

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512efe064-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
					PO	RTA	
RA0	—	17	A11	22	I/O	ST	PORTA is a bidirectional I/O port
RA1	—	38	B21	56	I/O	ST	
RA2	—	59	A41	85	I/O	ST	
RA3	—	60	B34	86	I/O	ST	
RA4	—	61	A42	87	I/O	ST	
RA5	—	2	B1	2	I/O	ST	
RA6	—	89	A61	129	I/O	ST	
RA7	—	90	B51	130	I/O	ST	
RA9	—	28	B15	39	I/O	ST	
RA10	—	29	A20	40	I/O	ST	
RA14	—	66	B37	95	I/O	ST	
RA15	—	67	A45	96	I/O	ST	
	_				PO	RTB	
RB0	16	25	A18	36	I/O	ST	PORTB is a bidirectional I/O port
RB1	15	24	A17	35	I/O	ST	
RB2	14	23	A16	34	I/O	ST	
RB3	13	22	A14	31	I/O	ST	
RB4	12	21	A13	26	I/O	ST	
RB5	11	20	B11	25	I/O	ST	-
RB6	17	26	B14	37	I/O	ST	-
RB7	18	27	A19	38	I/O	ST	-
RB8	21	32	B18	47	I/O	ST	-
RB9	22	33	A23	48	I/O	ST	-
RB10	23	34	B19	49	I/O	ST	-
RB11	24	35	A24	50	I/O	ST	-
RB12	27	41	A27	59	I/O	ST	
RB13	28	42	B23	60	I/O	ST	
RB14	29	43	A28	61	I/O	ST	
RB15	30	44	B24	62	I/O	ST	
					PO	RTC	1
RC1	—	6	B3	6	I/O	ST	PORTC is a bidirectional I/O port
RC2	—	7	A6	11	I/O	ST	
RC3		8	B5	12	I/O	ST	
RC4		9	A7	13	I/O	ST	
RC12	31	49	B28	71	I/O	ST	
RC13	47	72	B41	105	I/O	ST	
RC14	48	73	A49	106	I/O	ST	
RC15	32	50	A33	72	I/O	ST	
Legend:	CMOS = C	MOS-comp	atible input	or output		Analog =	Analog input P = Power

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select I = Input

		Pin Nu	mber								
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description				
VBUS	33	51	A35	73	I	Analog	USB bus power monitor				
VUSB3V3	34	52	A36	74	Ρ	_	USB internal transceiver supply. If the USB module is not used, this pin must be connected to Vss. When connected, the shared pin functions on USBID will no be available.				
D+	37	55	B30	77	I/O	Analog	USB D+				
D-	36	54	A37	76	I/O	Analog	USB D-				
USBID	38	56	A38	78	I	ST	USB OTG ID detect				
Legend:	CMOS = C ST = Schm	MOS-comp itt Trigger ir	atible input	or output MOS level	ls	Analog = O = Outpu	Analog input P = Power ut I = Input				

TABLE 1-14: **USB PINOUT I/O DESCRIPTIONS**

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output

PPS = Peripheral Pin Select

TABLE 1-15: **CAN1 AND CAN2 PINOUT I/O DESCRIPTIONS**

		Pin Nu	mber				Description				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type					
C1TX	PPS	PPS	PPS	PPS	0	—	CAN1 Bus Transmit Pin				
C1RX	PPS	PPS	PPS	PPS	I	ST	CAN1 Bus Receive Pin				
C2TX	PPS	PPS	PPS	PPS	0	—	CAN2 Bus Transmit Pin				
C2RX	PPS PPS PPS PPS		PPS	I	ST	CAN2 Bus Receive Pin					
Legend:	CMOS = CI	MOS-comp	atible input	or output		Analog =	Analog input P = Power				
	ST = Schm	itt Trigger ir	nput with C	MOS level	S	O = Outpu	ut I = Input				
	TTL = Trans	sistor-transi	istor Logic	input buffe	r	PPS = Peripheral Pin Select					

TABLE 4-15: SYSTEM BUS TARGET 7 REGISTER MAP

ess		Bits																	
Virtual Addr (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	MULTI	_				CODE	<3:0>		—	-		—	-	—	—	—	0000
9020	SBITELOGI	15:0				INI	TID<7:0>					REGIO	N<3:0>		_	C	CMD<2:0>		
0004		31:16	_	_	—	—	—	_	_	—	_	_	—	_	_	_	_	—	0000
9024	SBITELOG2	15:0	_	_	_	_	—	_	_	—	_	_	_	_	_	_	GROU	P<1:0>	0000
0000		31:16	-	_	_	_	_	—	_	ERRP	_	_	_	_	_	_	_	_	0000
9028	SBITECON	15:0	_	_			_	_	—	_	_		_	—	—	—	—	—	0000
0020		31:16	_	_			_	_	—	_	_		_	—	—	—	—	—	0000
9030	3B17ECLR3	15:0	_						_	_	_			-	—	-	-	CLEAR	0000
9C38	SBT7ECLRM	31:16	_						_	_	_			-	—	-	-	-	0000
9030		15:0	_						_	_	_			-	—	-	-	CLEAR	0000
0040	SBT7DECO	31:16								BAS	SE<21:6>	<21:6>							
9040	SBITKEGU	15:0) BASE<5:0>						PRI	_	SIZE<4:0> — — —					—	xxxx		
0050		31:16	—	—	-	-	_	-	—	_	—	_	_	_	—	—	—	—	xxxx
9030	SBITKDO	15:0	—	—	-	-	_	-	—	_	—	_	_	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
0059		31:16	—	—	-	-	_	-	—	_	—	_	_	_	—	—	—	—	xxxx
3030	3017 1110	15:0	—	—	—	—	—	_	_	—	_	—	_		GROUP3	GROUP2	GROUP1	GROUP0	xxxx
90.60	SBT7REG1	31:16							-	BAS	SE<21:6>								xxxx
9000	SBITKEGT	15:0	BASE<5:0>							—			SIZE<4:0	>		—	—	—	xxxx
9070	SBT7RD1	31:16	—	—	_	_	—	_	—	—	_	_	_	—	—	_	—	—	xxxx
3070	SB1/KD1	15:0	—	_	_	_	—	_	—	—	_	_	_	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
0079	SBT7WP1	31:16	—	—	—	_	_	_	—	_	_	_	_	—	_	—	_	_	xxxx
9C78	SBT7WR1	15:0	_	-	_	_	_	_	_	_	_	_	_	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

TABLE 4-16: SYSTEM BUS TARGET 8 REGISTER MAP

ess		Bits																	
Virtual Addr (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000		31:16	MULTI	—	—	—		CODE	<3:0>		—	—	-	—	—	—	—	-	0000
A020	SBIBELOGI	15:0				INI	TID<7:0>			REGION<3:0>					—	CMD<2:0>			0000
1004		31:16		—	_	_	_	_	_	_	_	_	_	_	_	_	_	—	0000
A024	SB18ELUG2	15:0		—	_	_	_	_	_	_	_	_	_	_	_	_	GROU	P<1:0>	0000
1020	SPTRECON	31:16		—	—	_	—	—	—	ERRP		—	—	—	_	—	_	—	0000
A028	SBIBECON	15:0		—	—	_	—	—	—	_		—	—	—	_	—	_	—	0000
1020		31:16	_	_	_	_	—	—	—			—	—	—	—	_	_	—	0000
AU30	SBIGECLKS	15:0	_	—	-	_	_	-	_			-	_	_	—	-	_	CLEAR	0000
A038	SBT8ECLRM	31:16	_	—	—	—	—	—	—	_	_	—	—	—	—	_	—	—	0000
A036		15:0	_	—	-	_	_	-	_			-	_	_	—	-	_	CLEAR	0000
1040	SBTORECO	31:16								BASE<21:6>									xxxx
A040	SBIOKEGO	15:0			BA	ASE<5:0>		-	PRI	—	SIZE<4:0>					—	—	—	xxxx
4050	SBT8RD0	31:16	—		—	—	—	—	—	—	—	—	—	—	—	_	—	-	xxxx
7030	3010100	15:0	—		_	_	—	_	_	—	_	_		_	GROUP3	GROUP2	GROUP1	GROUP0) xxxx
A058	SBT8W/R0	31:16	—		_	_	—	_	_	—	_	_		_	—	_	—	-	xxxx
7030	OBTOWING	15:0	—	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0) _{XXXX}
A060	SBT8REG1	31:16								BAS	SE<21:6>								xxxx
7000	SBIOKEOT	15:0			BA	\SE<5:0>			PRI	—			SIZE<4:0	>		_	—	-	xxxx
A070	SBT8RD1	31:16	—		_	_	—	_	_	—	_	_		_	—	_	—	-	xxxx
7070	3010101	15:0	—		_	_	—	_	_	—	_	_		_	GROUP3	GROUP2	GROUP1	GROUP0) xxxx
<u>۵078</u>	SBT8WR1	31:16	—	-	—	—	—	—	—	—	_	—	—	—	—	—	—	-	xxxx
A078	SBT8WR1	15:0	—	—	—	-	—	—	—	_	_	—	-	-	GROUP3	GROUP2	GROUP1	GROUP0) xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31:24	—	—	—	—	—	—	—	—					
00.46	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0					
23:16	—	—	—	—	—	—	—	—					
45.0	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0					
15:8	—	—	—	—	—	—	—	—					
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0	_	_	TUN<5:0> ⁽¹⁾										

REGISTER 8-2: OSCTUN: FRC TUNING REGISTER

Legend:

0							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-6 Unimplemented: Read as '0'

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation, and is neither characterized nor tested.

Note:	Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced
	PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

REGISTER 11-1: USBCSR0: USB CONTROL STATUS REGISTER 0 (CONTINUED)

- bit 10 **RESUME:** Resume from Suspend control bit
 - 1 = Generate Resume signaling when the device is in Suspend mode
 - 0 = Stop Resume signaling

In *Device mode*, the software should clear this bit after 10 ms (a maximum of 15 ms) to end Resume signaling. In *Host mode*, the software should clear this bit after 20 ms.

- bit 9 **SUSPMODE:** Suspend Mode status bit 1 = The USB module is in Suspend mode
 - 0 = The USB module is in Normal operations

This bit is read-only in Device mode. In Host mode, it can be set by software, and is cleared by hardware.

- bit 8 SUSPEN: Suspend Mode Enable bit
 - 1 = Suspend mode is enabled
 - 0 = Suspend mode is not enabled
- bit 7 Unimplemented: Read as '0'
- bit 6-0 **FUNC<6:0>:** Device Function Address bits

These bits are only available in *Device mode*. This field is written with the address received through a SET_ADDRESS command, which will then be used for decoding the function address in subsequent token packets.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
31.24	—	—	—		RX	(FIFOAD<12:	8>							
23.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
23.10	RXFIFOAD<7:0>													
15.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0							
15.0	—	—	—		Tک	(FIFOAD<12:	8>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7:0				TXFIFO	AD<7:0>									

REGISTER 11-14: USBFIFOA: USB FIFO ADDRESS REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-16 **RXFIFOAD<12:0>:** Receive Endpoint FIFO Address bits

Start address of the endpoint FIFO in units of 8 bytes as follows:

111111111111 = 0xFFF8

- •
- •

bit 15-13 Unimplemented: Read as '0'

bit 12-0 TXFIFOAD<12:0>: Transmit Endpoint FIFO Address bits

Start address of the endpoint FIFO in units of 8 bytes as follows:

1111111111111 = 0xFFF8

•

•

•

REGISTER 11-29: USBLPMR2: USB LINK POWER MANAGEMENT CONTROL REGISTER 2 (CONTINUED)

bit 0 LPMSTIF: LPM STALL Interrupt Flag bit

When in Device mode:

- 1 = A LPM transaction was received and the USB Module responded with a STALL
- 0 = No Stall condition

When in Host mode:

- 1 = A LPM transaction was transmitted and the device responded with a STALL
- 0 = No Stall condition

TABLE 12-21: PORTK REGISTER MAP FOR 144-PIN DEVICES ONLY

ess		0								Bits									
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0910	TRISK	31:16	—	_	—	_	_	_	—	_		—				—	—	—	0000
0010	index	15:0	—	-	—	—	—	—	—	-	TRISK7	TRISK6	TRISK5	TRISK4	TRISK3	TRISK2	TRISK1	TRISK0	OOFF
0920	PORTK	31:16	—	—	—	—	—	—	—	—		—	—	—	—	—	—	_	0000
0020		15:0	—	—	—	—	—	—	—	—	RK7	RK6	RK5	RK4	RK3	RK2	RK1	RK0	xxxx
0930	LATK	31:16	_		_	_	_	_	_		_		—	—		_			0000
		15:0	_	_	_	_	_	—	_	—	LATK7	LATK6	LATK5	LATK4	LATK3	LATK2	LATK1	LATK0	XXXX
0940	ODCK	31:16	_	_	_	_	_	_	_	_	-	—	—	—	_	-	—	_	0000
		15:0	_	_	_	_	_	_	_	_	ODCK7	ODCK6	ODCK5	ODCK4	ODCK3	ODCK2	ODCK1	ODCK0	0000
0950	CNPUK	31:16	_	_	_	_	_	_	_	_	-	—	—	—	—	—	—	—	0000
		15:0	_								CNPUK7	CNPUK6	CNPUK5	CNPUK4	CNPUK3	CNPUK2	CNPUK1	CNPUKO	0000
0960	CNPDK	31:16			_	_	_				-		-						0000
		15:0	_	_	_	_	_	_	_	_	CNPDK7	CNPDK6	CNPDK5	CNPDK4	CNPDK3	CNPDK2	CNPDK1	CNPDKU	0000
0070	CNCONK	31:16	_	_	_	_	-	_	_	_	-		_	_	_	_	_	_	0000
0970	CINCONK	15:0	ON	_	—	_	DETECT	_	_	_		—	_	_	—	—	—	—	0000
0080		31:16	_	_	_	_	_	_	_	_	-	_	_	_	_	—	_	_	0000
0980	CINLINK	15:0	_	_	_	_	_	_	_	_	CNENK7	CNENK6	CNENK5	CNENK4	CNENK3	CNENK2	CNENK1	CNENK0	0000
		31:16	_	_	_	_	_	_	_	_	-	_	_	_	_	—	_	_	0000
0990	CNSTATK	15:0	-	—	—	—	—	-	—	—	CN STATK7	CN STATK6	CN STATK5	CN STATK4	CN STATK3	CN STATK2	CN STATK1	CN STATK0	0000
00.00		31:16	_	_	_	_	_	—	_	-		—			_	_	_	_	0000
0940	CININER	15:0			_	_	_	_	_	_	CNNEK7	CNNEK6	CNNEK5	CNNEK4	CNNEK3	CNNEK2	CNNEK1	CNNEK0	0000
0080	CNEK	31:16	—	_	—	—	—	—	—	_	—	—	—	—	—	—	—	—	0000
0900	UNER	15:0			_	_	_		_		CNFK7	CNFK6	CNFK5	CNFK4	CNFK3	CNFK2	CNFK1	CNFK0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

TABLE 12-22: PERIPHERAL PIN SELECT INPUT REGISTER MAP

SSS		_								E	Bits								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1404		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	0000
1404	INTIK	15:0	_	—	—	—	—	—	—	_	—	_	—	-		INT1F	2<3:0>		0000
1409		31:16	—	—	—	—	—	—	—	—	_	—	_		—	_		-	0000
1406	INTZK	15:0	—	—	—	—	—	—	—	—	_	—	_			INT2F	2<3:0>		0000
1400		31:16	_	—	_	_	_	_	_	—	_	_	—		—	_		_	0000
1400	INTOR	15:0	_	—	—	—	—	—	—	_	—	_	—	-		INT3F	2<3:0>		0000
1410		31:16	_	—	—	—	—	—	—	_	—	_	—	-	—	_	_	-	0000
1410	IN 14K	15:0	_	—	—	—	—	—	—	_	—	_	—	-		INT4F	2<3:0>		0000
1440	TOCKD	31:16	_	—	—	—	—	—	—	_	—	_	—	—	—	_	_	-	0000
1418	IZUKR	15:0	—	—	—	—	—	—	—	—	—	—	—	_		T2CKI	R<3:0>		0000
4.440		31:16	—	_	_	_	—	—	_	—	—	—	_	_	—	—	—	—	0000
1410	IJCKR	15:0	_	_	_	_	—	_	_	_	—	—	_	_		T3CKI	R<3:0>		0000
4.400	TIOKD	31:16	_	—	—	—	—	—	—		—	—	_		—	—	—	—	0000
1420	14CKR	15:0	_	—	—	—	—	—	—		—	—	_			T4CKI	R<3:0>	•	0000
	TEOKO	31:16	_	—	—	—	—	—	—		—	—	_		—	—	—	—	0000
1424	15CKR	15:0	_	—	—	—	—	—	—		—	—	_			T5CKI	R<3:0>	•	0000
4.400	TOOLD	31:16	_	—	—	—	—	—	—		—	—	_		—	—	—	—	0000
1428	TECKR	15:0	_	—	—	—	—	—	—		—	—	_			T6CKI	R<3:0>	•	0000
	770/0	31:16	—	_	_	_	_	_	_	—	_	—	_		_	—	—	_	0000
142C	17CKR	15:0	—	_	_	_	_	—	_	—	_	—	_			T7CKI	R<3:0>		0000
	T 20//D	31:16	—	_	_	_	_	—	_	—	_	—	_		_	—	—	_	0000
1430	TSCKR	15:0	—	_	_	_	_	—	_	—	_	—	_			T8CKI	R<3:0>		0000
	TROUD	31:16	_	_	—	—	—	—	—		—	_	_	_	—	—	_	_	0000
1434	TYCKR	15:0	_	—	—	—	—	—	—		—	—	_			T9CKI	R<3:0>	•	0000
	1015	31:16	—	_	_	_	_	_	_	—	_	—	_		_	—	—	_	0000
1438	IC1R	15:0	—	_	_	_	_	_	_	—	_	—	_			IC1R	<3:0>		0000
	1000	31:16	—	_	_	_	_	_	_	—	_	—	_		_	—	—	_	0000
143C	IC2R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		IC2R	<3:0>		0000
	1000	31:16	_	_	_	_	_	_	_	—	_	_	_	—	—	—	—	—	0000
1440	IC3R	15:0	_	_	_	_	_	_	_	—	_	_	_	—		IC3R	<3:0>		0000

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

This register is not available on 64-pin devices. Note 1:

2: This register is not available on devices without a CAN module.

TABLE 18-2: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 9 REGISTER MAP (CONTINUED)

ess										В	its								
Virtual Addr (BF84_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4400		31:16	_	-	_		—		-	_	—	—	—	—	—	_	_		0000
4A00		15:0	ON	_	SIDL	_	_	_	_	_	_	—	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
4440	0000	31:16								0000	.01.0.								xxxx
4A10	UCOR	15:0		UC6R<31:0>															
4420	OCERS	31:16								OCER	2-21:05								xxxx
4A20	UC0K3	15:0								OCORC	\$<31.0>								xxxx
4000		31:16	_		_		_			_	_	—	—	_	_		_		0000
4000		15:0	ON		SIDL					_		_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
4010	OC7P	31:16									~21.0								xxxx
4010	007	15:0								0078	<31.0>								xxxx
4020	OC7RS	31:16									-31.0								xxxx
4020	00/110	15:0										-	-		-				xxxx
4E00		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1200	000001	15:0	ON	—	SIDL	—	—	—	—	—	—	—	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
4F10	OC8R	31:16								OC8R	<31.0>								xxxx
		15:0								00011	101107								XXXX
4E20	OC8RS	31:16								OC8RS	S<31:0>								xxxx
		15:0										-	-		-				XXXX
5000		31:16	—	_	—	_	—	_	_	—	—	—	—	—		—	—	—	0000
		15:0	ON	—	SIDL	—	—	—	—	—	—	—	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
5010	OC9R	31:16		OC9R<31:0>															
		15:0																	XXXX
5020	OC9RS	31:16 15:0								OC9R8	8<31:0>								xxxx

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

23.0 PARALLEL MASTER PORT (PMP)

Note:	This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive refer- ence source. To complement the informa-
	tion in this data sheet, refer to Section 13.
	"Parallel Master Port (PMP)"
	(DS60001128) in the "PIC32 Family Ref-
	erence Manual", which is available from
	the Microchip web site (www.micro- chip.com/PIC32).

The PMP is a parallel 8-bit/16-bit input/output module specifically designed to communicate with a wide variety of parallel devices, such as communications peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP module is highly configurable. The following are key features of the PMP module:

- 8-bit,16-bit interface
- Up to 16 programmable address lines
- Up to two Chip Select lines
- Programmable strobe options:
 - Individual read and write strobes, or
 - Read/write strobe with enable strobe
- Address auto-increment/auto-decrement
- Programmable address/data multiplexing
- Programmable polarity on control signals
- Parallel Slave Port support:
 - Legacy addressable
 - Address support
 - 4-byte deep auto-incrementing buffer
- Programmable Wait states
- Operate during Sleep and Idle modes
- Separate configurable read/write registers or dual buffers for Master mode
- Fast bit manipulation using CLR, SET, and INV registers

Note: On 64-pin devices, data pins PMD<15:8> are not available in 16-bit Master modes.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
01-01	U-0							
31:24	—	—	—	—	—	—	—	—
00.40	U-0							
23:16	—	—	—	—	—	—	—	—
45-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—	—	CSS44	CSS43	CSS42 ⁽²⁾	CSS41 ⁽²⁾	CSS40 ⁽²⁾
7.0	R/W-0							
7:0	CSS39 ⁽²⁾	CSS38 ⁽²⁾	CSS37 ⁽²⁾	CSS36 ⁽²⁾	CSS35 ⁽²⁾	CSS34 ⁽¹⁾	CSS33 ⁽¹⁾	CSS32 ⁽¹⁾

REGISTER 28-11: ADCCSS2: ADC COMMON SCAN SELECT REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-0 **CSS44:CSS32:** Analog Common Scan Select bits Analog inputs 44 to 32 are always Class 3, as there are only 32 triggers available. 1 = Select AN*x* for input scan 0 = Skip AN*x* for input scan

Note 1: This bit is not available on 64-pin devices.

2: This bit is not available on 64-pin and 100-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
21.24	R/W-0	R/W-0											
31.24				CiFIFOB	A<31:24>								
22.16	R/W-0	R/W-0											
23.10		CiFIFOBA<23:16>											
15.0	R/W-0	R/W-0											
15.0				CiFIFOE	8A<15:8>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0 ⁽¹⁾	R-0 ⁽¹⁾					
				CiFIFO	3A<7:0>								

REGISTER 29-19: CIFIFOBA: CAN MESSAGE BUFFER BASE ADDRESS REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CiFIFOBA<31:0>: CAN FIFO Base Address bits

These bits define the base address of all message buffers. Individual message buffers are located based on the size of the previous message buffers. This address is a physical address. Note that bits <1:0> are read-only and read '0', forcing the messages to be 32-bit word-aligned in device RAM.

Note 1: This bit is unimplemented and will always read '0', which forces word-alignment of messages.

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	R-x	R-x										
31.24				CiFIFOUA	\n<31:24>							
22.16	R-x	R-x										
23:16		CiFIFOUAn<23:16>										
15.0	R-x	R-x										
15.0				CiFIFOU	An<15:8>							
7:0	R-x	R-x	R-x	R-x	R-x	R-x	R-0 ⁽¹⁾	R-0 ⁽¹⁾				
7.0				CiFIFOU	IAn<7:0>							

REGISTER 29-22: CiFIFOUAn: CAN FIFO USER ADDRESS REGISTER 'n' ('n' = 0-31)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CiFIFOUAn<31:0>: CAN FIFO User Address bits

TXEN = 1: (FIFO configured as a Transmit Buffer)

A read of this register will return the address where the next message is to be written (FIFO head).

TXEN = 0: (FIFO configured as a Receive Buffer)

A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This bit will always read '0', which forces byte-alignment of messages.

Note: This register is not guaranteed to read correctly in Configuration mode, and should only be accessed when the module is not in Configuration mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	—	—	—	_	_	_
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—	—	—	—
7:0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
7.0					C	iFIFOCIn<4:0	>	

REGISTER 29-23: CiFIFOCIn: CAN MODULE MESSAGE INDEX REGISTER 'n' ('n' = 0-31)

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-5 Unimplemented: Read as '0'

bit 4-0 CiFIFOCIn<4:0>: CAN Side FIFO Message Index bits

TXEN = 1: (FIFO configured as a Transmit Buffer)

A read of this register will return an index to the message that the FIFO will next attempt to transmit.

TXEN = 0: (FIFO configured as a Receive Buffer)

A read of this register will return an index to the message that the FIFO will use to save the next message.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	R/W-1	R/W-1	R/W-0	R/W-1	R/W-1	R/W-1
10.0	—	—			CWINDO	W<5:0>		
7.0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
7.0		_	_	_		RETX<	<3:0>	

REGISTER 30-27: EMAC1CLRT: ETHERNET CONTROLLER MAC COLLISION WINDOW/RETRY LIMIT REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-14 Unimplemented: Read as '0'

bit 13-8 **CWINDOW<5:0>:** Collision Window bits

This is a programmable field representing the slot time or collision window during which collisions occur in properly configured networks. Since the collision window starts at the beginning of transmission, the preamble and SFD is included. Its default of 0x37 (55d) corresponds to the count of frame bytes at the end of the window.

bit 7-4 Unimplemented: Read as '0'

bit 3-0 RETX<3:0>: Retransmission Maximum bits

This is a programmable field specifying the number of retransmission attempts following a collision before aborting the packet due to excessive collisions. The Standard specifies the maximum number of attempts (attemptLimit) to be 0xF (15d). Its default is '0xF'.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

DC CHAR	ACTERISTICS		Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No.	Typical ⁽²⁾	Maximum ⁽⁵⁾	Units Conditions				
Power-Dov	wn Current (IPI	o) (Note 1)					
DC40k	0.7	7	mA	-40°C			
DC40I	1.5	7	mA	+25°C Base Power-Down Current			
DC40n	7	20	mA	+85°C			
Module Di	fferential Curre	ent					
DC41e	15	50	μA	3.6V	Watchdog Timer Current: ΔIWDT (Note 3)		
DC42e	25	50	μA	3.6V	RTCC + Timer1 w/32 kHz Crystal: △IRTCC (Note 3)		
DC43d	3	3.8	mA	3.6V	ADC: ΔIADC (Notes 3, 4)		
DC44	15	50	μA	3.6V	Deadman Timer Current: AIDMT (Note 3)		

TABLE 37-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: The test conditions for IPD current measurements are as follows:

 Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled (USBMD = 1), VUSB3V3 is connected to VSS
- CPU is in Sleep mode
- L1 Cache and Prefetch modules are disabled

No peripheral modules are operating, (ON bit = 0), and the associated PMD bit is set. All clocks are disabled ON bit (PBxDIV<15>) = 0 (x ≠ 1,7)

- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- Voltage regulator is in Stand-by mode (VREGS = 0)
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Voltage regulator is operational (VREGS = 1).
- **5:** Data in the "Maximum" column is at 3.3V, +85°C at specified operating frequency, unless otherwise stated. Parameters are for design guidance only and are not tested.

DC CHARACTERISTICS		Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions ⁽¹⁾
		Output Low Voltage I/O Pins 4x Sink Driver Pins - RA3, RA9, RA10, RA14, RA15 RB0-RB2, RB4, RB6, RB7, RB11, RB13 RC12-RC15 RD0, RD6-RD7, RD11, RD14 RE8, RE9 RF2, RF3, RF8 RG15 RH0, RH1, RH4-RH6, RH8-RH13 RJ0-RJ2, RJ8, RJ9, RJ11		_	0.4	V	Iol ≤ 10 mA, Vdd = 3.3V
DO10	Vol	Output Low Voltage I/O Pins: 8x Sink Driver Pins - RA0-RA2, RA4, RA5 RB3, RB5, RB8-RB10, RB12, RB14, RB15 RC1-RC4 RD1-RD5, RD9, RD10, RD12, RD13, RD15 RE4-RE7 RF0, RF4, RF5, RF12, RF13 RG0, RG1, RG6-RG9 RH2, RH3, RH7, RH14, RH15 RJ3-RJ7, RJ10, RJ12-RJ15 RK0-RK7		_	0.4	V	Iol ≤ 15 mA, Vdd = 3.3V
		Output Low Voltage I/O Pins: 12x Sink Driver Pins - RA6, RA7 RE0-RE3 RF1 RG12-RG14	_	_	0.4	V	Iol \leq 20 mA, Vdd = 3.3V

	TABLE 37-11:	DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS
--	--------------	--

Note 1: Parameters are characterized, but not tested.

39.0 252 MHz ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MZ EF electrical characteristics for devices running at 252 MHz. Additional information will be provided in future revisions of this document as it becomes available.

The specifications for 252 MHz are identical to those shown in **37.0** "Electrical Characteristics" including absolute maximum ratings, with the exception of the parameters listed in this chapter.

Parameters in this chapter begin with the letter "M", which denotes 252 MHz operation. For example, parameter DC27a in **37.0** "Electrical Characteristics", is the up to 200 MHz operation equivalent for MDC27a.

APPENDIX C: **REVISION HISTORY**

Revision A (January 2015)

This is the initial released version of the document.

Revision B (July 2015)

The document status was updated from Advance Information to Preliminary.

The revision includes the following major changes, which are referenced by their respective chapter in Table C-1.

In addition, minor updates to text and formatting were incorporated throughout the document.

TABLE C-1: MAJOR SECTIO	IN UPDATES
Section Name	Update Description
32-bit MCUs (up to 2 MB Live- Update Flash and 512 KB SRAM) with FPU, Audio and Graphics Interfaces, HS USB, Ethernet, and Advanced Analog	The Operating Conditions were updated to: 2.1V to 3.6V.
4.0 "Memory Organization"	Legal information on the System Bus was added (see 4.2 "System Bus Arbitration").
5.0 "Flash Program Memory"	The BOOTSWAP bit in the NVMCON register was changed to: BFSWAP (see Register 5-1).
6.0 "Resets"	The NVMLTA bit was removed from the RCON register (see Register 6-1).
	The GNMI bit was added to the RNMICON register (see Register 6-3).
7.0 "CPU Exceptions and	The ADC FIFO Data Ready Interrupt, IRQ 45, was added (see Table 7-2).
Interrupt Controller"	ADC FIFO bits were added, and Note 7 regarding devices without a Crypto module was added to the Interrupt Register Map (see Table 7-3).
	The NMIKEY<7:0> bits were added to the INTCON register (see Register 7-1)
8.0 "Oscillator Configuration"	The SPLLRDY bit was removed and the SPLLDIVRDY bit was added to the CLKSTAT register (see Register 8-8
11.0 "Hi-Speed USB with On-The- Go (OTG)"	The VBUSIE and VBUSIF bits were changed to: VBUSERRIE and VBUSERRIF, respectively in the USBCSR2 register (see Register 11-3).
15.0 "Deadman Timer (DMT)"	The POR values were updated for the PSCNT<4:0> bits in the Post Status Configure DMT Count Status register (see Register 15-6).
	The POR values were updated for the PSINTV<2:0> bits in the Post Status Configure DMT Interval Status register (see Register 15-7).
16.0 "Watchdog Timer (WDT)"	The WDTCON register was updated (see Register 16-1).
23.0 "Parallel Master Port (PMP)"	The PMDOUT, PMDIN, and PMRDIN registers were added (see Register 23-4, Register 23-4, and Register 23-10).
	The PMADDR, PMWADDR, and PMRADDR registers were updated (see Register 23-3, Register 23-8, and Register 23-9).
	The PMRDATA register was removed.
24.0 "External Bus Interface (EBI)"	Reset values for the EBIMSK2, EBIMSK3, EBISMT0-EBISMT2, and EBIFTRPD registers were updated in the EBI Register Map (see Table 24-2).
	POR value changes were implemented to the EBI Static Memory Timing Register (see Register 24-3).

MA IOD SECTION LIDDATES