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **NVMKEY<31:0>:** Unlock Register bits These bits are write-only, and read as '0' on any read

Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

REGISTER 5-4: NVMADDR: FLASH ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	NVMADDR<31:24> ⁽¹⁾											
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	NVMADDR<23:16> ⁽¹⁾											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8		•		NVMADE	DR<15:8> ⁽¹⁾							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	NVMADDR<7:0> ⁽¹⁾											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMADDR<31:0>: Flash Address bits⁽¹⁾

NVMOP<3:0> Selection	Flash Address Bits (NVMADDR<31:0>)					
Page Erase	Address identifies the page to erase (NVMADDR<13:0> are ignored).					
Row Program	Address identifies the row to program (NVMADDR<10:0> are ignored).					
Word Program	Address identifies the word to program (NVMADDR<1:0> are ignored).					
Quad Word Program	Address identifies the quad word (128-bit) to program (NVMADDR<3:0> bits are ignored).					
	r NVMOP<3:0> bit settings, the Flash address is ignored. See the NVMCON egister 5-1) for additional information on these bits.					

Note: The bits in this register are only reset by a Power-on Reset (POR) and are not affected by other reset sources.

TABLE 7-3: **INTERRUPT REGISTER MAP (CONTINUED)**

ress f)	b -a	e								Bi	ts								s
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	u= c. c.(6)	31:16	CNKIE	CNJIE	CNHIE	CNGIE	CNFIE	CNEIE	CNDIE	CNCIE	CNBIE	CNAIE	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE	U1RXIE	U1EIE	0000
00F0	IEC3 ⁽⁶⁾	15:0	SPI1TXIE	SPI1RXIE	SPI1EIE	-	CRPTIE ⁽⁷⁾	SBIE	CFDCIE	CPCIE	ADCD44IE	ADCD43IE	ADCD42IE	ADCD41IE	ADCD40IE	ADCD39IE	ADCD38IE	ADCD37IE	0000
04.00	1504	31:16	U3TXIE	U3RXIE	U3EIE	SPI3TXIE	SPI3RXIE	SPI3EIE	ETHIE	CAN2IE ⁽³⁾	CAN1IE ⁽³⁾	12C2MIE ⁽²⁾	12C2SIE(2)	I2C2BIE ⁽²⁾	U2TXIE	U2RXIE	U2EIE	SPI2TXIE	0000
0100	IEC4	15:0	SPI2RXIE	SPI2EIE	DMA7IE	DMA6IE	DMA5IE	DMA4IE	DMA3IE	DMA2IE	DMA1IE	DMA0IE	USBDMAIE	USBIE	CMP2IE	CMP1IE	PMPEIE	PMPIE	0000
0110		31:16	_	U6TXIE	U6RXIE	U6EIE	SPI6TXIE ⁽²⁾	SPI6RXIE ⁽²⁾	SPI6IE ⁽²⁾	I2C5MIE	I2C5SIE	I2C5BIE	U5TXIE	U5RXIE	U5EIE	SPI5TXIE ⁽²⁾	SPI5RXIE ⁽²⁾	SPI5EIE ⁽²⁾	0000
0110	IECS	15:0	I2C4MIE	I2C4SIE	I2C4BIE	U4TXIE	U4RXIE	U4EIE	SQI1IE	PREIE	FCEIE	RTCCIE	SPI4TXIE	SPI4RXIE	SPI4EIE	I2C3MIE	I2C3SIE	I2C3BIE	0000
04.00	1500	31:16	_	_	_	_	_	_	_	—	_	_	ADC7WIE	_	_	ADC4WIE	ADC3WIE	ADC2WIE	0000
0120	IEC6	15:0	ADC1WIE	ADC0WIE	ADC7EIE	_	—	ADC4EIE	ADC3EIF	ADC2EIE	ADC1EIE	ADC0EIE	—	ADCGRPIE	_	ADCURDYIE	ADCARDYIE	ADCEOSIE	0000
04.40		31:16	_	_	_		INT0IP<2:0>		INTOIS	6<1:0>	_	_	_		CS1IP<2:0:	>	CS1IS	i<1:0>	0000
0140	IPC0	15:0	_	_	_		CS0IP<2:0>		CS0IS	<1:0>	_	_	_		CTIP<2:0>		CTIS	<1:0>	0000
0150		31:16	_	_	_		OC1IP<2:0>		OC1IS	5<1:0>	_	_	_		IC1IP<2:0>	•	IC1IS	<1:0>	0000
0150	IPC1	15:0	_	_	_		IC1EIP<2:0>		IC1EIS	S<1:0>	_	_	_		T1IP<2:0>		T1IS∢	<1:0>	0000
04.00	1000	31:16	_	_	_		IC2IP<2:0>		IC2IS	<1:0>	_	_	_		IC2EIP<2:0	>	IC2EIS	S<1:0>	0000
0160	IPC2	15:0	_	_	_		T2IP<2:0>		T2IS<	<1:0>	_	_	_		INT1IP<2:0	>	INT1IS	S<1:0>	0000
0470	IPC3	31:16	-	_	_		IC3EIP<2:0>		IC3EIS	S<1:0>	_	-	_		T3IP<2:0>		T3IS<	<1:0>	0000
0170	IPCS	15:0	-	_	_		INT2IP<2:0>		INT2IS	S<1:0>	_	_	_		OC2IP<2:0	>	OC2IS	S<1:0>	0000
0180		31:16	-	_	_		T4IP<2:0>		T4IS<	<1:0>	_	_	_		INT3IP<2:0	>	INT3IS	S<1:0>	0000
0180	IPC4	15:0	-	_	_		OC3IP<2:0>		OC3IS	i<1:0>	_	-	_		IC3IP<2:0>	•	IC3IS	<1:0>	0000
0400	IDOC	31:16	-	_	_		INT4IP<2:0>		INT4IS	6<1:0>	_	_	_		OC4IP<2:0	>	OC4IS	S<1:0>	0000
0190	IPC5	15:0	_	_	_		IC4IP<2:0>		IC4IS	<1:0>	_	_	—		IC4EIP<2:0	>	IC4EIS	S<1:0>	0000
0140	IDCC	31:16	-	_	_		OC5IP<2:0>		OC5IS	i<1:0>	_	_	_		IC5IP<2:0>	•	IC5IS	<1:0>	0000
01A0	IPCO	15:0	-	_	_		IC5EIP<2:0>		IC5EIS	S<1:0>	_	-	_		T5IP<2:0>		T5IS<	<1:0>	0000
0400	1007	31:16	-	_	_		OC6IP<2:0>		OC6IS	<1:0>	_	_	_		IC6IP<2:0>	•	IC6IS	<1:0>	0000
01B0	IPC7	15:0	-	_	_		IC6EIP<2:0>		IC6EIS	S<1:0>	_	-	_		T6IP<2:0>		T6IS<	<1:0>	0000
04.00		31:16	_	_	_		OC7IP<2:0>		OC7IS	5<1:0>	_	_	—		IC7IP<2:0>	•	IC7IS	<1:0>	0000
0100	IPC8	15:0	_	_	_		IC7EIP<2:0>		IC7EIS	S<1:0>	_	_	—		T7IP<2:0>		T7IS∢	<1:0>	0000
04 D 0		31:16	_	_	_		OC8IP<2:0>		OC8IS	i<1:0>	-	_	—		IC8IP<2:0>	•	IC8IS	<1:0>	0000
01D0	IPC9	15:0	_	_	—		IC8EIP<2:0>		IC8EIS	S<1:0>	_	—	—		T8IP<2:0>		T8IS<	<1:0>	0000
0450	10040	31:16	_	_	_		OC9IP<2:0>		OC9IS	i<1:0>	_	—	—		IC9IP<2:0>	•	IC9IS	<1:0>	0000
01E0	IPC10	15:0	_	_	_		IC9EIP<2:0>		IC9EIS	S<1:0>	_	_	—		T9IP<2:0>		T9IS<	<1:0>	0000

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

This bit or register is not available on devices without a CAN module. 3:

4: This bit or register is not available on 100-pin devices.

Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices. 5:

Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices. 6:

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress)		e								Bi	ts								s
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	OFF107 ⁽⁷⁾	31:16	_		—	_	_	—	_	—	_	_	_	_	—	_	VOFF<	17:16>	0000
06EC	OFF107	15:0								VOFF<15:1>								_	0000
0654	OFF109	31:16	_	—	_	-		—	_	—	—	_		-	—	_	VOFF<	17:16>	0000
001 4	011109	15:0								VOFF<15:1>								—	0000
0658	OFF110	31:16	—	_	—	—	_	—	—	—	_	—	—	—	—	—	VOFF<	17:16>	0000
001 0		15:0						-	-	VOFF<15:1>					-			—	0000
06EC	OFF111	31:16	—		—	—	_	—	_	—	—	—	—	—	—	_	VOFF<	17:16>	0000
0010	onn	15:0						-	-	VOFF<15:1>					-			—	0000
0700	OFF112	31:16	_	_	—	—	_	—	_	—	_	—	-	_	—	_	VOFF<	17:16>	0000
0700		15:0								VOFF<15:1>								—	0000
0704	OFF113	31:16	—	_	—	—	_	—	—	—	_	—	—	—	—	—	VOFF<	17:16>	0000
0704	011113	15:0								VOFF<15:1>								—	0000
0709	OFF114	31:16	-	—	—	-		_	_	—	—	—			—	-	VOFF<	17:16>	0000
0708	OFF114	15:0								VOFF<15:1>								—	0000
0700	OFF115	31:16	_	_	—	—	_	_	_	—	—	—	-	_	—	_	VOFF<	17:16>	0000
0700	011113	15:0								VOFF<15:1>								—	0000
0710	OFF116	31:16	-	—	—	-		_	_	—	—	—			_		VOFF<	17:16>	0000
0710	OFFIIO	15:0								VOFF<15:1>								—	0000
0714	OFF117	31:16	_	_	—	—	_	_	_	—	—	—	-	_	—	_	VOFF<	17:16>	0000
0714		15:0						-	-	VOFF<15:1>					-			—	0000
0718	OFF118 ⁽²⁾	31:16	_	_	—	—	_	—	_	—	_	—	-	_	—	_	VOFF<	17:16>	0000
0710		15:0								VOFF<15:1>								—	0000
0710	OFF119	31:16	—	_	—	_		—	—	—	_	—		_	—		VOFF<	17:16>	0000
0/10	OFFII9	15:0						-	-	VOFF<15:1>		-			-	-	-	—	0000
0720	OFF120	31:16	—	—	—	—	—	—	-	-	—	—	—	_	—	_	VOFF<	17:16>	0000
0120		15:0								VOFF<15:1>								—	0000
0724	OFF121	31:16	_	_	_	_	_	_	_	—			_		_	_	VOFF<	17:16>	0000
0724		15:0								VOFF<15:1>								_	0000
0700	055400	31:16	—		_	—	_	—	—	—	_	—	_	_	—	—	VOFF<	17:16>	0000
0728	OFF122	15:0								VOFF<15:1>								_	0000

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Note 1: **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

3: This bit or register is not available on devices without a CAN module.

4: This bit or register is not available on 100-pin devices.

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	RDWR	_	_	_	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_			—		—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	_	—	_	—	—
7.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
7:0						[DMACH<2:0>	>

REGISTER 10-2: DMASTAT: DMA STATUS REGISTER

Legend:

0						
= Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31 RDWR: Read/Write Status bit

1 = Last DMA bus access when an error was detected was a read 0 = Last DMA bus access when an error was detected was a write

bit 30-3 Unimplemented: Read as '0'

bit 2-0 **DMACH<2:0>:** DMA Channel bits These bits contain the value of the most recent active DMA channel when an error was detected.

REGISTER 10-3: DMAADDR: DMA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04-04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
31:24	DMAADDR<31:24>											
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
23:16	DMAADDR<23:16>											
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
15:8				DMAADDI	R<15:8>							
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0				DMAADD	R<7:0>							

Legend:

Logona.						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-0 DMAADDR<31:0>: DMA Module Address bits

These bits contain the address of the most recent DMA access when an error was detected.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
31:24	—	—	BYTC	<1:0>	WBO ⁽¹⁾	_	_	BITO
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	_	_	—
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—	_			PLEN<4:0>		
7.0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	CRCEN	CRCAPP ⁽¹⁾	CRCTYP	_	—	(CRCCH<2:0>	

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER

Legend:

- J				
R = Rea	adable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Val	lue at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

- bit 29-28 **BYTO<1:0>:** CRC Byte Order Selection bits
 - 11 = Endian byte swap on half-word boundaries (i.e., source half-word order with reverse source byte order per half-word)
 - 10 = Swap half-words on word boundaries (i.e., reverse source half-word order with source byte order per half-word)
 - 01 = Endian byte swap on word boundaries (i.e., reverse source byte order)
 - 00 = No swapping (i.e., source byte order)
- bit 27 WBO: CRC Write Byte Order Selection bit⁽¹⁾
 - 1 = Source data is written to the destination re-ordered as defined by BYTO<1:0>
 - 0 = Source data is written to the destination unaltered
- bit 26-25 Unimplemented: Read as '0'
- bit 24 BITO: CRC Bit Order Selection bit

When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):

- 1 = The IP header checksum is calculated Least Significant bit (LSb) first (i.e., reflected)
- 0 = The IP header checksum is calculated Most Significant bit (MSb) first (i.e., not reflected)

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode):

- 1 = The LFSR CRC is calculated Least Significant bit first (i.e., reflected)
- 0 = The LFSR CRC is calculated Most Significant bit first (i.e., not reflected)
- bit 23-13 Unimplemented: Read as '0'
- bit 12-8 **PLEN<4:0>:** Polynomial Length bits⁽¹⁾

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): These bits are unused.

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Denotes the length of the polynomial -1.

- bit 7 CRCEN: CRC Enable bit
 - 1 = CRC module is enabled and channel transfers are routed through the CRC module
 - 0 = CRC module is disabled and channel transfers proceed normally
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

REGISTER 11-30: USBCRCON: USB CLOCK/RESET CONTROL REGISTER (CONTINUED)

- bit 3 SENDMONEN: Session End VBUS Monitoring for OTG Enable bit
 - 1 = Enable monitoring for VBUS in Session End range (between 0.2V and 0.8V)
 - 0 = Disable monitoring for VBUS in Session End range
- bit 2 USBIE: USB General Interrupt Enable bit
 - 1 = Enables general interrupt from USB module
 - 0 = Disables general interrupt from USB module
- bit 1 USBRIE: USB Resume Interrupt Enable bit
 - 1 = Enable remote resume from suspend Interrupt
 - 0 = Disable interrupt to a Remote Devices USB resume signaling

bit 0 USBWKUPEN: USB Activity Detection Interrupt Enable bit

- 1 = Enable interrupt for detection of activity on USB bus in Sleep mode
- 0 = Disable interrupt for detection of activity on USB bus in Sleep mode

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—			—			—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	_	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	—	SIDL ⁽²⁾	_	—	_	_	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
7:0	TGATE ⁽¹⁾	Т	CKPS<2:0>(1)	T32 ⁽³⁾	_	TCS ⁽¹⁾	—

TxCON: TYPE B TIMER CONTROL REGISTER ('x' = 2-9) REGISTER 14-1:

Legend:

bit 3

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: Timer On bit⁽¹⁾
 - 1 = Module is enabled 0 = Module is disabled
 - Unimplemented: Read as '0'

bit 14 bit 13 SIDL: Stop in Idle Mode bit⁽²⁾

- 1 = Discontinue operation when device enters Idle mode
 - 0 = Continue operation even in Idle mode

Unimplemented: Read as '0' bit 12-8

TGATE: Timer Gated Time Accumulation Enable bit⁽¹⁾ bit 7

When TCS = 1:

This bit is ignored and is read as '0'.

When TCS = 0:

- 1 = Gated time accumulation is enabled
- 0 = Gated time accumulation is disabled

bit 6-4 TCKPS<2:0>: Timer Input Clock Prescale Select bits⁽¹⁾

- 111 = 1:256 prescale value
- 110 = 1:64 prescale value
- 101 = 1:32 prescale value
- 100 = 1:16 prescale value
- 011 = 1:8 prescale value
- 010 = 1:4 prescale value
- 001 = 1:2 prescale value

000 = 1:1 prescale value

T32: 32-Bit Timer Mode Select bit(3)

- 1 = Odd numbered and even numbered timers form a 32-bit timer
- 0 = Odd numbered and even numbered timers form separate 16-bit timers
- Note 1: While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer1, Timer3, Timer5, Timer7, and Timer9). All timer functions are set through the even numbered timers.
 - While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer 2: in Idle mode.
 - 3: This bit is available only on even numbered timers (Timer2, Timer4, Timer6, and Timer8).

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24			—	_	_	_	_	—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	—	_	_	—	_	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				RDATAIN<	15:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				RDATAIN<	:7:0>			

REGISTER 23-10: PMRDIN: PARALLEL PORT READ INPUT DATA REGISTER

Legend:

_090			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 RDATAIN<15:0>: Port Read Input Data bits

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1' and exclusively for reads. If the DUALBUF bit is '0', the PMDIN register (Register 23-5) is used for reads instead of PMRDIN.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	_		_	—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—						_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	_		_	—
7.0	R/W-0	R/W-0, HC	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	SWAPOEN	SWRST	SWAPEN			BDPCHST	BDPPLEN	DMAEN

REGISTER 26-2: CECON: CRYPTO ENGINE CONTROL REGISTER

Legend:		HC = Hardware Cleare	d
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 SWAPOEN: Swap Output Data Enable bit
 - 1 = Output data is byte swapped when written by dedicated DMA
 - 0 = Output data is not byte swapped when written by dedicated DMA
- bit 6 SWRST: Software Reset bit
 - 1 = Initiate a software reset of the Crypto Engine
 - 0 = Normal operation
- bit 5 **SWAPEN:** Input Data Swap Enable bit
 - 1 = Input data is byte swapped when read by dedicated DMA
 - 0 = Input data is not byte swapped when read by dedicated DMA
- bit 4-3 Unimplemented: Read as '0'

bit 2 BDPCHST: Buffer Descriptor Processor (BDP) Fetch Enable bit

This bit should be enabled only after all DMA descriptor programming is completed.

- 1 = BDP descriptor fetch is enabled
- 0 = BDP descriptor fetch is disabled

bit 1 **BDPPLEN:** Buffer Descriptor Processor Poll Enable bit

This bit should be enabled only after all DMA descriptor programming is completed.

- 1 = Poll for descriptor until valid bit is set
- 0 = Do not poll

bit 0 DMAEN: DMA Enable bit

- 1 = Crypto Engine DMA is enabled
- 0 = Crypto Engine DMA is disabled

Bit										
31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
POLY<31:24>										
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
POLY<23:16>										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
POLY<15:8>										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			POLY<	:7:0>						
	R/W-1 R/W-1 R/W-0	R/W-1 R/W-1 R/W-1 R/W-1 R/W-0 R/W-0	R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0	R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 POLY<3	R/W-1 R/W-1 R/W-1 R/W-1 POLY<31:24> R/W-1 R/W-1 R/W-1 POLY<31:24> R/W-1 R/W-1 R/W-1 POLY<31:24> R/W-1 R/W-1 R/W-1 POLY<23:16> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 POLY<15:8> R/W-0 R/W-0	R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0	R/W-1 R/W-1 <th< td=""></th<>			

REGISTER 27-3: RNGPOLYX: RANDOM NUMBER GENERATOR POLYNOMIAL REGISTER 'x'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 POLY<31:0>: PRNG LFSR Polynomial MSb/LSb bits (RNGPOLY1 = LSb, RNGPOLY2 = MSb)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04-04	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
31:24	RNG<31:24>									
	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
23:16	RNG<23:16>									
45.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
15:8	RNG<15:8>									
7.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
7:0			•	RNG<	7:0>			•		

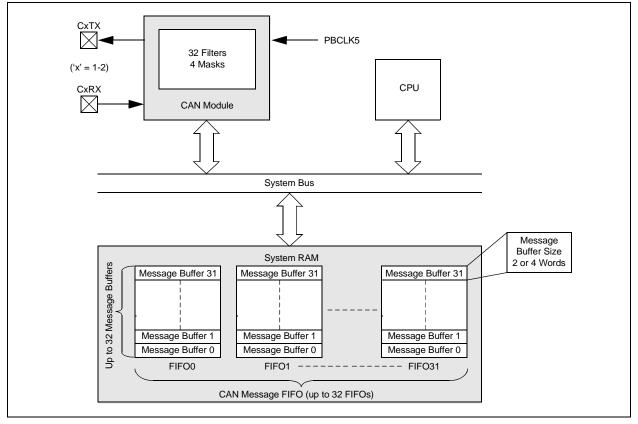
REGISTER 27-4:	RNGNUMGENX: RANDOM NUMBER GENERATOR REGISTER 'x' ('x' = 1 OR 2)
-----------------------	---

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 RNG<31:0>: Current PRNG MSb/LSb Value bits (RNGNUMGEN1 = LSb, RNGNUMGEN2 = MSb)

29.0 CONTROLLER AREA NETWORK (CAN)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 34. "Controller Area Network (CAN)" (DS60001154) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).


The Controller Area Network (CAN) module supports the following key features:

- Standards Compliance:
 - Full CAN 2.0B compliance
 - Programmable bit rate up to 1 Mbps
- Message Reception and Transmission:
 - 32 message FIFOs
 - Each FIFO can have up to 32 messages for a total of 1024 messages

- FIFO can be a transmit message FIFO or a receive message FIFO
- User-defined priority levels for message FIFOs used for transmission
- 32 acceptance filters for message filtering
- Four acceptance filter mask registers for message filtering
- Automatic response to remote transmit request
- DeviceNet[™] addressing support
- Additional Features:
 - Loopback, Listen All Messages and Listen Only modes for self-test, system diagnostics and bus monitoring
 - Low-power operating modes
 - CAN module is a bus master on the PIC32 System Bus
 - Use of DMA is not required
 - Dedicated time-stamp timer
 - Dedicated DMA channels
 - Data-only Message Reception mode

Figure 29-1 illustrates the general structure of the CAN module.

FIGURE 29-1: PIC32 CAN MODULE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	FLTEN15	MSEL1	5<1:0>		F	SEL15<4:0>		
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	FLTEN14	MSEL14<1:0>		FSEL14<4:0>				
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	FLTEN13	MSEL13<1:0>			F	SEL13<4:0>		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	FLTEN12	MSEL12<1:0>			F	SEL12<4:0>	1	

REGISTER 29-13: CIFLTCON3: CAN FILTER CONTROL REGISTER 3

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31	FLTEN15: Filter 15 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 30-29	MSEL15<1:0>: Filter 15 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL15<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN14: Filter 14 Enable bit
	1 = Filter is enabled0 = Filter is disabled
bit 22-21	MSEL14<1:0>: Filter 14 Mask Select bits
	 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	FSEL14<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	_	_	—	—	—	_	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10		—		_	—	—		_	
	R/W-1	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	SOFT RESET	SIM RESET	_	—	RESET RMCS	RESET RFUN	RESET TMCS	RESET TFUN	
	U-0	U-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1	
7:0	_	—	_	LOOPBACK	TX PAUSE	RX PAUSE	PASSALL	RX ENABLE	

REGISTER 30-23: EMAC1CFG1: ETHERNET CONTROLLER MAC CONFIGURATION 1 REGISTER

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

bit 15	SOFTRESET: Soft Reset bit
	Setting this bit will put the MACMII in reset. Its default value is '1'.
bit 14	SIMRESET: Simulation Reset bit
	Setting this bit will cause a reset to the random number generator within the Transmit Function.
bit 13-12	Unimplemented: Read as '0'
bit 11	RESETRMCS: Reset MCS/RX bit
	Setting this bit will put the MAC Control Sub-layer/Receive domain logic in reset.
bit 10	RESETRFUN: Reset RX Function bit
	Setting this bit will put the MAC Receive function logic in reset.
bit 9	RESETTMCS: Reset MCS/TX bit
	Setting this bit will put the MAC Control Sub-layer/TX domain logic in reset.
bit 8	RESETTFUN: Reset TX Function bit
	Setting this bit will put the MAC Transmit function logic in reset.
bit 7-5	Unimplemented: Read as '0'
bit 4	LOOPBACK: MAC Loopback mode bit
	 1 = MAC Transmit interface is loop backed to the MAC Receive interface 0 = MAC normal operation
bit 3	TXPAUSE: MAC TX Flow Control bit
	1 = PAUSE Flow Control frames are allowed to be transmitted
	0 = PAUSE Flow Control frames are blocked
bit 2	RXPAUSE: MAC RX Flow Control bit
	1 = The MAC acts upon received PAUSE Flow Control frames
	0 = Received PAUSE Flow Control frames are ignored
bit 1	PASSALL: MAC Pass all Receive Frames bit
	 1 = The MAC will accept all frames regardless of type (Normal vs. Control) 0 = The received Control frames are ignored
bit 0	RXENABLE: MAC Receive Enable bit
	1 = Enable the MAC receiving of frames
	0 = Disable the MAC receiving of frames

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

DC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions	
DI60a	licl	Input Low Injection Current	0	_	₋₅ (2,5)	mA	This parameter applies to all pins, with the exception of RB10. Maximum IICH current for this exception is 0 mA.	
DI60b	lich	Input High Injection Current	0	_	+5 ^(3,4,5)	mA	This parameter applies to all pins, with the exception of all 5V toler- ant pins, OSCI, OSCO, SOSCI, SOSCO, D+, D- and RB10. Maximum IICH current for these exceptions is 0 mA.	
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁶⁾	—	+20(6)	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT	

TABLE 37-10: DC CHARACTERISTICS: I/O PIN INPUT INJECTION CURRENT SPECIFICATIONS

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: VIL source < (Vss - 0.3). Characterized but not tested.

3: VIH source > (VDD + 0.3) for non-5V tolerant pins only.

4: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.

Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS - 0.3)).

6: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 2, IICL = (((Vss - 0.3) - VIL source) / Rs). If Note 3, IICH = ((IICH source - (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss - 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions ⁽¹⁾	
		Output High Voltage I/O Pins:	1.5 2.0		_	V V	$IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \text{V}$ $IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
		4x Source Driver Pins - RA3, RA9, RA10, RA14, RA15 RB0-RB2, RB4, RB6-RB7, RB11, RB13 RC12-RC15 RD0, RD6-RD7, RD11, RD14 RE8, RE9 RF2, RF3, RF8 RG15 RH0, RH1, RH4-RH6, RH8-RH13 RJ0-RJ2, RJ8, RJ9, RJ11	3.0			V	$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{ VD}$	
		Output High Voltage I/O Pins: 8x Source Driver Pins - 1 RA0-RA2, RA4, RA5 RB3, RB5, RB8-RB10, RB12, RB14, RB15 RC1-RC4 RD1-RD5, RD9, RD10, RD12, RD13, RD15 RE4-RE7 RF0, RF4, RF5, RF12, RF13 RG0, RG1, RG6-RG9 RH2, RH3, RH7, RH14, RH15 RJ3-RJ7, RJ10, RJ12-RJ15 RK0-RK7	1.5		_	V	IOH \geq -22 mA, VDD = 3.3V	
			2.0	_	—	V	$\text{IOH} \geq \text{-18 mA}, \text{VDD} = 3.3 \text{V}$	
DO20a	Voh1		3.0			V	IOH ≥ -10 mA, VDD = 3.3V	
		Output High Voltage	1.5	_	—	V	$\text{IOH} \geq \text{-32 mA}, \text{VDD} = 3.3 \text{V}$	
		12x Source Driver Pins -	2.0	_	—	V	$\mbox{IOH} \geq$ -25 mA, VDD = 3.3V	
	Por	RA6, RA7 RE0-RE3 RF1 RG12-RG14	3.0	_	_	V	IOH \ge -14 mA, VDD = 3.3V	

TABLE 37-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS (CONTINUED)

Note 1: Parameters are characterized, but not tested.

TABLE 37-33: SPIx MODULE SLAVE MODE (CKE = 1) TIM	MING REQUIREMENTS (CONTINUED)
---	-------------------------------

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	88	_		ns	_	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 4)	2.5	_	12	ns	-	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	10	_		ns	—	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	12.5	ns	_	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 20 ns.

4: Assumes 30 pF load on all SPIx pins.

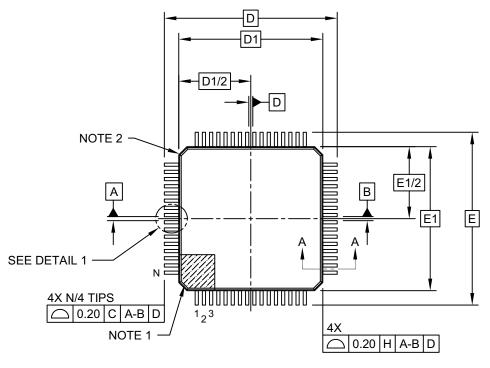
AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param. No.	Symbol	Characteristic	Min. Typ. Max. Units Conditions					
EB10	TEBICLK	Internal EBI Clock Period (PBCLK8)	10	—		ns	—	
EB11	TEBIRC	EBI Read Cycle Time (TRC<5:0>)	20	—	_	ns	—	
EB12	TEBIPRC	EBI Page Read Cycle Time (TPRC<3:0>)	20	—		ns	—	
EB13	TEBIAS	EBI Write Address Setup (TAS<1:0>)	10	—		ns	—	
EB14	TEBIWP	EBI Write Pulse Width (TWP<5:0>)	10	—	_	ns	—	
EB15	Tebiwr	EBI Write Recovery Time (TWR<1:0>)	10	—		ns	—	
EB16	Тевісо	EBI Output Control Signal Delay		—	5	ns	See Note 1	
EB17	Tebido	EBI Output Data Signal Delay	_	—	5	ns	See Note 1	
EB18	TEBIDS	EBI Input Data Setup	5	—	—	ns	See Note 1	
EB19	Tebidh	EBI Input Data Hold	3	_	_	ns	See Note 1, 2	

TABLE 37-47: EBI TIMING REQUIREMENTS

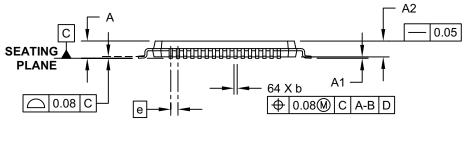
Note 1: Maximum pin capacitance = 10 pF.

2: Hold time from EBI Address change is 0 ns.

TABLE 37-48: EBI THROUGHPUT REQUIREMENTS


AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param. No.	Characteristic	Min.	Тур.	Max.	Units	Conditions	
EB20	Asynchronous SRAM Read	—	100		Mbps		
EB21	Asynchronous SRAM Write	_	533	_	Mbps	—	

Note 1: Maximum pin capacitance = 10 pF.


2: Hold time from EBI Address change is 0 ns.

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

SIDE VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2

A.7 Interrupts and Exceptions

The key difference between Interrupt Controllers in PIC32MX5XX/6XX/7XX devices and PIC32MZ EF devices concerns vector spacing. Previous PIC32MX devices had fixed vector spacing, which is adjustable in set increments, and every interrupt had the same amount of space. PIC32MZ EF devices replace this with a variable offset spacing, where each interrupt has an offset register to determine where to begin execution.

In addition, the IFSx, IECx, and IPCx registers for old peripherals have shifted to different registers due to new peripherals. Please refer to **7.0** "CPU Exceptions and Interrupt Controller" to determine where the interrupts are now located.

Table A-8 lists differences (indicated by **Bold** type) in the registers that will affect software migration.

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature					
Vector Spacing						
On PIC32MX devices, the vector spacing was determined by the VS field in the CPU core.	On PIC32MZ EF devices, the vector spacing is variable and determined by the Interrupt controller. The VOFFx<17:1> bits in the OFFx register are set to the offset from EBASE where the interrupt service routine is located.					
VS<4:0> (IntCtl<9:5>: CP0 Register 12, Select 1) 10000 = 512-byte vector spacing 01000 = 256-byte vector spacing 00100 = 128-byte vector spacing 00010 = 64-byte vector spacing 00001 = 32-byte vector spacing 00000 = 0-byte vector spacing	VOFFx<17:1> (OFFx<17:1>) Interrupt Vector 'x' Address Offset bits					
Shadow Register Sets						
On PIC32MX devices, there was one shadow register set which could be used during interrupt processing. Which interrupt priority could use the shadow register set was determined by the FSRS- SEL field in DEVCFG3 and SS0 on INTCON.	On PIC32MZ EF devices, there are seven shadow register sets, and each priority level can be assigned a shadow register set to use via the PRIxSS<3:0> bits in the PRISS register. The SS0 bit is also moved to PRISS<0>.					
FSRSSEL<2:0> (DEVCFG3<18:16>) 111 = Assign Interrupt Priority 7 to a shadow register set 110 = Assign Interrupt Priority 6 to a shadow register set 001 = Assign Interrupt Priority 1 to a shadow register set 000 = All interrupt priorities are assigned to a shadow register set	PRIxSS<3:0> PRISS <y:z> 1xxx = Reserved (by default, an interrupt with a priority level of x uses Shadow Set 0) 0111 = Interrupt with a priority level of x uses Shadow Set 7 0110 = Interrupt with a priority level of x uses Shadow Set 6 • • 0001 = Interrupt with a priority level of x uses Shadow Set 1 0000 = Interrupt with a priority level of x uses Shadow Set 0</y:z>					
SS0 (INTCON<16>) 1 = Single vector is presented with a shadow register set 0 = Single vector is not presented with a shadow register set	SS0 (PRISS<0>) 1 = Single vector is presented with a shadow register set 0 = Single vector is not presented with a shadow register set					
Status						
PIC32MX devices, the VEC<5:0> bits show which interrupt is being serviced.	On PIC32MZ EF devices, the SIRQ<7:0> bits show the IRQ number of the interrupt last serviced.					
VEC<5:0> (INTSTAT<5:0>) 11111-00000 = The interrupt vector that is presented to the CPU	SIRQ<7:0> (INTSTAT<7:0>) 11111111-00000000 = The last interrupt request number serviced by the CPU					