

Welcome to E-XFL.COM

Microchip Technology - PIC32MZ0512EFE064T-I/PT Datasheet

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512efe064t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 5-1: NVMCON: FLASH PROGRAMMING CONTROL REGISTER (CONTINUED)

bit 6 **BFSWAP:** Boot Flash Bank Alias Swap Control bit

This bit is only writable when WREN = 0 and the unlock sequence has been performed.

- 1 = Boot Flash Bank 2 is mapped to the lower boot alias and boot Flash Bank 1 is mapped to the upper boot alias
- 0 = Boot Flash Bank 1 is mapped to the lower boot alias and boot Flash Bank 2 is mapped to the upper boot alias
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 **NVMOP<3:0>:** NVM Operation bits

These bits are only writable when WREN = 0.

1111 = Reserved

1000 = Reserved

- 0111 = Program erase operation: erase all of program Flash memory (all pages must be unprotected, PWP<23:0> = 0x000000)
- 0110 = Upper program Flash memory erase operation: erases only the upper mapped region of program Flash (all pages in that region must be unprotected)
- 0101 = Lower program Flash memory erase operation: erases only the lower mapped region of program Flash (all pages in that region must be unprotected)
- 0100 = Page erase operation: erases page selected by NVMADDR, if it is not write-protected
- 0011 = Row program operation: programs row selected by NVMADDR, if it is not write-protected
- 0010 = Quad Word (128-bit) program operation: programs the 128-bit Flash word selected by NVMADDR, if it is not write-protected
- 0001 = Word program operation: programs word selected by NVMADDR, if it is not write-protected⁽²⁾ 0000 = No operation
- Note 1: These bits are only reset by a Power-on Reset (POR) and are not affected by other reset sources.
 - 2: This operation results in a "no operation" (NOP) when the Dynamic Flash ECC Configuration bits = 00 (FECCCON<1:0> (DVCFG0<9:8>)), which enables ECC at all times. For all other FECCCON<1:0> bit settings, this command will execute, but will not write the ECC bits for the word and can cause DED errors if dynamic Flash ECC is enabled (FECCCON<1:0> = 01). Refer to Section 52. "Flash Program Memory with Support for Live Update" (DS60001193) for information regarding ECC and Flash programming.

TABLE 7-3: **INTERRUPT REGISTER MAP (CONTINUED)**

ress ()		a						-		Bi	ts								s
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0010	OFF183	31:16	—	—	-	—	—	-	—	-	—	—	—	—	—	—	VOFF<	17:16>	0000
0010	066103	15:0								VOFF<15:1>								—	0000
0020	OFF184	31:16	—	—	—	_					—		_		—		VOFF<	17:16>	0000
0620	UFF 164	15:0								VOFF<15:1>								_	0000
0824	OFF185 ⁽²⁾	31:16		—	-	—	_	—	—	—	_	—	—	—	—	—	VOFF<	17:16>	0000
0024	011103	15:0								VOFF<15:1>								—	0000
0828	OFF186 ⁽²⁾	31:16	_	—	—	—	_	-	-	_	_		—	-	—	-	VOFF<	17:16>	0000
0020	011100	15:0		-	-	-				VOFF<15:1>			-					—	0000
0820	OFF187 ⁽²⁾	31:16		—	-	—	_	—	—	—	_	—	—	—	—	—	VOFF<	17:16>	0000
0020	01110/	15:0								VOFF<15:1>								—	0000
0830	OFF188	31:16		—	-	—	_	—	—	—	_	—	—	—	—	—	VOFF<	17:16>	0000
0000	011100	15:0		-	-	-				VOFF<15:1>			-					—	0000
0834	OFF189	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
0004	011103	15:0								VOFF<15:1>								—	0000
0838	OFF190	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
0000	011130	15:0		-	-	-				VOFF<15:1>			-					—	0000
0840	OFF192	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
0040	011132	15:0								VOFF<15:1>								—	0000
0844	OFF193	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
0011	011100	15:0			-					VOFF<15:1>								—	0000
0848	OFF194	31:16	—	—	-	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
0040	011104	15:0								VOFF<15:1>								—	0000
0850	OFF196	31:16	—	—	—	—		—	—		—	—	—	—	—	—	VOFF<	17:16>	0000
0050	011130	15:0								VOFF<15:1>								—	0000
0858	OFF198	31:16	—	—	—	_		_	—		—	—	_	—	—	_	VOFF<	17:16>	0000
0000	011100	15:0								VOFF<15:1>								—	0000
0850	OFF199	31:16	_	—	—	—	_	—	—	_	_	—	—	—	—	—	VOFF<	17:16>	0000
0000	0.1100	15:0								VOFF<15:1>								—	0000
0860	OFF200	31:16	_	—	-	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
0000	011200	15:0								VOFF<15:1>								—	0000

© 2015-2016 Microchip Technology Inc.

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

This bit or register is not available on devices without a CAN module. 3:

4: This bit or register is not available on 100-pin devices.

Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices. 5:

Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices. 6:

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

8.0 OSCILLATOR CONFIGURATION

Note:	This data sheet summarizes the
	features of the PIC32MZ EF family of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to Section 42. "Oscillators
	with Enhanced PLL" (DS60001250) in
	the "PIC32 Family Reference Manual",
	which is available from the Microchip
	web site (www.microchip.com/PIC32).

The PIC32MZ EF oscillator system has the following modules and features:

- A total of five external and internal oscillator options as clock sources
- On-Chip PLL with user-selectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-Chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown with dedicated Back-up FRC (BFRC)
- Dedicated On-Chip PLL for USB peripheral
- Flexible reference clock output
- Multiple clock branches for peripherals for better performance flexibility
- · Clock switch/slew control with output divider

A block diagram of the oscillator system is shown in Figure 8-1. The clock distribution is provided in Table 8-1.

Note: Devices that support 252 MHz operation should be configured for SYSCLK <= 200 MHz operation. Adjust the dividers of the PBCLKs, and then increase the SYSCLK to the desired speed.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24	—	_	—	—	—	F	RCDIV<2:0>	
22.16	R/W-0	U-0	R/W-y	U-0	U-0	U-0	U-0	U-0
23:16	DRMEN	_	SLP2SPD ⁽¹⁾	_	_	_	_	_
45.0	U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
15:8	—		COSC<2:0>		_		NOSC<2:0>	
7.0	R/W-0	U-0	U-0	R/W-0	R/W-0, HS	U-0	R/W-y	R/W-y
7:0	CLKLOCK	_	—	SLPEN	CF	_	SOSCEN	OSWEN ⁽¹⁾

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

Legend:	y = Value set from Config	uration bits on POR	HS = Hardware Set
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

- bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits
 - 111 = FRC divided by 256 110 = FRC divided by 64
 - 101 = FRC divided by 32
 - 100 = FRC divided by 16
 - 011 = FRC divided by 8
 - 010 = FRC divided by 4
 - 001 = FRC divided by 2
 - 000 = FRC divided by 1 (default setting)
- bit 23 **DRMEN:** Dream Mode Enable bit
 - 1 = Dream mode is enabled
 - 0 = Dream mode is disabled
- bit 22 Unimplemented: Read as '0'
- bit 21 SLP2SPD: Sleep 2-speed Startup Control bit⁽¹⁾
 - 1 = Use FRC as SYSCLK until selected clock is ready
 - 0 = Use the selected clock directly
- bit 20-15 Unimplemented: Read as '0'
- bit 14-12 COSC<2:0>: Current Oscillator Selection bits
 - 111 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
 - 110 = Back-up Fast RC (BFRC) Oscillator
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Reserved
 - 010 = Primary Oscillator (Posc) (HS or EC)
 - 001 = System PLL (SPLL)
 - 000 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
- bit 11 Unimplemented: Read as '0'
- **Note 1:** The reset value for this bit depends on the setting of the IESO bit (DEVCFG1<7>). When IESO = 1, the reset value is '1'. When IESO = 0, the reset value is '0'.
- Note: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

9.1 Prefetch Control Registers

TABLE 9-1: PREFETCH REGISTER MAP

ess (_	ø								Bit	s								s
Virtual Address (BF8E_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
	PPEOON	31:16	_	_	_	—	—	PFMSECEN	_	_	_	_	_	_	_	_	_	_	0000
0000	PRECON	15:0	_	—	_	_	_	_	_	_	_	_	PREFE	N<1:0>	—	P	FMWS<2:0	>	0007
0010	DDEOTAT	31:16	_	_	_	_	PFMDED	PFMSEC	_		_	_	_	_	_	_		_	0000
0010	PRESTAT	15:0	_			—	—	_		_				PFMSEC	CNT<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	_			Tک	(HUBPRT<6:	0>						
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23.10	MULTTRAN			ТХ	(HUBADD<6:	0>						
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15.0	_	_	_	_	_	_	_	—				
7.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	_	TXFADDR<6:0>										

REGISTER 11-18: USBExTXA: USB ENDPOINT 'x' TRANSMIT ADDRESS REGISTER

I agand.

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 Unimplemented: Read as '0'

bit 30-24 **TXHUBPRT<6:0>:** TX Hub Port bits (Host mode) When a Low-Speed or Full-Speed device is connected to this endpoint through a Hi-Speed USB 2.0 hub, this field records the port number of that USB 2.0 hub.

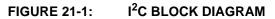
- bit 23 MULTTRAN: TX Hub Multiple Translators bit (Host mode) 1 = The USB 2.0 hub has multiple transaction translators
 - 0 = The USB 2.0 hub has a single transaction translator

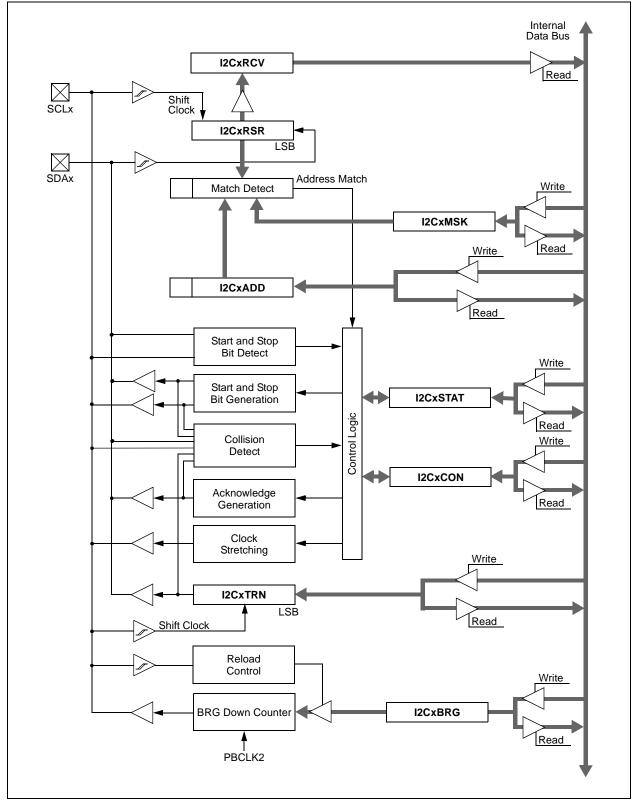
bit 22-16 **TXHUBADD<6:0>:** TX Hub Address bits (Host mode) When a Low-Speed or Full-Speed device is connected to this endpoint through a Hi-Speed USB 2.0 hub, these bits record the address of the USB 2.0 hub.

bit 15-7 Unimplemented: Read as '0'

bit 6-0 TXFADDR<6:0>: TX Functional Address bits (Host mode)

Specifies the address for the target function that is be accessed through the associated endpoint. It needs to be defined for each TX endpoint that is used.


SSS										B	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4444	IC4R	31:16	—	—	-	—	-	—	—	—	—	-	—	—	—	—	-	—	0000
1444	IC4R	15:0		_	—	_		_	_	_	_	—	—	—		IC4R	<3:0>		0000
1448	IC5R	31:16		—	—	_		—	—		—	_	_	_	_	_	_		0000
1440	10.51	15:0		—	—	—		—	—	—	_	_	—	—		IC5R	<3:0>		0000
144C	IC6R	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1440	ICOIX	15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC6R	<3:0>		0000
1450	IC7R	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1430	10/10	15:0	_	_	—	—	_	_	—	_	_	—	_	—		IC7R	<3:0>		0000
1454	IC8R	31:16	-	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1-0-1	10011	15:0	-	—	—	—	—	—	—	—	—	—	—	—		IC8R	<3:0>		0000
1458	IC9R	31:16	-	—	—	—	_	—	—	_	_	—	_	—	—	—	—	—	0000
		15:0	-	—		—	_	_	—	—	_			_		IC9R	<3:0>		0000
1460	OCFAR	31:16	_	—		—	—	—	—	_	—	_	—	—	—	—	—	—	0000
		15:0	_	—		—		—	—		_	—	—	—		OCFA	R<3:0>		0000
1468	U1RXR	31:16	_	—	_	—	_	—	—	—	_	_		_		—	—	—	0000
		15:0	_	—	_	—	_	—	—	—	_	_		_		U1RXI	R<3:0>		0000
146C	U1CTSR	31:16	_			—	_	—	—	—	_			—	—	—	—	—	0000
		15:0	—	—	_	—	_	—	—	—	—	—	—	—		U1CTS			0000
1470	U2RXR	31:16	_	—		_	_	—	—	—	_	—	_	—	—	—	—	—	0000
		15:0	_	—	-	—	—	—	—	_	_	—	—	—		U2RXI			0000
1474	U2CTSR	31:16	_	_			_	_	_		_		_	_	_		—	—	0000
		15:0	_	_	-	_	_	_	_	_	_	_	_	_		U2CTS			0000
1478	U3RXR	31:16	_		-	_	_		_	_	_	—		_	—		—	—	0000
		15:0		_		_		_	_	_	_	_		_		U3RXI			0000
147C	U3CTSR	31:16	_	_		_	_	_	_	_	_			_	—		—	—	0000
		15:0		_		_		_	_	_	_	_	_	_		U3CTS	R<3:0>		0000
1480	U4RXR	31:16		—	_	_	_		_		_	_	_	_				_	0000
		15:0		—		_	_		—		_	_	_	_		U4RXI			0000
1484	U4CTSR	31:16		—		_	_		—		_	_	_	_		-	—	_	0000
		15:0		—	—	—	-	—	—	—	—		_	—		U4CTS	R<3:0>		0000


TABLE 12-22: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

2: This register is not available on devices without a CAN module.

TABLE 21-1: I2C1 THROUGH I2C5 REGISTER MAP (CONTINUED)

SSS				Bits															
Virtual Address (BF82_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0430	I2C3MSK	31:16	_	—	—	—	_	_	—	_	_	—	_	_	_	_		_	0000
0 100	1200111011	15:0	—	—		—	_	—					Address Ma	sk Register	•				0000
0440	I2C3BRG	31:16	—	—	—	—	—	_	—	—	—		—	—	_	—	—	—	0000
		15:0								d Rate Gen	erator Reg	ister							0000
0450	I2C3TRN	31:16	_	—		—	—	—	—		—	—	—			—	—	—	0000
		15:0	_	_		—	_	_	—	_				Transmit	Register	-			0000
0460	I2C3RCV	31:16	—			_	_	_	_	_	_	—	_	_	_	_	—	—	0000
		15:0	—	—		_	_	_	_			1		Receive		1			0000
0600	I2C4CON	31:16	—	—		—	—	—	—	_	—	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
		15:0	ON		SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
0610	I2C4STAT	31:16	—	—	—	—		—	—	_	—	—	—	—	—	—	—	—	0000
		15:0	ACKSTAT	TRSTAT	ACKTIM	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
0620	I2C4ADD	31:16	_	—		—			—	_	_	—	—	—	—	—	—	—	0000
		15:0	_											0000					
0630	I2C4MSK	31:16											0000						
		15:0	_	—	-	—	—	—					Address Ma	isk Register		-			0000
0640	I2C4BRG	31:16	—	_	_		_	_	_	-	_	—	_	_	_	_	_	—	0000
		15:0							Bau	d Rate Gen	erator Reg	ister							0000
0650	I2C4TRN	31:16	_				_		_	_	_	—	_	-		—	_	_	0000
		15:0	—	_			_	—	_					Transmit	Register				0000
0660	I2C4RCV	31:16	_		-	_	_	_	_	_	_	_	—			—	—	—	0000
		15:0	_		-	_	_	_	_	_				Receive					0000
0800	I2C5CON	31:16		-	—	—	—	_	—	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
		15:0	ON		SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
0810	I2C5STAT	31:16	-	-	-			-	-	-	-	-	-	_	_	—	-	-	0000
		15:0	ACKSTAT	TRSTAT	ACKTIM			BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
0820	I2C5ADD	31:16	_						_	_	_	_			_	—	_	_	0000
		15:0	_										Address	Register					0000
0830	I2C5MSK	31:16	_						_	_	_	_			_	—	_	_	0000
		15:0	_										Address Ma	isk Register	-				0000
0840	I2C5BRG	31:16	—	—	—	—	—	_	— — —	- Data O	-	—	—	—	—	—	-	—	0000
		15:0							Bau	d Rate Gen	erator Reg	Ister							0000
0850	I2C5TRN	31:16			_	—	_	_	—		_	—	—		—	—	-	—	0000
		15:0	_	—	_	—	—	—	—	_				Transmit	Register	_			0000
0860	I2C5RCV	31:16	_	_		—	_		_	_	—	_	—	- Dessive	—	—	_	—	0000
Legend		15:0		—				—	shown in h					Receive	Register				0000

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

2: This register is not available on 64-pin devices.

26.1 Crypto Engine Control Registers

TABLE 26-2: CRYPTO ENGINE REGISTER MAP

ess											Bits								<i>"</i>
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5000	CEVER	31:16				REVISIO	DN<7:0>							VERSIC	DN<7:0>				0000
3000	OLVER	15:0			-	-				ID	<15:0>				-	-		-	0000
5004	CECON	31:16	—	—	—	—	—	—	—		—	—	—	_	—	—	—	—	0000
0001	020011	15:0	—	—	—	—	_	—	—	_	SWAPOEN	SWRST	SWAPEN	—	—	BDPCHST	BDPPLEN	DMAEN	0000
5008	CEBDADDR	31:16								BDPAI	DDR<31:0>								0000
		15:0																	0000
500C	CEBDPADDR	31:16		BASEADDR<31:0>															
		15:0				_													0000
5010	CESTAT	31:16	ER	RMODE<2	2:0>	E	RROP<2:0)>	ERRPHA		—	_		BDSTA	TE<3:0>		START	ACTIVE	-
		15:0									RL<15:0>								0000
5014	CEINTSRC	31:16	_	_	_	_	_	_		_	_		_		-		-		0000
		15:0 31:16	_	_	_	_	_	_	_	_	_	_	_		AREIF	PKTIF	CBDIF	PENDIF	-
5018	CEINTEN	15:0	_								_				AREIE	PKTIE		PENDIE	0000
		31:16												0000					
501C	CEPOLLCON	15:0	_	BDPPLCON<15:0> 0000															
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
5020	CEHDLEN	15:0	_				_	_							N<7:0>				0000
		31:16	_	_			_	_	_	_	_	_	_	_	_	_	— I	_	0000
5024	CETRLLEN	15:0	_	_	_		_	_	_	_				TRLRL	EN<7:0>				0000
															-				

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R-0, HS, HC							
31:24	ARDY31 ⁽¹⁾	ARDY30 ⁽¹⁾	ARDY29 ⁽¹⁾	ARDY28 ⁽¹⁾	ARDY27 ⁽¹⁾	ARDY26 ⁽¹⁾	ARDY25 ⁽¹⁾	ARDY24 ⁽¹⁾
00.40	R-0, HS, HC							
23:16	ARDY23 ⁽¹⁾	ARDY22 ⁽¹⁾	ARDY21 ⁽¹⁾	ARDY20 ⁽¹⁾	ARDY19 ⁽¹⁾	ARDY18	ARDY17	ARDY16
15.0	R-0, HS, HC							
15:8	ARDY15	ARDY14	ARDY13	ARDY12	ARDY11	ARDY10	ARDY9	ARDY8
7.0	R-0, HS, HC							
7:0	ARDY7	ARDY6	ARDY5	ARDY4	ARDY3	ARDY2	ARDY1	ARDY0

REGISTER 28-12: ADCDSTAT1: ADC DATA READY STATUS REGISTER 1

Legend: HS = Hardware Set			HC = Hardware Cleared				
F	R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-	n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-0 ARDY31:ARDY0: Conversion Data Ready for Corresponding Analog Input Ready bits

- 1 = This bit is set when converted data is ready in the data register
- 0 = This bit is cleared when the associated data register is read

Note 1: This bit is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0							
31.24	_	_	_	_	_	_		
23:16	U-0							
23.10	—	—	—	—	—	—	—	_
15.0	U-0	U-0	U-0	R-0, HS, HC				
15:8	—	—	—	ARDY44	ARDY43	ARDY42 ⁽²⁾	ARDY41 ⁽²⁾	ARDY40 ⁽²⁾
7.0	R-0, HS, HC							
7:0	ARDY39 ⁽²⁾	ARDY38 ⁽²⁾	ARDY37 ⁽²⁾	ARDY36 ⁽²⁾	ARDY35 ⁽²⁾	ARDY34 ⁽¹⁾	ARDY33 ⁽¹⁾	ARDY32 ⁽¹⁾

REGISTER 28-13: ADCDSTAT2: ADC DATA READY STATUS REGISTER 2

Legend:	HS = Hardware Set	HC = Hardware Cleared			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-13 Unimplemented: Read as '0'

bit 12-0 ARDY44:ARDY32: Conversion Data Ready for Corresponding Analog Input Ready bits

1 = This bit is set when converted data is ready in the data register

0 = This bit is cleared when the associated data register is read

Note 1: This bit is not available on 64-pin devices.

2: This bit is not available on 64 -pin and 100-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04-04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	_	—	—	—	—	_	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	_	—	—	—	—	_		—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	ADCBASE<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	ADCBASE<7:0>									

REGISTER 28-24: ADCBASE: ADC BASE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-0 Unimplemented: Read as '0'

bit 15-0 ADCBASE<15:0>: ADC ISR Base Address bits

This register, when read, contains the base address of the user's ADC ISR jump table. The interrupt vector address is determined by the IRQVS<2:0> bits of the ADCCON1 register specifying the amount of left shift done to the ARDYx status bits in the ADCDSTAT1 and ADCDSTAT2 registers, prior to adding with ADCBASE register.

Interrupt Vector Address = Read Value of ADCBASE and Read Value of ADCBASE = Value written to ADCBASE + $x \ll$ IRQVS<2:0>, where 'x' is the smallest active analog input ID from the ADCDSTAT1 or ADCDSTAT2 registers (which has highest priority).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
31:24		DATA<31:24>									
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
23:16	DATA<23:16>										
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8	DATA<15:8>										
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0				DATA	<7:0>						

REGISTER 28-25: ADCDATAX: ADC OUTPUT DATA REGISTER ('x' = 0 THROUGH 44)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			

bit 31-0 DATA<31:0>: ADC Converted Data Output bits.

- **Note 1:** The registers, ADCDATA19 through ADCDATA34, are not available on 64-pin devices.
 - 2: The registers, ADCDATA35 through ADCDATA42, are not available on 64-pin and 100-pin devices.
 - **3:** When an alternate input is used as the input source for a dedicated ADC module, the data output is still read from the Primary input Data Output Register.
 - 4: Reading the ADCDATAx register value after changing the FRACT bit converts the data into the format specified by FRACT bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	FLTEN23	MSEL2	3<1:0>		F	SEL23<4:0>		
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	FLTEN22	MSEL22<1:0>		FSEL22<4:0>				
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	FLTEN21	MSEL2	:1<1:0>		F	SEL21<4:0>		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	FLTEN20	MSEL2	:0<1:0>		F	SEL20<4:0>	•	

REGISTER 29-15: CIFLTCON5: CAN FILTER CONTROL REGISTER 5

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN23: Filter 23 Enable bit 1 = Filter is enabled
bit 30-29	 0 = Filter is disabled MSEL23<1:0>: Filter 23 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL23<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 •
	• 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN22: Filter 22 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 22-21	MSEL22<1:0>: Filter 22 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	FSEL22<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 • • 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

DS60001320D-page 510

REGISTER 34-7: CFGCON: CONFIGURATION CONTROL REGISTER (CONTINUED)

- bit 7 IOANCPEN: I/O Analog Charge Pump Enable bit
 The analog IO charge pump improves analog performance when the device is operating at lower voltages. However, the charge pumps consume additional current.
 1 = Charge pump is enabled
 0 = Charge pump is disabled
- bit 6 Unimplemented: Read as '0'
- bit 5-4 ECCCON<1:0>: Flash ECC Configuration bits
 - 11 = ECC and dynamic ECC are disabled (ECCCON<1:0> bits are writable)
 - 10 = ECC and dynamic ECC are disabled (ECCCON<1:0> bits are locked)
 - 01 = Dynamic Flash ECC is enabled (ECCCON<1:0> bits are locked)
 - 00 = Flash ECC is enabled (ECCCON<1:0> bits are locked; disables word Flash writes)
- bit 3 JTAGEN: JTAG Port Enable bit
 - 1 = Enable the JTAG port
 - 0 = Disable the JTAG port
- bit 2 TROEN: Trace Output Enable bit
 - 1 = Enable trace outputs and start trace clock (trace probe must be present)0 = Disable trace outputs and stop trace clock
- bit 1 Unimplemented: Read as '0'
- bit 0 TDOEN: TDO Enable for 2-Wire JTAG
 - 1 = 2-wire JTAG protocol uses TDO
 - 0 = 2-wire JTAG protocol does not use TDO
- Note 1: To change this bit, the unlock sequence must be performed. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

			•	erating Con	ditions: 2.1	/ to 3.6\	V (unless otherwise
DC CHA				stated) Operating temperature			C for Industrial °C for Extended
Param. No.	Symbol	Characteristics	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
	VIL	Input Low Voltage					
DI10		I/O Pins with PMP	Vss	—	0.15 * Vdd	V	
		I/O Pins	Vss	—	0.2 * Vdd	V	
DI18		SDAx, SCLx	Vss	_	0.3 * Vdd	V	SMBus disabled (Note 4)
DI19		SDAx, SCLx	Vss	—	0.8	V	SMBus enabled (Note 4)
	Vih	Input High Voltage					
DI20		I/O Pins not 5V-tolerant ⁽⁵⁾	0.80 * Vdd	—	Vdd	V	(Note 4,6)
		I/O Pins 5V-tolerant with PMP ⁽⁵⁾	0.80 * Vdd	—	5.5	V	(Note 4,6)
		I/O Pins 5V-tolerant ⁽⁵⁾	0.80 * Vdd	—	5.5	V	
DI28a		SDAx, SCLx on non-5V tolerant pins ⁽⁵⁾	0.80 * Vdd	—	Vdd	V	SMBus disabled (Note 4,6)
DI29a		SDAx, SCLx on non-5V tolerant pins ⁽⁵⁾	2.1	_	Vdd	V	SMBus enabled, 2.1V ≤ VPIN ≤ 5.5 (Note 4,6)
DI28b		SDAx, SCLx on 5V tolerant pins ⁽⁵⁾	0.80 * Vdd	—	5.5	V	SMBus disabled (Note 4,6)
DI29b		SDAx, SCLx on 5V tolerant pins ⁽⁵⁾	2.1	_	5.5	V	SMBus enabled, 2.1V ≤ VPIN ≤ 5.5 (Note 4,6)
DI30	ICNPU	Change Notification Pull-up Current	—		-40	μA	VDD = 3.3V, VPIN = VSS (Note 3,6)
DI31	ICNPD	Change Notification Pull-down Current ⁽⁴⁾	40	—	-	μA	VDD = 3.3V, VPIN = VDD
	liL	Input Leakage Current (Note 3)					
DI50		I/O Ports	—	—	<u>+</u> 1	μA	VSS \leq VPIN \leq VDD, Pin at high-impedance
DI51		Analog Input Pins	—	—	<u>+</u> 1	μA	$VSS \le VPIN \le VDD$, Pin at high-impedance
DI55		MCLR ⁽²⁾	—	—	<u>+</u> 1	μA	$VSS \le VPIN \le VDD$
DI56		OSC1	—	—	<u>+</u> 1	μA	$Vss \le VPIN \le VDD,$ HS mode

TABLE 37-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

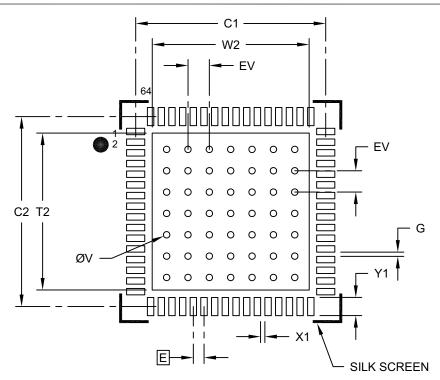
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the pin name tables (Table 2 through Table 4) for the 5V-tolerant pins.

6: The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of ICNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.

39.0 252 MHz ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MZ EF electrical characteristics for devices running at 252 MHz. Additional information will be provided in future revisions of this document as it becomes available.


The specifications for 252 MHz are identical to those shown in **37.0** "Electrical Characteristics" including absolute maximum ratings, with the exception of the parameters listed in this chapter.

Parameters in this chapter begin with the letter "M", which denotes 252 MHz operation. For example, parameter DC27a in **37.0** "Electrical Characteristics", is the up to 200 MHz operation equivalent for MDC27a.

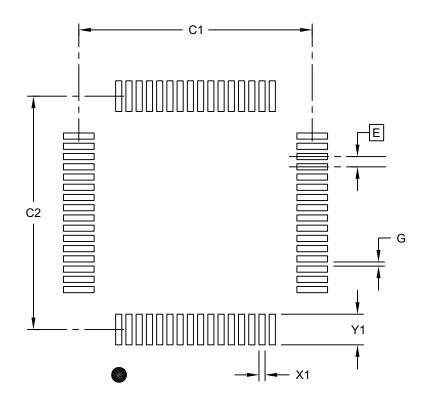
41.2 Package Details

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length and 7.70x7.70mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Optional Center Pad Width	W2			7.50
Optional Center Pad Length	T2			7.50
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X20)	X1			0.30
Contact Pad Length (X20)	Y1			0.90
Contact Pad to Center Pad (X20)	G	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	


Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
- BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2213B

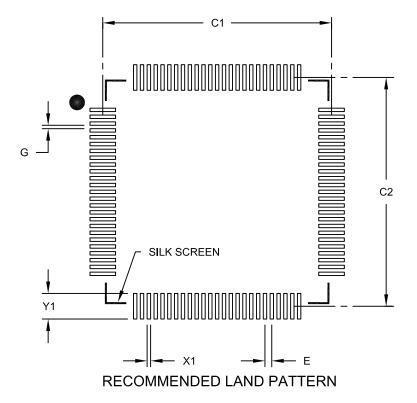
64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X28)	X1			0.30
Contact Pad Length (X28)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2085B Sheet 1 of 1

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.40 BSC			
Contact Pad Spacing	C1		13.40		
Contact Pad Spacing	C2		13.40		
Contact Pad Width (X100)	X1			0.20	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B