

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512efe100t-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

124	-PIN VTLA (BOTTOM VIEW)	A17		E	A34 ₃₁₃ B29	
	PIC32MZ0512EF(E/F/K)124 PIC32MZ1024EF(G/H/M)124 PIC32MZ1024EF(E/F/K)124 PIC32MZ2048EF(G/H/M)124			A1	B1 B41 B56	A51
	Pol	arity Inc	lica	tor	A68	
Package Pin #	Full Pin Name			Package Pin #	Full Pin Name	
B1	EBIA5/AN34/PMA5/RA5			B29	Vss	
B2	EBID6/AN16/PMD6/RE6			B30	D+	
B3	EBIA6/AN22/RPC1/PMA6/RC1			B31	RPF2/SDA3/RF2	
B4	AN36/ETXD1/RJ9			B32	ERXD0/RH8	
B5	EBIWE/AN20/RPC3/PMWR/RC3			B33	ECOL/RH10	
B6	AN14/C1IND/RPG6/SCK2/RG6			B34	EBIRDY1/SDA2/RA3	
B7	EBIA3/AN12/C2IND/RPG8/SCL4/PMA3/RG8			B35	VDD	
B8	VDD			B36	EBIA9/RPF4/SDA5/PMA9/RF4	
B9	EBIA2/AN11/C2INC/RPG9/PMA2/RG9			B37	RPA14/SCL1/RA14	
B10	AN25/RPE8/RE8			B38	EBIA15/RPD9/PMCS2/PMA15/RD9	
B11	AN45/C1INA/RPB5/RB5			B39	EMDC/RPD11/RD11	
B12	AN37/ERXCLK/EREFCLK/RJ11			B40	ERXDV/ECRSDV/RH13	
B13	Vss			B41	SOSCI/RPC13/RC13	
B14	PGEC2/AN46/RPB6/RB6			B42	EBID14/RPD2/PMD14/RD2	
B15	Vref-/CVref-/AN27/RA9			B43	EBID12/RPD12/PMD12/RD12	
B16	AVdd			B44	ETXERR/RJ0	
B17	AN38/ETXD2/RH0			B45	EBIRDY3/RJ2	
B18	EBIA10/AN48/RPB8/PMA10/RB8			B46	SQICS1/RPD5/RD5	
B19	EBIA13/CVREFOUT/AN5/RPB10/PMA13/RB10			B47	ETXCLK/RPD7/RD7	
B20	Vss			B48	Vss	
B21	TCK/EBIA19/AN29/RA1			B49	EBID10/RPF1/PMD10/RF1	
B22	TDO/EBIA17/AN31/RPF12/RF12			B50	EBID8/RPG0/PMD8/RG0	
B23	AN8/RB13			B51	TRD3/SQID3/RA7	
B24	EBIA0/AN10/RPB15/OCFB/PMA0/RB15			B52	EBID0/PMD0/RE0	
B25	Vdd			B53	Vdd	
B26	AN41/ERXD1/RH5			B54	TRD2/SQID2/RG14	
B27	AN32/AETXD0/RPD14/RD14			B55	TRD0/SQID0/RG13	
B28	OSC1/CLKI/RC12			B56	EBID3/RPE3/PMD3/RE3	

TABLE 4: **PIN NAMES FOR 124-PIN DEVICES (CONTINUED)**

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.4 "Peripheral Pin Select (PPS)" for restrictions.

2:

Every I/O port pin (RAx-RJx) can be used as a change notification pin (CNAx-CNJx). See Section 12.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

4: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	—	—	—		IP3<2:0>		IS3<1:0>			
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	_	—	_		IP2<2:0>	IS2<1:0>				
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15.0	_	—	_		IP1<2:0>		IS1<	:1:0>		
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0	_	—	_		IP0<2:0>		IS0<1:0>			

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-29 Unimplemented: Read as '0'

bit 28-26	IP3<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 25-24	IS3<1:0>: Interrupt Subpriority bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1
	00 = Interrupt subpriority is 0
bit 23-21	
bit 20-18	IP2<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 17-16	IS2<1:0>: Interrupt Subpriority bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1 00 = Interrupt subpriority is 0
hit 15-13	Unimplemented: Read as '0'
5115-15	ommplemented. Read as 0
Note:	This register represents a generic defi

Note: This register represents a generic definition of the IPCx register. Refer to Table 7-2 for the exact bit definitions.

REGISTER 11-4: USBCSR3: USB CONTROL STATUS REGISTER 3 (CONTINUED)

bit 19-16 ENDPOINT<3:0>: Endpoint Registers Select bits

- bit 19-11 Unimplemented: Read as 0
- bit 10-0 RFRMNUM<10:0>: Last Received Frame Number bits

TABLE 12-23: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP

ss				Bits															
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	(1)	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	0000
1538	RPA14R ⁽¹⁾	15:0	_	_	_	_	_	_	_		_	_		_		RPA14	R<3:0>		0000
		31:16	_	—	—	_	_	_	_	—	_	_	_	_	_	—	—	_	0000
153C	RPA15R ⁽¹⁾	15:0	_	—	—	_	_	_	_	—	_	_	_	_		RPA15	R<3:0>		0000
		31:16	_	—	—	_	_	_	_	—	_	_	_	_	_	—	—	_	0000
1540	RPB0R	15:0	_	—	—	_	_	_	_	—	_	_	_	_		RPB0	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_		_		_	0000
1544	RPB1R	15:0	_	_	_	_	_	_	_		_	_		_		RPB1	R<3:0>		0000
		31:16	_	—	—	_	_	_	_	—	_	_	_	_	_	—	—	_	0000
1548	RPB2R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB2	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_		_		_	0000
154C	RPB3R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB3	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_		_		_	0000
1554	RPB5R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB5	R<3:0>		0000
·		31:16	_		_	_	_	_	_		_	_		_		_	_	_	0000
1558	RPB6R	15:0	_	_	_	_	_	_	_	_	_	_		_		RPB6	R<3:0>		0000
	RPB7R	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
155C		15:0	_	_	_	_	_		_	_	_	_	_	_		RPB7	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1560	RPB8R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB8	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1564	RPB9R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPB9	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1568	RPB10R	15:0	_	_	_	_	_		_	_	_	_	_	_		RPB10	R<3:0>		0000
		31:16	_	_	_	_	_	_	_		_	_		_		_	_	_	0000
1578	RPB14R	15:0	_	_	_	_	_	_	_		_	_		_		RPB14	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
157C	RPB15R	15:0	_	_	_	_	_	_	_		_	_		_		RPB15	R<3:0>		0000
	(1)	31:16	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	0000
1584	RPC1R ⁽¹⁾	15:0	_		_	_	_	_	_		_	_		_		RPC1	R<3:0>		0000
	(1)	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1588	RPC2R ⁽¹⁾	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPC2	R<3:0>		0000
	(1)	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
158C	RPC3R ⁽¹⁾	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPC3	R<3:0>		0000
	(0)	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1590	RPC4R ⁽¹⁾	15:0	_		_	_	_		_		_		_	_		RPC4	R<3:0>		0000
Legen	l		alua an Da	eset: — = u						h ava da aira					l				0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

2: This register is not available on 64-pin and 100-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	-	_		—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	-	_		—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	-	_		—
7.0	R-0, HC, HS	R-0, HC, HS	R-0, HC, HS	U-0	U-0	U-0	U-0	R-0, HC, HS
7:0	BAD1	BAD2	DMTEVENT	_		_	_	WINOPN

REGISTER 15-4: DMTSTAT: DEADMAN TIMER STATUS REGISTER

Legend:	HC = Hardware Cleared	HS = Hardware Set	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	'0'
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared x = Bit is	is unknown

bit 31-8	Unimplemented: Read as '0'
bit 7	BAD1: Bad STEP1<7:0> Value Detect bit
	1 = Incorrect STEP1<7:0> value was detected
	0 = Incorrect STEP1<7:0> value was not detected
bit 6	BAD2: Bad STEP2<7:0> Value Detect bit
	1 = Incorrect STEP2<7:0> value was detected
	0 = Incorrect STEP2<7:0> value was not detected
bit 5	DMTEVENT: Deadman Timer Event bit
	1 = Deadman timer event was detected (counter expired or bad STEP1<7:0> or STEP2<7:0> value was entered prior to counter increment)
	0 = Deadman timer even was not detected
bit 4-1	Unimplemented: Read as '0'
bit 0	WINOPN: Deadman Timer Clear Window bit
	1 = Deadman timer clear window is open
	0 = Deadman timer clear window is not open

TABLE 18-2: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 9 REGISTER MAP (CONTINUED)

ess		0								Bi		-		-					
Virtual Address (BF84_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4A00	OC6CON	31:16	_	_	_	_	_	_	_	_	—	_	—	—		_	—	_	0000
		15:0	ON	—	SIDL	—	—	—	—	—	—	—	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
4A10	OC6R	31:16 15:0	OC6R<31:0>													xxxx xxxx			
4A20	OC6RS	31:16 15:0		OC6RS<31:0>												xxxx xxxx			
4000	OC7CON	31:16	_		—	_	-	_	-	-	—		_		—	-	_	_	0000
4000		15:0	ON		SIDL	_	-	_	-	-	—		OC32	OCFLT	OCTSEL		OCM<2:0>		0000
4C10	OC7R	31:16 15:0	OC/R<31:0>											xxxx xxxx					
4C20	OC7RS	31:16 15:0								OC7RS	<31:0>								xxxx xxxx
4500	00000	31:16	_	_	—	—	—	—	_	—	—	—	_	—	_		_	_	0000
4E00	OC8CON	15:0	ON	-	SIDL	_	-	_	-	_	_	_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
4E10	OC8R	31:16 15:0								OC8R	<31:0>								xxxx xxxx
4E20	OC8RS	31:16 15:0								OC8RS	<31:0>								xxxx xxxx
5000	00000	31:16	_	_	_	—	_	—	_	_	—	—	—	—	_	_	_	_	0000
5000	OC9CON	15:0	ON	-	SIDL	—	-	—	_	_	_		OC32	OCFLT	OCTSEL		OCM<2:0>		0000
5010	OC9R	31:16								OCOR	~21.0								xxxx
5010	OCSR	15:0	OC9R<31:0>										xxxx						
5020	OC9RS	31:16 15:0								OC9RS	<31:0>								xxxx

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

REGISTER 19-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)

- bit 5 MSTEN: Master Mode Enable bit
 - 1 = Master mode
 - 0 = Slave mode
- bit 4 **DISSDI:** Disable SDI bit⁽⁴⁾
 - 1 = SDI pin is not used by the SPI module (pin is controlled by PORT function)
 - 0 = SDI pin is controlled by the SPI module
- bit 3-2 STXISEL<1:0>: SPI Transmit Buffer Empty Interrupt Mode bits
 - 11 = Interrupt is generated when the buffer is not full (has one or more empty elements)
 - 10 = Interrupt is generated when the buffer is empty by one-half or more
 - 01 = Interrupt is generated when the buffer is completely empty
 - 00 = Interrupt is generated when the last transfer is shifted out of SPISR and transmit operations are complete
- bit 1-0 SRXISEL<1:0>: SPI Receive Buffer Full Interrupt Mode bits
 - 11 = Interrupt is generated when the buffer is full
 - 10 = Interrupt is generated when the buffer is full by one-half or more
 - 01 = Interrupt is generated when the buffer is not empty
 - 00 = Interrupt is generated when the last word in the receive buffer is read (i.e., buffer is empty)
- **Note 1:** This bit can only be written when the ON bit = 0. Refer to **Section 37.0 "Electrical Characteristics"** for maximum clock frequency requirements.
 - 2: This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
 - **3:** When AUDEN = 1, the SPI/I²S module functions as if the CKP bit is equal to '1', regardless of the actual value of the CKP bit.
 - 4: This bit present for legacy compatibility and is superseded by PPS functionality on these devices (see Section 12.4 "Peripheral Pin Select (PPS)" for more information).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	_	-	_	_	_	-		—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	-	_	_	_	_	_	—	—			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	PTEN<	:15:14>	PTEN<13:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	PTEN<7:0>										

REGISTER 23-6: PMAEN: PARALLEL PORT PIN ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-15 Unimplemented: Read as '0'

- bit 15-14 **PTEN<15:14>:** PMCS1 Strobe Enable bits
 - 1 = PMA15 and PMA14 function as either PMA<15:14> or PMCS1 and PMCS2⁽¹⁾
 0 = PMA15 and PMA14 function as port I/O
- bit 13-2 **PTEN<13:2>:** PMP Address Port Enable bits
 - 1 = PMA<13:2> function as PMP address lines
 - 0 = PMA<13:2> function as port I/O
- bit 1-0 PTEN<1:0>: PMALH/PMALL Strobe Enable bits
 - 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL⁽²⁾
 - 0 = PMA1 and PMA0 pads function as port I/O
 - Note 1: The use of these pins as PMA15 and PMA14 or CS1 and CS2 is selected by the CSF<1:0> bits in the PMCON register.
 - 2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by bits ADRMUX<1:0> in the PMCON register.

Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
SA_ENCIV1	SA_ENCIV1 31:24 ENCIV<31:24>									
	23:16				ENCIV<23	:16>				
	15:8				ENCIV<1	5:8>				
	7:0				ENCIV<7	:0>				
SA_ENCIV2	31:24				ENCIV<31	:24>				
	23:16				ENCIV<23	:16>				
	15:8		ENCIV<15:8>							
	7:0				ENCIV<7	:0>				
SA_ENCIV3	31:24		ENCIV<31:24>							
	23:16				ENCIV<23	:16>				
	15:8				ENCIV<1	5:8>				
	7:0				ENCIV<7	:0>				
SA_ENCIV4	31:24				ENCIV<31	:24>				
	23:16		ENCIV<23:16>							
	15:8				ENCIV<1	5:8>				
	7:0				ENCIV<7	:0>				

TABLE 26-4: CRYPTO ENGINE SECURITY ASSOCIATION STRUCTURE (CONTINUED)

REGISTER	28-2: ADCCON2: ADC CONTROL REGISTER 2 (CONTINUED)
bit 14	REFFLTIEN: Band Gap/VREF Voltage Fault Interrupt Enable bit
	1 = Interrupt will be generated when the REFFLT bit is set
	0 = No interrupt is generated when the REFFLT bit is set
bit 13	EOSIEN: End of Scan Interrupt Enable bit
	1 = Interrupt will be generated when EOSRDY bit is set
	0 = No interrupt is generated when the EOSRDY bit is set
bit 12	ADCEIOVR: Early Interrupt Request Override bit
	1 = Early interrupt generation is not overridden and interrupt generation is controlled by the ADCEIEN1 and ADCEIEN2 registers
	 Early interrupt generation is overridden and interrupt generation is controlled by the ADCGIRQEN1 and ADCGIRQEN2 registers
bit 11	Unimplemented: Read as '0'
bit 10-8	ADCEIS<2:0>: Shared ADC (ADC7) Early Interrupt Select bits
	These bits select the number of clocks (TAD7) prior to the arrival of valid data that the associated interrupt is generated.
	111 = The data ready interrupt is generated 8 ADC clocks prior to end of conversion
	110 = The data ready interrupt is generated 7 ADC clocks prior to end of conversion
	•
	•
	 001 = The data ready interrupt is generated 2 ADC module clocks prior to end of conversion 000 = The data ready interrupt is generated 1 ADC module clock prior to end of conversion
	Note: All options are available when the selected resolution, set by the SELRES<1:0> bits (ADCCON1<22:21>), is 12-bit or 10-bit. For a selected resolution of 8-bit, options from '000' to '101' are valid. For a selected resolution of 6-bit, options from '000' to '011' are valid.
bit 7	Unimplemented: Read as '0'
bit 6-0	ADCDIV<6:0>: Shared ADC (ADC7) Clock Divider bits
	1111111 = 254 * TQ = TAD7
	•
	•
	0000011 = 6 * TQ = TAD7
	0000010 = 4 * TQ = TAD7
	0000001 = 2 * TQ = TAD7 0000000 = Reserved

The ADCDIV<6:0> bits divide the ADC control clock (TQ) to generate the clock for the Shared ADC, ADC7 (TAD7).

REGIS	TER 28-4: ADCTRGMODE: ADC TRIGGERING MODE FOR DEDICATED ADC REGISTER
bit 9	STRGEN1: ADC1 Presynchronized Triggers bit 1 = ADC1 uses presynchronized triggers 0 = ADC1 does not use presynchronized triggers
bit 8	STRGEN0: ADC0 Presynchronized Triggers bit 1 = ADC0 uses presynchronized triggers 0 = ADC0 does not use presynchronized triggers
bit 7-5	Unimplemented: Read as '0'
bit 4	SSAMPEN4: ADC4 Synchronous Sampling bit 1 = ADC4 uses synchronous sampling for the first sample after being idle or disabled 0 = ADC4 does not use synchronous sampling
bit 3	SSAMPEN3: ADC3 Synchronous Sampling bit 1 = ADC3 uses synchronous sampling for the first sample after being idle or disabled 0 = ADC3 does not use synchronous sampling
bit 2	SSAMPEN2: ADC2Synchronous Sampling bit 1 = ADC2 uses synchronous sampling for the first sample after being idle or disabled 0 = ADC2 does not use synchronous sampling
bit 1	SSAMPEN1: ADC1 Synchronous Sampling bit 1 = ADC1 uses synchronous sampling for the first sample after being idle or disabled 0 = ADC1 does not use synchronous sampling
bit 0	SSAMPEN0: ADC0 Synchronous Sampling bit 1 = ADC0 uses synchronous sampling for the first sample after being idle or disabled

0 = ADC0 does not use synchronous sampling

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0							
31:24		—	—	—	—	—	—	—
22:46	U-0							
23:16	—	—	_	—	_	—	—	—
45.0	U-0	U-0	U-0	R-0, HS, HC				
15:8	—	—	_	EIRDY44 ⁽²⁾	EIRDY43 ⁽²⁾	EIRDY42 ⁽²⁾	EIRDY41 ⁽²⁾	EIRDY40 ⁽²⁾
7.0	R-0, HS, HC							
7:0	EIRDY39 ⁽²⁾	EIRDY38 ⁽²⁾	EIRDY37 ⁽²⁾	EIRDY36 ⁽²⁾	EIRDY35 ⁽²⁾	EIRDY34 ⁽¹⁾	EIRDY33 ⁽¹⁾	EIRDY32 ⁽¹⁾

REGISTER 28-31: ADCEISTAT2: ADC EARLY INTERRUPT STATUS REGISTER 2

Legend:	HS = Hardware Set	HC = Hardware Cleared			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is unknown$			

bit 31-13 Unimplemented: Read as '0'

bit 31-0 **EIRDY44:EIRDY32:** Early Interrupt for Corresponding Analog Input Ready bits

- 1 = This bit is set when the early interrupt event occurs for the specified analog input. An interrupt will be generated if early interrupts are enabled in the ADCEIEN2 register. For the Class 1 analog inputs, this bit will set as per the configuration of the ADCEIS<2:0> bits in the ADCXTIME register. For the shared ADC module, this bit will be set as per the configuration of the ADCEIS<2:0> bits in the ADCEIS<2:0> bits in the ADCCON2 register.
- 0 = Interrupts are disabled

Note 1: This bit is not available on 64-pin devices.

2: This bit is not available on 64-pin and 100-pin devices.

REGISTER 30-15: ETHSTAT: ETHERNET CONTROLLER STATUS REGISTER (CONTINUED)

- bit 6 **TXBUSY:** Transmit Busy bit^(2,6)
- 1 = TX logic is receiving data

0 = TX logic is idle

This bit indicates that a packet is currently being transmitted. A change in this status bit is not necessarily reflected by the TXDONE interrupt, as TX packets may be aborted or rejected by the MAC.

bit 5 **RXBUSY:** Receive Busy bit^(3,6)

1 = RX logic is receiving data 0 = RX logic is idle

This bit indicates that a packet is currently being received. A change in this status bit is not necessarily reflected by the RXDONE interrupt, as RX packets may be aborted or rejected by the RX filter.

- bit 4-0 Unimplemented: Read as '0'
- Note 1: This bit is only used for RX operations.
 - **2:** This bit is only affected by TX operations.
 - **3:** This bit is only affected by RX operations.
 - 4: This bit is affected by TX and RX operations.
 - 5: This bit will be set when the ON bit (ETHCON1 < 15 >) = 1.
 - 6: This bit will be *cleared* when the ON bit (ETHCON1<15>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	_	_	—	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	_	_	—	_	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				ALGNERRC	NT<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				ALGNERRO	CNT<7:0>			

REGISTER 30-22: ETHALGNERR: ETHERNET CONTROLLER ALIGNMENT ERRORS STATISTICS REGISTER

Legend:

Legena.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-0 ALGNERRCNT<15:0>: Alignment Error Count bits

Increment count for frames with alignment errors. Note that an alignment error is a frame that has an FCS error and the frame length in bits is not an integral multiple of 8 bits (a.k.a., dribble nibble)

Note 1: This register is only used for RX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should be only done for debug/test purposes.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24		_		—	—			—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	-	—
15.0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P
15:8				STNADDR6<	:7:0>			
7.0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P
7:0				STNADDR5<	:7:0>			

REGISTER 30-37: EMAC1SA0: ETHERNET CONTROLLER MAC STATION ADDRESS 0 REGISTER

Legend:		P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15-8 **STNADDR6<7:0>:** Station Address Octet 6 bits These bits hold the sixth transmitted octet of the station address.
- bit 7-0 **STNADDR5<7:0>:** Station Address Octet 5 bits These bits hold the fifth transmitted octet of the station address.

Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

2: This register is loaded at reset from the factory preprogrammed station address.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	r-0	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24	_	—	_	_	_	_	_	—
22.10	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23:16	—	—	_	_	—	—	_	—
45.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
15:8	_	—	_	_	_	—	_	—
7.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
7:0	_	_	_	_	_	_	_	_

REGISTER 34-1: DEVSIGN0/ADEVSIGN0: DEVICE SIGNATURE WORD 0 REGISTER

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 Reserved: Write as '0'

bit 30-0 Reserved: Write as '1'

Note: The DEVSIGN1 through DEVSIGN3 and ADEVSIGN1 through ADEVSIGN3 registers are used for Quad Word programming operation when programming the DEVSIGN0/ADESIGN0 registers, and do not contain any valid information.

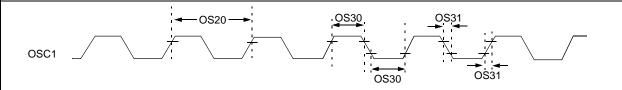
REGISTER 34-2: DEVCP0/ADEVCP0: DEVICE CODE-PROTECT 0 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	r-1	r-1	r-1	R/P	r-1	r-1	r-1	r-1
31:24	_	—	—	CP	—	_	_	_
00.40	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23:16	_	—	—	_	—	_	_	—
45.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
15:8	_	—	—	_	—	_	_	_
7.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
7:0	_	_	_	_	_	_	_	_

Legend:	r = Reserved bit	P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Reserved: Write as '1'

bit 28 **CP:** Code-Protect bit


Prevents boot and program Flash memory from being read or modified by an external programming device. 1 = Protection is disabled

0 = Protection is enabled

bit 27-0 Reserved: Write as '1'

Note: The DEVCP1 through DEVCP3 and ADEVCP1 through ADEVCP3 registers are used for Quad Word programming operation when programming the DEVCP0/ADEVCP0 registers, and do not contain any valid information.

FIGURE 37-2: EXTERNAL CLOCK TIMING

TABLE 37-17: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				or Industrial	
Param. No.	Symbol	Characteristics	Minimum	Typical ⁽¹⁾	Maximum	Units	Conditions
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC		64	MHz	EC (Note 2,3)
OS13		Oscillator Crystal Frequency	4	—	32	MHz	HS (Note 2,3)
OS15			32	32.768	100	kHz	Sosc (Note 2)
OS20	Tosc	Tosc = 1/Fosc	_		—	_	See parameter OS10 for Fosc value
OS30	TosL, TosH	External Clock In (OSC1) High or Low Time	0.375 x Tosc	—	_	ns	EC (Note 2)
OS31	TosR, TosF	External Clock In (OSC1) Rise or Fall Time	—	—	7.5	ns	EC (Note 2)
OS40	Тоѕт	Oscillator Start-up Timer Period (Only applies to HS, HSPLL, and Sosc Clock Oscillator modes)	_	1024	_	Tosc	(Note 2)
OS41	TFSCM	Primary Clock Fail Safe Time-out Period	—	2	_	ms	(Note 2)
OS42	Gм	External Oscillator Transconductance	—	400	_	µA/V	VDD = 3.3V, TA = +25°C, HS (Note 2)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are characterized but are not tested.

2: This parameter is characterized, but not tested in manufacturing.

3: See parameter OS50 for PLL input frequency limitations.

39.1 DC Characteristics

TABLE 39-1: OPERATING MIPS VS. VOLTAGE

Characteristic	VDD Range	Temp. Range	Max. Frequency	Comment	
	(in Volts) (Note 1)	(in °C)	PIC32MZ EF Devices		
MDC5	2.1V-3.6V	-40°C to +85°C	252 MHz		

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is guaranteed, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 37-5 for BOR values.

TABLE 39-2: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial		
Parameter No.	Typical ⁽³⁾	Maximum ⁽⁶⁾	Units Conditions		
Operating Current (IDD) ⁽¹⁾					
MDC27a	156	170	mA	252 MHz (Note 2)	
MDC27b	115	135	mA	252 MHz (Note 4,5)	

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

- **2:** The test conditions for IDD measurements are as follows:
 - Oscillator mode is EC+PLL with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 - OSC2/CLKO is configured as an I/O input pin
 - USB PLL is disabled (USBMD = 1), VUSB3V3 is connected to VSS
 - CPU, Program Flash, and SRAM data memory are operational, Program Flash memory Wait states are equal to four
 - L1 Cache and Prefetch modules are enabled
 - No peripheral modules are operating, (ON bit = 0), and the associated PMD bit is set. All clocks are disabled ON bit (PBxDIV<15>) = 0 (x ≠ 1,7)
 - WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
 - All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD
 - CPU executing while(1) statement from Flash
 - RTCC and JTAG are disabled
- **3:** Data in "Typical" column is at 3.3V, +25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: Note 2 applies with the following exceptions: L1 Cache and Prefetch modules are disabled, Program Flash memory Wait states are equal to seven.
- **6:** Data in the "Maximum" column is at 3.3V, +85°C at specified operating frequency, unless otherwise stated. Parameters are for design guidance only and are not tested.

DC CHARACTERISTICS	Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Required Flash Wait States ⁽¹⁾	SYSCLK	Units	Conditions		
With ECC:					
0 Wait states	0 < SYSCLK ≤ 60				
1 Wait state	60 < SYSCLK ≤ 120	MHz	—		
2 Wait states	$120 < SYSCLK \le 200$				
4 Wait states	$200 < SYSCLK \le 252$				
Without ECC:					
0 Wait states	$0 < SYSCLK \le 74$				
1 Wait state	$74 < SYSCLK \le 140$	MHz	—		
2 Wait states	$140 < SYSCLK \le 200$				
4 Wait states	$200 < SYSCLK \le 252$				

TABLE 39-4: DC CHARACTERISTICS: PROGRAM FLASH MEMORY WAIT STATES

Note 1: To use Wait states, the Prefetch module must be enabled (PREFEN<1:0> ≠ 00) and the PFMWS<2:0> bits must be written with the desired Wait state value.

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature				
Flash Programming					
	The op codes for programming the Flash memory have been changed to accommodate the new quad-word programming and dual-panel features. The row size has changed to 2 KB (512 IW) from 128 IW. The page size has changed to 16 KB (4K IW) from 4 KB (1K IW). Note that the NVMOP register is now protected, and requires the WREN bit be set to enable modification.				
NVMOP<3:0> (NVMCON<3:0>)	NVMOP<3:0> (NVMCON<3:0>)				
1111 = Reserved	1111 = Reserved				
0111 = Reserved	1000 = Reserved				
0110 = No operation	0111 = Program erase operation				
0101 = Program Flash (PFM) erase operation	0110 = Upper program Flash memory erase operation				
0100 = Page erase operation	0101 = Lower program Flash memory erase operation				
0011 = Row program operation	0100 = Page erase operation				
0010 = No operation	0011 = Row program operation				
0001 = Word program operation	0010 = Quad Word (128-bit) program operation				
0000 = No operation	0001 = Word program operation				
	0000 = No operation				
PIC32MX devices feature a single NVMDATA register for word programming.	On PIC32MZ EF devices, to support quad word programming, the NVMDATA register has been expanded to four words.				
NVMDATA	NVMDATA x , where 'x' = 0 through 3				
Flash Endurance	e and Retention				
PIC32MX devices support Flash endurance and retention of up to 20K E/W cycles and 20 years.	On PIC32MZ EF devices, ECC must be enabled to support the same endurance and retention as PIC32MX devices.				
Configuration Words					
On PIC32MX devices, Configuration Words can be programmed with Word or Row program operation.	On PIC32MZ EF devices, all Configuration Words must be programmed with Quad Word or Row Program operations.				
Configuration We	ords Reserved Bit				
On PIC32MX devices, the DEVCFG0<15> bit is Reserved and must be programmed to '0'.	On PIC32MZ EF devices, this bit is DEVSIGN0<31> .				

TABLE A-9: FLASH PROGRAMMING DIFFERENCES (CONTINUED)