

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512efe100-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.1 BULK CAPACITORS

The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7 μF to 47 μF . This capacitor should be located as close to the device as possible.

2.3 Master Clear (MCLR) Pin

The $\overline{\text{MCLR}}$ pin provides for two specific device functions:

- Device Reset
- Device programming and debugging

Pulling The MCLR pin low generates either a device Reset or a POR, depending on the setting of the SMCLR bit (DEVCFG0<15>). Figure 2-2 illustrates a typical MCLR circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as illustrated in Figure 2-2, it is recommended that the capacitor C be isolated from the MCLR pin during programming and debugging operations.

Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

3: No pull-ups or bypass capacitors are allowed on active debug/program PGECx/PGEDx pins.

DS60001320D-page 38

3.7 M-Class Core Configuration

Register 3-1 through Register 3-4 show the default configuration of the M-Class core, which is included on the PIC32MZ EF family of devices.

							, ==== : :		
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	r-1	U-0	U-0	U-0	U-0 U-0		U-0	R-0	
31.24	_	—	—	—	—	_		ISP	
23:16	R-0	R-0	R-1	R-0	U-0	R-1	R-0	R-0	
	DSP	UDI	SB	MDU	—	MM<1:0>		BM	
15.0	R-0	R-0	R-0	R-0	R-0	R-1	R-0	R-0	
10.0	BE	AT<	1:0>		AR<2:0>		MT<	2:1>	
7.0	R-1	U-0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-0	
7:0	MT<0> —		—	— —			K0<2:0>		

REGISTER 3-1: CONFIG: CONFIGURATION REGISTER; CP0 REGISTER 16, SELECT 0

Legend:	r = Reserved bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31	Reserved: This bit is hardwired to '1' to indicate the presence of the Config1 register.
bit 30-25	Unimplemented: Read as '0'
bit 24	ISP: Instruction Scratch Pad RAM bit 0 = Instruction Scratch Pad RAM is not implemented
bit 23	DSP: Data Scratch Pad RAM bit 0 = Data Scratch Pad RAM is not implemented
bit 22	UDI: User-defined bit 0 = CorExtend User-Defined Instructions are not implemented
bit 21	SB: SimpleBE bit 1 = Only Simple Byte Enables are allowed on the internal bus interface
bit 20	MDU: Multiply/Divide Unit bit 0 = Fast, high-performance MDU
bit 19	Unimplemented: Read as '0'
bit 18-17	MM<1:0>: Merge Mode bits 10 = Merging is allowed
bit 16	BM: Burst Mode bit 0 = Burst order is sequential
bit 15	BE: Endian Mode bit 0 = Little-endian
bit 14-13	AT<1:0>: Architecture Type bits 00 = MIPS32
bit 12-10	AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2
bit 9-7	MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU
bit 6-3	Unimplemented: Read as '0'
bit 2-0	<pre>K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 mapped to 010.</pre>

is

							,	
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31·24 r-1		U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	_	_	—	—
22.16	U-0	R-0	R-1	R-0	R-0	R-0	R-1	R/W-y
23.10	—	IPLW	<1:0>		MMAR<2:0>		MCU	ISAONEXC ⁽¹⁾
15.0	R-y	R-y	R-1	R-1	R-1	R-1	U-0	R-1
10.0	ISA<1	l:0> ⁽¹⁾	ULRI	RXI	DSP2P	DSPP	—	ITL
7.0	U-0	R-1	R-1	R-0	R-1	U-0	U-0	R-0
7:0		VEIC	VINT	SP	CDMM	—		TL

REGISTER 3-3: CONFIG3: CONFIGURATION REGISTER 3; CP0 REGISTER 16, SELECT 3

Legend:	r = Reserved bit	d bit y = Value set from Configuration bits on POR						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31 **Reserved:** This bit is hardwired as '1' to indicate the presence of the Config4 register

- bit 30-23 Unimplemented: Read as '0'
- bit 22-21 **IPLW<1:0>:** Width of the Status IPL and Cause RIPL bits 01 = IPL and RIPL bits are 8-bits in width
- bit 20-18 **MMAR<2:0>:** microMIPS Architecture Revision Level bits 000 = Release 1
- bit 17 MCU: MIPS[®] MCU[™] ASE Implemented bit
 - 1 = MCU ASE is implemented
- bit 16 **ISAONEXC:** ISA on Exception bit⁽¹⁾ 1 = microMIPS is used on entrance to an exception vector 0 = MIPS32 ISA is used on entrance to an exception vector
- bit 15-14 **ISA<1:0>:** Instruction Set Availability bits⁽¹⁾ 11 = Both MIPS32 and microMIPS are implemented; microMIPS is used when coming out of reset
 - 10 = Both MIPS32 and microMIPS are implemented; MIPS32 ISA used when coming out of reset
- bit 13 ULRI: UserLocal Register Implemented bit
- 1 = UserLocal Coprocessor 0 register is implemented
- bit 12 RXI: RIE and XIE Implemented in PageGrain bit
- 1 = RIE and XIE bits are implemented
- bit 11 **DSP2P:** MIPS DSP ASE Revision 2 Presence bit 1 = DSP Revision 2 is present
- bit 10 **DSPP:** MIPS DSP ASE Presence bit
- 1 = DSP is present
- bit 9 Unimplemented: Read as '0'
- bit 8 ITL: Indicates that iFlowtrace[®] hardware is present
 - $1 = \text{The iFlowtrace}^{\mathbb{R}}$ is implemented in the core
- bit 7 Unimplemented: Read as '0'
- bit 6 **VEIC:** External Vector Interrupt Controller bit
 - 1 = Support for an external interrupt controller is implemented
- bit 5 **VINT:** Vector Interrupt bit
- 1 = Vector interrupts are implemented
- bit 4 SP: Small Page bit
- 0 = 4 KB page size
- bit 3 CDMM: Common Device Memory Map bit
- 1 = CDMM is implemented
- bit 2-1 Unimplemented: Read as '0'
- bit 0 **TL:** Trace Logic bit
 - 0 = Trace logic is not implemented

Note 1: These bits are set based on the value of the BOOTISA Configuration bit (DEVCFG0<6>).

TABLE 4-4: INITIATORS TO TARGETS ACCESS ASSOCIATION

Toract	Initiator ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14
#	Name	CF	งบ	DMA	Read	DMA	Write	USB	Ethernet Read	Ethernet Write	CAN1	CAN2	SQI1	Flash Controller	Crypto
1	Flash Memory: Program Flash Boot Flash Prefetch Module	>	<	x					х		х	х			x
2	RAM Bank 1 Memory	>	<		Х	2	X	Х	Х	Х	Х	Х	Х	Х	Х
3	RAM Bank 2 Memory	>	<		Х	2	х	Х	Х	Х	Х	Х	Х	Х	Х
4	External Memory via EBI and EBI Module	>	<		Х	2	х	Х	Х	Х	Х	Х	Х		Х
5	Peripheral Set 1: System Control, Flash Control, DMT, RTCC, CVR, PPS Input, PPS Output, Interrupts, DMA, WDT	>	<												
6	Peripheral Set 2: SPI1-SPI6 I2C1-I2C5 UART1-UART6 PMP	>	K		x	;	x								
7	Peripheral Set 3: Timer1-Timer9 IC1-IC9 OC1-OC9 ADC Comparator 1 Comparator 2	x			x	;	x								
8	Peripheral Set 4: PORTA-PORTK	>	K		х	;	x								
9	Peripheral Set 5: CAN1 CAN2 Ethernet Controller	>	<												
10	Peripheral Set 6: USB	x													
11	External Memory via SQI1 and SQI1 Module	>	x												
12	Peripheral Set 7: Crypto Engine	>	x												
13	Peripheral Set 8: RNG Module	X													

					•								
Bit Range	Bit 31/23/15/7	Bit Bit Bit 30/22/14/6 29/21/13/5 28/20/*		Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
21.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0					
31.24	—	—	_	—	—	_	DMTO	WDTO					
22.16	R/W-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0					
23.10	SWNMI	—	—	—	GNMI	—	CF	WDTS					
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8				NMIC	VT<15:8>								
7.0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0	NMICNT<7:0>												

REGISTER 6-3: RNMICON: NON-MASKABLE INTERRUPT (NMI) CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-26 Unimplemented: Read as '0'

- bit 25 **DMTO:** Deadman Timer Time-out Flag bit 1 = DMT time-out has occurred and caused a NMI 0 = DMT time-out has not occurred
 - Setting this bit will cause a DMT NMI event, and NMICNT will begin counting.
- bit 24 WDTO: Watchdog Timer Time-Out Flag bit
 - 1 = WDT time-out has occurred and caused a NMI
 - 0 = WDT time-out has not occurred
 - Setting this bit will cause a WDT NMI event, and MNICNT will begin counting.
- bit 23 SWNMI: Software NMI Trigger.
 - 1 = An NMI will be generated
 - 0 = An NMI will not be generated
- bit 22-20 **Unimplemented:** Read as '0'
- bit 19 **GNMI:** General NMI bit
 - 1 = A general NMI event has been detected or a user-initiated NMI event has occurred
 - 0 = A general NMI event has not been detected

Setting GNMI to a '1' causes a user-initiated NMI event. This bit is also set by writing 0x4E to the NMIKEY<7:0> (INTCON<31:24>) bits.

- bit 18 Unimplemented: Read as '0'
- bit 17 **CF:** Clock Fail Detect bit
 - 1 = FSCM has detected clock failure and caused an NMI
 0 = FSCM has not detected clock failure

Setting this bit will cause a a CF NMI event, but will not cause a clock switch to the BFRC.

- bit 16 **WDTS:** Watchdog Timer Time-out in Sleep Mode Flag bit
 - 1 = WDT time-out has occurred during Sleep mode and caused a wake-up from sleep
 0 = WDT time-out has not occurred during Sleep mode
 Setting this bit will cause a WDT NMI.

Note 1: When a Watchdog Timer NMI event (when not in Sleep mode) or a Deadman Timer NMI event is triggered the NMICNT will start decrementing. When NMICNT reaches zero, the device is Reset. This NMI reset counter is only applicable to these two specific NMI events.

Note: The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section
 42. "Oscillators with Enhanced PLL" in the "PIC32 Family Reference Manual" for details.

(1)		IRQ			Persistent			
Interrupt Source ^(*)	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
DMA Channel 0	_DMA0_VECTOR	134	OFF134<17:1>	IFS4<6>	IEC4<6>	IPC33<20:18>	IPC33<17:16>	No
DMA Channel 1	_DMA1_VECTOR	135	OFF135<17:1>	IFS4<7>	IEC4<7>	IPC33<28:26>	IPC33<25:24>	No
DMA Channel 2	_DMA2_VECTOR	136	OFF136<17:1>	IFS4<8>	IEC4<8>	IPC34<4:2>	IPC34<1:0>	No
DMA Channel 3	_DMA3_VECTOR	137	OFF137<17:1>	IFS4<9>	IEC4<9>	IPC34<12:10>	IPC34<9:8>	No
DMA Channel 4	_DMA4_VECTOR	138	OFF138<17:1>	IFS4<10>	IEC4<10>	IPC34<20:18>	IPC34<17:16>	No
DMA Channel 5	_DMA5_VECTOR	139	OFF139<17:1>	IFS4<11>	IEC4<11>	IPC34<28:26>	IPC34<25:24>	No
DMA Channel 6	_DMA6_VECTOR	140	OFF140<17:1>	IFS4<12>	IEC4<12>	IPC35<4:2>	IPC35<1:0>	No
DMA Channel 7	_DMA7_VECTOR	141	OFF141<17:1>	IFS4<13>	IEC4<13>	IPC35<12:10>	IPC35<9:8>	No
SPI2 Fault	_SPI2_FAULT_VECTOR	142	OFF142<17:1>	IFS4<14>	IEC4<14>	IPC35<20:18>	IPC35<17:16>	Yes
SPI2 Receive Done	_SPI2_RX_VECTOR	143	OFF143<17:1>	IFS4<15>	IEC4<15>	IPC35<28:26>	IPC35<25:24>	Yes
SPI2 Transfer Done	_SPI2_TX_VECTOR	144	OFF144<17:1>	IFS4<16>	IEC4<16>	IPC36<4:2>	IPC36<1:0>	Yes
UART2 Fault	_UART2_FAULT_VECTOR	145	OFF145<17:1>	IFS4<17>	IEC4<17>	IPC36<12:10>	IPC36<9:8>	Yes
UART2 Receive Done	_UART2_RX_VECTOR	146	OFF146<17:1>	IFS4<18>	IEC4<18>	IPC36<20:18>	IPC36<17:16>	Yes
UART2 Transfer Done	_UART2_TX_VECTOR	147	OFF147<17:1>	IFS4<19>	IEC4<19>	IPC36<28:26>	IPC36<25:24>	Yes
I2C2 Bus Collision Event ⁽²⁾	_I2C2_BUS_VECTOR	148	OFF148<17:1>	IFS4<20>	IEC4<20>	IPC37<4:2>	IPC37<1:0>	Yes
I2C2 Slave Event ⁽²⁾	_I2C2_SLAVE_VECTOR	149	OFF149<17:1>	IFS4<21>	IEC4<21>	IPC37<12:10>	IPC37<9:8>	Yes
I2C2 Master Event ⁽²⁾	_I2C2_MASTER_VECTOR	150	OFF150<17:1>	IFS4<22>	IEC4<22>	IPC37<20:18>	IPC37<17:16>	Yes
Control Area Network 1	_CAN1_VECTOR	151	OFF151<17:1>	IFS4<23>	IEC4<23>	IPC37<28:26>	IPC37<25:24>	Yes
Control Area Network 2	_CAN2_VECTOR	152	OFF152<17:1>	IFS4<24>	IEC4<24>	IPC38<4:2>	IPC38<1:0>	Yes
Ethernet Interrupt	_ETHERNET_VECTOR	153	OFF153<17:1>	IFS4<25>	IEC4<25>	IPC38<12:10>	IPC38<9:8>	Yes
SPI3 Fault	_SPI3_FAULT_VECTOR	154	OFF154<17:1>	IFS4<26>	IEC4<26>	IPC38<20:18>	IPC38<17:16>	Yes
SPI3 Receive Done	_SPI3_RX_VECTOR	155	OFF155<17:1>	IFS4<27>	IEC4<27>	IPC38<28:26>	IPC38<25:24>	Yes
SPI3 Transfer Done	_SPI3_TX_VECTOR	156	OFF156<17:1>	IFS4<28>	IEC4<28>	IPC39<4:2>	IPC39<1:0>	Yes
UART3 Fault	_UART3_FAULT_VECTOR	157	OFF157<17:1>	IFS4<29>	IEC4<29>	IPC39<12:10>	IPC39<9:8>	Yes
UART3 Receive Done	_UART3_RX_VECTOR	158	OFF158<17:1>	IFS4<30>	IEC4<30>	IPC39<20:18>	IPC39<17:16>	Yes
UART3 Transfer Done	_UART3_TX_VECTOR	159	OFF159<17:1>	IFS4<31>	IEC4<31>	IPC39<28:26>	IPC39<25:24>	Yes
2C3 Bus Collision Event _I2C3_BUS_VECTOR			OFF160<17:1>	IFS5<0>	IEC5<0>	IPC40<4:2>	IPC40<1:0>	Yes
I2C3 Slave Event	_I2C3_SLAVE_VECTOR	161	OFF161<17:1>	IFS5<1>	IEC5<1>	IPC40<12:10>	IPC40<9:8>	Yes

TABLE 7-2: INTERRUPT IRQ, VECTOR, AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EF Family Features" for the list of available peripherals.

2: This interrupt source is not available on 64-pin devices.

3: This interrupt source is not available on 100-pin devices.

4: This interrupt source is not available on 124-pin devices.

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress)		đ								B	its								s							
Virtual Add (BF81 #	Register Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset							
0450	10044	31:16	_	_	_	,	ADCDC2IP<2:	0>	ADCDC2	2IS<1:0>	—	—	_	A	DCDC1IP<2	2:0>	ADCDC1	IS<1:0>	0000							
UTFU	IPC11	15:0	_	_	_	ŀ	DCFIFOIP<2	:0>	ADCFIFC	DIS<1:0>	—	_	_		ADCIP<2:0	>	ADCIS	<1:0>	0000							
0200	10010	31:16	_	_	_		ADCDC6IP<2:	0>	ADCDC6	6IS<1:0>	_	_	_	A	DCDC5IP<2	2:0>	ADCDC5	IS<1:0>	0000							
0200	IPC12	15:0	—	_	-		ADCDC4IP<2:	:0>	ADCDC4	4IS<1:0>	—	_	—	A	DCDC3IP<2	::0>	ADCDC3	IS<1:0>	0000							
0210		31:16	_	_	—		ADCDF4IP<2:	0>	ADCDF4	IIS<1:0>	—	_	_	A	DCDF3IP<2	:0>	ADCDF3	S<1:0>	0000							
0210	IPC 13	15:0	_	_	_		ADCDF2IP<2:	0>	ADCDF2	2IS<1:0>	_	_	_	A	DCDF1IP<2	:0>	ADCDF1	S<1:0>	0000							
0000		31:16	—	_	-		ADCD0IP<2:0)>	ADCD0	IS<1:0>	—	_	—	A	DCDFLTIP<	2:0>	ADCDFLT	IS<1:0>	0000							
0220	IPC 14	15:0	_	_	-		ADCDF6IP<2:	0>	ADCDF6	6IS<1:0>	_	_	_	A	DCDF5IP<2	:0>	ADCDF5	S<1:0>	0000							
0220		31:16	—	_	—		ADCD4IP<2:0)>	ADCD4	IS<1:0>	_	_	_		ADCD3IP<2:	0>	ADCD3I	S<1:0>	0000							
0230	IFC 15	15:0	—	_	—		ADCD2IP<2:0)>	ADCD2	IS<1:0>	_	_	_		ADCD1IP<2:	0>	ADCD1I	S<1:0>	0000							
0240		31:16	_	_	—		ADCD8IP<2:0>		ADCD8	IS<1:0>	—	_	_	ADCD7IP<2:0>		ADCD7IS<1:0:		0000								
0240	IFC10	15:0	—	_	—		ADCD6IP<2:0>			IS<1:0>	_	_	_	ADCD5IP<2:0>			ADCD5IS<1:0>		0000							
0250		31:16	—	_	_		ADCD12IP<2:0>		ADCD12	2IS<1:0>	—	_	_	ADCD11IP<2:0>		ADCD11IS<1:0		0000								
0230	IFCI/	15:0	—	—	—		ADCD10IP<2:	0>	ADCD10)IS<1:0>	_	_	—	ADCD9IP<2:0>		ADCD9IS<1:0>		0000								
0260		31:16	_	—	—		ADCD16IP<2:	0>	ADCD16	6IS<1:0>	—	_	—	ADCD15IP<2:0>		ADCD15	S<1:0>	0000								
0200	IF C 10	15:0	_	—	—		ADCD14IP<2:	0>	ADCD14	IS<1:0>	—	—	—	ADCD13IP<2:0>		ADCD13IS<1		0000								
0270		31:16	_	—	—	A	DCD20IP<2:0	>(2)	ADCD201	S<1:0> ⁽²⁾	—	_	_	ADCD19IP<2:0>(2)		_{)>} (2)	ADCD19IS<1:0>		0000							
0270	IFC19	15:0	_	—	—		ADCD18IP<2:	0>	ADCD18	BIS<1:0>	—	_	—	Å	ADCD17IP<2	:0>	ADCD17	S<1:0>	0000							
0280		31:16	_	—	—	A	DCD24IP<2:0	> ⁽²⁾	ADCD241	S<1:0> ⁽²⁾	—	_	—	AI	DCD23IP<2:)> ⁽²⁾	ADCD23IS<1:0> ⁽²⁾		0000							
0200	IF 020	15:0	_	—	-	A	DCD22IP<2:0	>(2)	ADCD22I	S<1:0> ⁽²⁾	—	—	—	AI	DCD21IP<2:	_{)>} (2)	ADCD2118	S<1:0> ⁽²⁾	0000							
0200		31:16	_	—	—	A	DCD28IP<2:0	>(2)	ADCD28I	S<1:0> ⁽²⁾	—	_	_	A	DCD27IP<2:)> (2)	ADCD2718	S<1:0> ⁽²⁾	0000							
0290	IF 021	15:0	_	—	—	A	DCD26IP<2:0	> ⁽²⁾	ADCD26	S<1:0> ⁽²⁾	—	_	—	AI	DCD25IP<2:)> ⁽²⁾	ADCD2518	S<1:0> ⁽²⁾	0000							
0240		31:16	_	—	-	A	DCD32IP<2:0	> ⁽²⁾	ADCD32I	S<1:0> ⁽²⁾	—	—	—	AI	DCD31IP<2:)> ⁽²⁾	ADCD3118	S<1:0> ⁽²⁾	0000							
UZAU	IF022	15:0	_	—	—	A	DCD30IP<2:0	> ⁽²⁾	ADCD301	S<1:0> ⁽²⁾	—	_	—	AI	DCD29IP<2:)> ⁽²⁾	ADCD2918	S<1:0> ⁽²⁾	0000							
0280		31:16	_	—	—	A	DCD36IP<2:0>	_{>} (2,4)	ADCD36IS	S<1:0> ^(2,4)	—	—	—	AD	CD35IP<2:0	> ^(2,4)	ADCD35IS	<1:0> ^(2,4)	0000							
0200	11 023	15:0	_	_	-	A	DCD34IP<2:0	>(2)	ADCD34I	S<1:0>(2)	_	_	—	AI	DCD33IP<2:)>(2)	ADCD33IS	S<1:0> ⁽²⁾	0000							
0200	IPC24	31:16	_	—	-	A	DCD40IP<2:0>	(2,4)	ADCD40IS	ADCD40IS<1:0>(2,4)		ADCD40IS<1:0>(2,4)		ADCD40IS<1:0> ^(2,4)		—	—	AD	CD39IP<2:0	> ^(2,4)	ADCD39IS	<1:0> ^(2,4)	0000			
0200	11 024	15:0	_	—	-	A	ADCD38IP<2:0> ^(2,4)		ADCD38IS<1:0> ^(2,4)		ADCD38IS<1:0>(2,4)		_	_	—	ADCD37IP<2:0> ^(2,4)		ADCD37IP<2:0> ^(2,4)		ADCD37IP<2:0>(2,4)		ADCD37IP<2:0> ^(2,4)		ADCD37IS	<1:0> ^(2,4)	0000
0200	IDC 25	31:16	_	_	-	ADCD44IP<2:0>		ADCD44	ADCD44IS<1:0>		_	—	ADCD43IP<2:0>		ADCD43	S<1:0>	0000									
0200	11 020	15:0	_	—	—	A	ADCD42IP<2:0> ^(2,4)		ADCD42IS	S<1:0> ^(2,4)	_	_	—	ADCD41IP<2:0> ^(2,4)			ADCD41IS	<1:0> ^(2,4)	0000							

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Note 1: **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

3: This bit or register is not available on devices without a CAN module.

4: This bit or register is not available on 100-pin devices.

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

TABLE 12-5: PORTB REGISTER MAP

ess										Bits									
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0100	ANSELB	31:16	—	—	—	—	—	—	—	—	—	—	—	—			—	—	0000
		15:0	ANSB15	ANSB14	ANSB13	ANSB12	ANSB11	ANSB10	ANSB9	ANSB8	ANSB7	ANSB6	ANSB5	ANSB41	ANSB3	ANSB2	ANSB1	ANSB0	FFFF
0110	TRISB	31:16					—					—		—	—	—	—	—	0000
		15:0	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
0120	PORTB	31:16					—					—		—	—	—	—	—	0000
	-	15:0	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX
0130	LATB	31:16	—	—	—		—	—		—	—	—	—		—	—	—	—	0000
		15:0	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX
0140	ODCB	31:16	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	0000
		15:0	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
0150	CNPUB	31:16	-																0000
		15:0	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB/	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNP0B0	0000
0160	CNPDB	31:16																	0000
		15:0	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
0170	CNCONB	31.10	_				EDGE	_											0000
		15:0	ON	—	—	—	DETECT	—	—	—	-	—	—	-	—	—	—	—	0000
0190		31:16	_	_	_	_	—	—	_	—	-	—	—	_	—	—	—	—	0000
0100	CINEIND	15:0	CNENB15	CNENB14	CNENB13	CNENB12	CNENB11	CNENB10	CNENB9	CNENB8	CNENB7	CNENB6	CNENB5	CNENB4	CNENB3	CNENB2	CNENB1	CNENB0	0000
		31:16	—		—		—	—		—		—	—	_	—	—	—	—	0000
0190	CNSTATB	15:0	CN STATB15	CN STATB14	CN STATB13	CN STATB12	CN STATB11	CN STATB10	CN STATB9	CN STATB8	CN STATB7	CN STATB6	CN STATB5	CN STATB4	CN STATB3	CN STATB2	CN STATB1	CN STATB0	0000
01 0 0		31:16		_	_	_	_	—	_	—	_	_	_	_	_	_	_	_	0000
UTAU	CININED	15:0	CNNEB15	CNNEB14	CNNEB13	CNNEB12	CNNEB11	CNNEB10	CNNEB9	CNNEB8	CNNEB7	CNNEB6	CNNEB5	CNNEB4	CNNEB3	CNNEB2	CNNEB1	CNNEB0	0000
0100	CNER	31:16	—	—	—	—	—	—	—	—	_	—	—	_	—	—	—	—	0000
0160	CINED	15:0	CNFB15	CNFB14	CNFB13	CNFB12	CNFB11	CNFB10	CNFB9	CNFB8	CNFB7	CNFB6	CNFB5	CNFB4	CNFB3	CNFB2	CNFB1	CNFB0	0000
0100	SPCONOP	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	0000
0100	SILCOND	15:0	_	SR0B14	_	—	—	SR0B10	SR0B9	SR0B8	—	—	SR0B5	—	SR0B3	—	—	—	0000
0100	SRCON1B	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0100	GILCONTD	15:0		SR1B14	_	_	—	SR1B10	SR1B9	SR1B8	-	-	SR1B5	_	SR1B3	-	_	-	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

TABLE 12-11: PORTE REGISTER MAP FOR 100-PIN, 124-PIN, AND 144-PIN DEVICES ONLY

ess	sse									E	Bits								
Virtual Addre (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0400		31:16	—	—	—	—	—	_	_	—	_	—	_	—	—	_	—	—	0000
0400	ANOLLE	15:0		—	—	—	—	—	ANSE9	ANSE8	ANSE7	ANSE6	ANSE5	ANSE4	—	—	—	—	03F0
0410	TRISE	31:16					—	—	—	—	—	—	—	—	_	—	—	—	0000
0.1.0		15:0	—	—	—		—	—	TRISE9	TRISE8	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	03FF
0420	PORTE	31:16	—	—	—		—	—	-	—	—	—	—	—	—	—	—	-	0000
	-	15:0	—	—	—	-	—	—	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	XXXX
0430	LATE	31:16	—			-	—	_		—	_	_	_		—	_	_	—	0000
		15:0	_				-	-	LATE9	LATE8	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	XXXX
0440	ODCE	31:16						_	-	-	-	-	-	-	-	-	-	-	0000
		15:0	_	_	_	_	_	_	ODCE9	ODCE8	ODCE/	ODCE6	ODCE5	ODCE4	ODCE3	ODCE2	ODCE1	ODCE0	0000
0450	CNPUE	31:16					_	_											0000
		15:0							CINPUES	CNPUES	CNPUE7	CNPUE6	CNPUES	CNPUE4	CNPUE3	CNPUEZ	CNPUET	CNPUEU	0000
0460	CNPDE	31:10																	0000
		31.16							CINF DL9				CINF DL3						0000
0470	CNCONE	15:0	ON	_	_	_	EDGE DETECT	_	_	_	_	_	_	_	_	_	_	_	0000
		31:16		_	_	_	_	_	_	_			_	_	_		_	_	0000
0480	CNENE	15:0	_	_	_	_	_	_	CNENE9	CNENE8	CNENE7	CNENE6	CNENE5	CNENE4	CNENE3	CNENE2	CNENE1	CNENE0	0000
		31:16				_			_	_					_		—		0000
0490	CNSTATE	15:0	_	_	_	_	_	_	CN STATE9	CN STATE8	CN STATE7	CN STATE6	CN STATE5	CN STATE4	CN STATE3	CN STATE2	CN STATE1	CN STATE0	0000
0440		31:16	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	_	0000
04A0	CNNEE	15:0	_	—	—	_	—	—	CNNEE9	CNNEE8	CNNEE7	CNNEE6	CNNEE5	CNNEE4	CNNEE3	CNNEE2	CNNEE1	CNNEE0	0000
0400		31:16	—	_	_	_	_	—	_	—	_	_	—	—	—	_	—	—	0000
0400	CINFE	15:0		—	—	—	_	_	CNFE9	CNFE8	CNFE7	CNFE6	CNFE5	CNFE4	CNFE3	CNFE2	CNFE1	CNFE0	0000
0400	SRCONOF	31:16	—	-	-	-	—	—	—	—	—	—	—	—	-	—	-	—	0000
0400	SILCONUE	15:0	—	—	—	-	-	—	—	—	—	—	—	—	SR0E3	SR0E2	SR0E1	SR0E0	0000
0400	SRCON1F	31:16	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000
0400	CROONIE	15:0	—	-	-	-	-	—	—	-	—	—	—	_	SR1E3	SR1E2	SR1E1	SR1E0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

REGISTE	R 21-2: I2CxSTAT: I ² C STATUS REGISTER (CONTINUED)
bit 5	 D_A: Data/Address bit (when operating as I²C slave) 1 = Indicates that the last byte received was data 0 = Indicates that the last byte received was device address Hardware clear at device address match. Hardware set by reception of slave byte.
bit 4	 P: Stop bit 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 3	 Start bit 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	 R_W: Read/Write Information bit (when operating as I²C slave) 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte.
bit 1	RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty

Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—	—	—	—	—	-	-
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				RDATAIN<	15:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				RDATAIN<	:7:0>			

REGISTER 23-10: PMRDIN: PARALLEL PORT READ INPUT DATA REGISTER

Legend:

9			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 RDATAIN<15:0>: Port Read Input Data bits

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1' and exclusively for reads. If the DUALBUF bit is '0', the PMDIN register (Register 23-5) is used for reads instead of PMRDIN.

REGISTER 28-6: ADCIMCON2: ADC INPUT MODE CONTROL REGISTER 2 (CONTINUED)

DIFF26: AN26 Mode bit ⁽¹⁾
1 = AN26 is using Differential mode
0 = AN26 is using Single-ended mode
SIGN26: AN26 Signed Data Mode bit ⁽¹⁾
1 = AN26 is using Signed Data mode
0 = AN26 is using Unsigned Data mode
DIFF25: AN25 Mode bit ⁽¹⁾
1 = AN25 is using Differential mode
0 = AN25 is using Single-ended mode
SIGN25: AN25 Signed Data Mode bit ⁽¹⁾
1 = AN25 is using Signed Data mode
0 = AN25 is using Unsigned Data mode
DIFF24: AN24 Mode bit ⁽¹⁾
1 = AN24 is using Differential mode
0 = AN24 is using Single-ended mode
SIGN24: AN24 Signed Data Mode bit ⁽¹⁾
1 = AN24 is using Signed Data mode
0 = AN24 is using Unsigned Data mode
DIFF23: AN23 Mode bit ⁽¹⁾
1 = AN23 is using Differential mode
0 = AN23 is using Single-ended mode
SIGN23: AN23 Signed Data Mode bit ⁽¹⁾
1 = AN23 is using Signed Data mode
0 = AN23 is using Unsigned Data mode
DIFF22: AN22 Mode bit ⁽¹⁾
1 = AN22 is using Differential mode
0 = AN22 is using Single-ended mode
SIGN22: AN22 Signed Data Mode bit ⁽¹⁾
1 = AN22 is using Signed Data mode
0 = AN22 is using Unsigned Data mode
DIFF21: AN21 Mode bit ⁽¹⁾
1 = AN21 is using Differential mode
0 = AN21 is using Single-ended mode
SIGN21: AN21 Signed Data Mode bit ⁽¹⁾
1 = AN21 is using Signed Data mode
0 = AN21 is using Unsigned Data mode
DIFF20: AN20 Mode bit ⁽¹⁾
1 = AN20 is using Differential mode
0 = AN20 is using Single-ended mode
SIGN20: AN20 Signed Data Mode bit ⁽¹⁾
1 = AN20 is using Signed Data mode
0 = AN20 is using Unsigned Data mode
DIFF19: AN19 Mode bit ⁽¹⁾
1 = AN19 is using Differential mode
0 = AN19 is using Single-ended mode

Note 1: This bit is not available on 64-pin devices.

REGISTER 28-21: ADCCMPCONx: ADC DIGITAL COMPARATOR 'x' CONTROL REGISTER ('x' = 2 THROUGH 6) (CONTINUED)

- bit 1 IELOHI: Low/High Digital Comparator 'x' Event bit
 - 1 = Generate a Digital Comparator 'x' Event when the DCMPLO<15:0> bits ≤ DATA<31:0> bits
 - 0 = Do not generate an event
- bit 0 IELOLO: Low/Low Digital Comparator 'x' Event bit
 - 1 = Generate a Digital Comparator 'x' Event when the DATA<31:0> bits < DCMPLO<15:0> bits
 - 0 = Do not generate an event

REGISTER	29-10: CIFLTCON0: CAN FILTER CONTROL REGISTER 0 (CONTINUED)
bit 15	FLTEN1: Filter 1 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 14-13	MSEL1<1:0>: Filter 1 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask T selected 00 = Acceptance Mask 0 selected
bit 12-8	FSFI 1<4:0>: EIFO Selection bits
51(12.0	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN0: Filter 0 Enable bit
	1 = Filter is enabled
1:0 5	
DIT 6-5	MSELU<1:U>: Filter U Mask Select bits
	11 = Acceptance Mask 3 selected $10 = Acceptance Mask 2 selected$
	01 = Acceptance Mask 2 selected
	00 = Acceptance Mask 0 selected
bit 4-0	FSEL0<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	UUUUU = Message matching filter is stored in FIFO buffer U
Note: T	be hits in this register can only be modified if the corresponding filter enable (ELTEND) bit is (a)
1010.	The bits in this register out only be mounded in the corresponding filter enable (I ET ENIT) bit is 0.

	REGISTER										
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	—	—	—	_	—	_			
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10			_	_	_	_	—	_			
15.9	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15.0				PMCS	<15:8>						
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0				PMCS	S<7:0>						

REGISTER 30-9: ETHPMCS: ETHERNET CONTROLLER PATTERN MATCH CHECKSUM REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-8 PMCS<15:8>: Pattern Match Checksum 1 bits

bit 7-0 PMCS<7:0>: Pattern Match Checksum 0 bits

Note 1: This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 30-10: ETHPMO: ETHERNET CONTROLLER PATTERN MATCH OFFSET REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	—	_	_	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0				PMO<	<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				PMO	<7:0>			

Le	gend:	
	D	

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **PMO<15:0>:** Pattern Match Offset 1 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

			Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated)						
DC CHA	ARACTER	RISTICS	Operating terr	$\begin{array}{l} -40^{\circ}C \leq TA \\ -40^{\circ}C \leq TA \end{array}$	-40°C \leq Ta \leq +85°C for Industrial -40°C \leq Ta \leq +125°C for Extended				
Param. No.	Symbol	Characteristics	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions		
	VIL	Input Low Voltage							
DI10		I/O Pins with PMP	Vss	—	0.15 * Vdd	V			
		I/O Pins	Vss	—	0.2 * Vdd	V			
DI18		SDAx, SCLx	Vss	—	0.3 * Vdd	V	SMBus disabled (Note 4)		
DI19		SDAx, SCLx	Vss	—	0.8	V	SMBus enabled (Note 4)		
	Vih	Input High Voltage							
DI20		I/O Pins not 5V-tolerant ⁽⁵⁾	0.80 * Vdd	—	Vdd	V	(Note 4,6)		
		I/O Pins 5V-tolerant with PMP ⁽⁵⁾	0.80 * Vdd	—	5.5	V	(Note 4,6)		
		I/O Pins 5V-tolerant ⁽⁵⁾	0.80 * Vdd	_	5.5	V			
DI28a		SDAx, SCLx on non-5V tolerant pins ⁽⁵⁾	0.80 * Vdd	—	Vdd	V	SMBus disabled (Note 4,6)		
DI29a		SDAx, SCLx on non-5V tolerant pins ⁽⁵⁾	2.1	_	Vdd	V	SMBus enabled, 2.1V ≤ VPIN ≤ 5.5 (Note 4,6)		
DI28b		SDAx, SCLx on 5V tolerant pins ⁽⁵⁾	0.80 * Vdd	—	5.5	V	SMBus disabled (Note 4,6)		
DI29b		SDAx, SCLx on 5V tolerant pins ⁽⁵⁾	2.1	_	5.5	V	SMBus enabled, 2.1V ≤ VPIN ≤ 5.5 (Note 4,6)		
DI30	ICNPU	Change Notification Pull-up Current	—	—	-40	μA	VDD = 3.3V, VPIN = VSS (Note 3,6)		
DI31	ICNPD	Change Notification Pull-down Current ⁽⁴⁾	40	—	—	μA	VDD = 3.3V, VPIN = VDD		
	lı∟	Input Leakage Current (Note 3)							
DI50		I/O Ports	—	—	<u>+</u> 1	μA	VSS \leq VPIN \leq VDD, Pin at high-impedance		
DI51		Analog Input Pins	—	—	<u>+</u> 1	μA	VSS \leq VPIN \leq VDD, Pin at high-impedance		
DI55		MCLR ⁽²⁾	_	_	<u>+</u> 1	μA	$VSS \le VPIN \le VDD$		
DI56		OSC1	—	—	<u>+</u> 1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &H{\sf S} \mbox{ mode} \end{split}$		

TABLE 37-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- 3: Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the pin name tables (Table 2 through Table 4) for the 5V-tolerant pins.

6: The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of ICNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature	
Secondary Oscillator Enable		
	The location of the SOSCEN bit in the Flash Configuration Words has moved.	
FSOSCEN (DEVCFG1<5>)	FSOSCEN (DEVCFG1<6>)	
PLL Configuration		
The FNOSC<2:0> and NOSC<2:0> bits select between POSC and FRC.	Selection of which input clock (POSC or FRC) is now done through the FPLLICLK/PLLICLK bits.	
FNOSC<2:0> (DEVCFG1<2:0>) NOSC<2:0> (OSCCON<10:8>)	FPLLICLK (DEVCFG2<7>) PLLICLK (SPLLCON<7>)	
On PIC32MX devices, the input frequency to the PLL had to be between 4 MHz and 5 MHz. FPLLIDIV selected how to divide the input frequency to give it the appropriate range.	On PIC32MZ EF devices, the input range for the PLL is wider (5 MHz to 64 MHz). The input divider values have changed, and new FPLLRNG/PLLRNG bits have been added to indicate under what range the input frequency falls.	
FPLLIDIV<2:0> (DEVCFG2<2:0>) 111 = 12x divider 110 = 10x divider	FPLLIDIV<2:0> (DEVCFG2<2:0>) PLLIDIV<2:0> (SPLLCON<2:0>) 111 = Divide by 8	
101 = 6x divider	110 = Divide by 7	
011 = 4x divider	101 = Divide by 6 100 = Divide by 5	
010 = 3x divider	011 = Divide by 4	
001 = 2x divider 000 = 1x divider	010 = Divide by 3 0.01 = Divide by 2	
	000 = Divide by 1	
	FPLLRNG<2:0> (DEVCFG2<6:4>) PLLRNG<2:0> (SPLLCON<2:0>)	
	111 = Reserved	
	110 = Reserved	
	101 = 34-64 MHZ 100 = 21-42 MHZ	
	011 = 13-26 MHz	
	010 = 8-16 MHz	
	001 = 5-10 MHZ 000 = Bypass	
On PIC32MX devices, the output frequency of PLL is between 60 MHz and 120 MHz. The PLL multiplier and divider bits configure the PLL for this range.	The PLL multiplier and divider on PIC32MZ EF devices have a wider range to accommodate the wider PLL specification range.	
FPLLMUL< 2 :0> (DEVCFG2< 6:4 >)	FPLLMUL T<6 :0> (DEVCFG2< 14:8 >)	
PLLMULT<2:0> (OSCCON<18:16>)	PLLMULT<6:0> (SPLLCON<22:16>)	
111 = 24x multiplier $110 = 21x multiplier$	1111111 = Multiply by 128 1111110 = Multiply by 127	
101 = 20x multiplier	1111101 = Multiply by 126	
100 = 19x multiplier	1111100 = Multiply by 125	
011 = 18x multiplier 010 = 17x multiplier	•	
001 = 16x multiplier	•	
000 = 15x multiplier	0000000 = Multiply by 1	
FPLLODIV<2:0> (DEVCFG2<18:16>)	FPLLODIV<2:0> (DEVCFG2<18:16>)	
PLLODIV<2:0> (OSCCON<29:27>)	PLLODIV<2:0> (SPLLCON<26:24>)	
111 = 24x multiplier $110 = 21x multiplier$	111 = PLL Divide by 32 110 = PLL Divide by 32	
101 = 20x multiplier	101 = PLL Divide by 32	
100 = 19x multiplier	100 = PLL Divide by 16	
011 = 18x multiplier	011 = PLL Divide by 8	
010 = 1/x multiplier 001 = 16x multiplier	010 = PLL Divide by 4 001 = PLL Divide by 2	
000 = 15x multiplier	000 = PLL Divide by 2	

TABLE A-1: OSCILLATOR CONFIGURATION DIFFERENCES (CONTINUED)

B.12 Crypto Engine

Table B-7 lists the changes available for the Crypto Engine.

TABLE B-7: CRYPTO DIFFERENCES

PIC32MZ EC Feature	PIC32MZ EF Feature	
Output Data Format		
On PIC32MZ EC devices, the output of the Crypto Engine is always in big-endian format, usually requiring a software (or DMA) solution to put the data into little-endian format, which the core handles natively.	On PIC32MZ EF devices, the SWAPOEN bit (CECON<7>) has been added to control output byte swapping. This bit, when enabled, will byte-swap the output.	

B.13 Device Configuration and Control

A number of enhancements have been added to the PIC32MZ EF devices that allow greater control and flexibility on the device. Some bit fields have also changed location. Table B-8 lists these changes.

TABLE B-8: DEVICE CONFIGURATION AND CONTROL DIFFERENCES

PIC32MZ EC Feature	PIC32MZ EF Feature
MCLR Pin Configuration	
On PIC32MZ EC devices, the MCLR pin always generate a system reset.	On PIC32MZ EF devices, the $\overline{\text{MCLR}}$ pin can now be configured to generate either a system Reset or an emulated POR Reset.
	SMCLR (DEVCFG0<15>)
	1 = MCLR pin generates a normal system Reset 0 = MCLR pin generates an emulated POR Reset
I/O Analog Charge Pump	
Low VDD environments cause attenuation of analog inputs.	A new bit enables an I/O charge pump, which improves analog performance when operating at lower VDD.
	IOANCPEN (CFGCON<7>) 1 = Charge pump is enabled 0 = Charge pump is disabled
EBI Ready Pin Control	
	The EBIRDY control bits have been moved.
EBIRDYINV<3:1> (CFGEBIC<30:28>) EBIRDYEN<3:1> (CFGEBIC<26:24>)	EBIRDYINV<3:1> (CFGEBIC<31:29>) EBIRDYEN<3:1> (CFGEBIC<27:25>)
Boot Flash Sequence Control	
On PIC32MZ EC devices, the Boot Flash Sequence (specifying which boot memory was mapped to the lower boot alias) was determined with the BFxSEQ0 registers.	On PIC32MZ EF devices, the Boot Flash Sequence has been moved to the BFxSEQ3 register.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support