

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

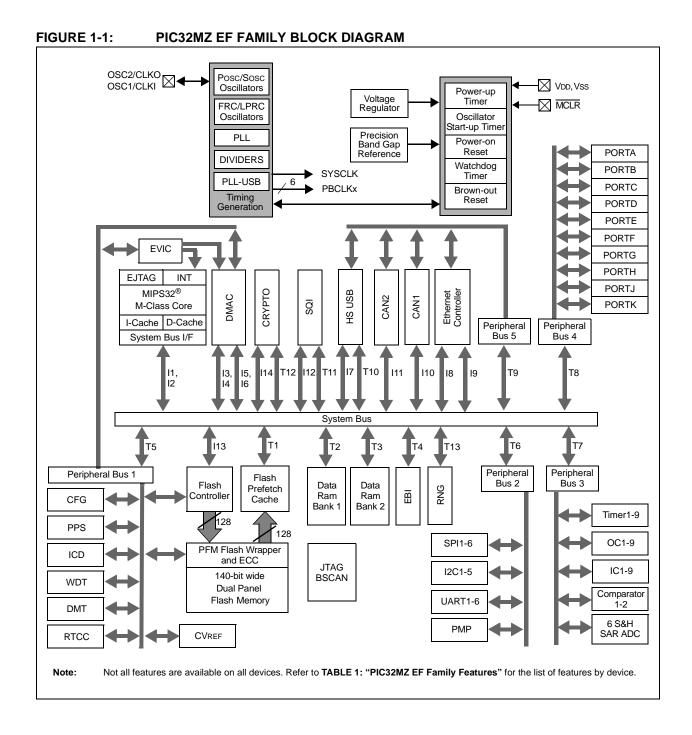
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TQFP
Supplier Device Package	144-TQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512efe144-i-ph

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32). This data sheet contains device-specific information for PIC32MZ EF devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MZ EF family of devices.

Table 1-21 through Table 1-22 list the pinout I/O descriptions for the pins shown in the device pin tables (see Table 2 through Table 5).

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
AN0	16	25	A18	36	I	Analog	Analog Input Channels
AN1	15	24	A17	35	I	Analog	
AN2	14	23	A16	34	I	Analog	
AN3	13	22	A14	31	I	Analog	
AN4	12	21	A13	26	I	Analog	
AN5	23	34	B19	49	I	Analog	
AN6	24	35	A24	50	I	Analog	
AN7	27	41	A27	59	I	Analog	
AN8	28	42	B23	60	I	Analog	
AN9	29	43	A28	61	I	Analog	1
AN10	30	44	B24	62	I	Analog	
AN11	10	16	B9	21	I	Analog	
AN12	6	12	B7	16	I	Analog	
AN13	5	11	A8	15	I	Analog	
AN14	4	10	B6	14	I	Analog	
AN15	3	5	A4	5	I	Analog	
AN16	2	4	B2	4	I	Analog	
AN17	1	3	A3	3	I	Analog	
AN18	64	100	A67	144	I	Analog	
AN19	—	9	A7	13	I	Analog	
AN20	—	8	B5	12	I	Analog	
AN21	—	7	A6	11	I	Analog	
AN22	—	6	B3	6	I	Analog	
AN23	—	1	A2	1	I	Analog	
AN24	—	17	A11	22	I	Analog	
AN25	_	18	B10	23	I	Analog	
AN26	—	19	A12	24	I	Analog	
AN27	—	28	B15	39	I	Analog	
AN28	—	29	A20	40	I	Analog	1
AN29	—	38	B21	56	I	Analog	1
AN30	—	39	A26	57	I	Analog]
AN31	—	40	B22	58	I	Analog	1
AN32	—	47	B27	69	I	Analog	1
AN33	—	48	A32	70	I	Analog	1
AN34	— 2 B1 2		I	Analog	1		
AN35	—	—	A5	7	I	Analog	1
Legend:	CMOS = C	MOS-comp	atible input	or output		Analog =	Analog input P = Power

TABLE 1-1: ADC PINOUT I/O DESCRIPTIONS

egend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

Analog = Analog input O = Output PPS = Peripheral Pin Select

I = Input

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
	•	•		•	PO	RTD	·
RD0	46	71	A48	104	I/O	ST	PORTD is a bidirectional I/O port
RD1	49	76	A52	109	I/O	ST	
RD2	50	77	B42	110	I/O	ST	
RD3	51	78	A53	111	I/O	ST	
RD4	52	81	A56	118	I/O	ST	
RD5	53	82	B46	119	I/O	ST	
RD6	—	_	A57	120	I/O	ST	
RD7	—	_	B47	121	I/O	ST	
RD9	43	68	B38	97	I/O	ST	
RD10	44	69	A46	98	I/O	ST	
RD11	45	70	B39	99	I/O	ST	
RD12	—	79	B43	112	I/O	ST	
RD13	—	80	A54	113	I/O	ST	
RD14	—	47	B27	69	I/O	ST	
RD15	—	48	A32	70	I/O	ST	
					PO	RTE	
RE0	58	91	B52	135	I/O	ST	PORTE is a bidirectional I/O port
RE1	61	94	A64	138	I/O	ST	
RE2	62	98	A66	142	I/O	ST	
RE3	63	99	B56	143	I/O	ST	
RE4	64	100	A67	144	I/O	ST	
RE5	1	3	A3	3	I/O	ST	
RE6	2	4	B2	4	I/O	ST	
RE7	3	5	A4	5	I/O	ST	
RE8	—	18	B10	23	I/O	ST	
RE9		19	A12	24	I/O	ST	
					PC	RTF	
RF0	56	85	A59	124	I/O	ST	PORTF is a bidirectional I/O port
RF1	57	86	B49	125	I/O	ST	
RF2		57	B31	79	I/O	ST	
RF3	38	56	A38	78	I/O	ST	
RF4	41	64	B36	90	I/O	ST	
RF5	42	65	A44	91	I/O	ST	
RF8	_	58	A39	80	I/O	ST]
RF12	—	40	B22	58	I/O	ST	
RF13	—	39	A26	57	I/O	ST	
Legend:	CMOS = C	MOS-comp	atible input	t or output		Analog =	Analog input P = Power

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS (CONTINUED)

CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

Analog = Analog input O = Output PPS = Peripheral Pin Select P = Power I = Input

2.9 Designing for High-Speed Peripherals

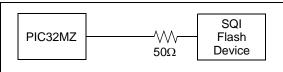
The PIC32MZ EF family devices have peripherals that operate at frequencies much higher than typical for an embedded environment. Table 2-1 lists the peripherals that produce high-speed signals on their external pins:

TABLE 2-1: PERIPHERALS THAT PRODUCE HS SIGNALS ON EXTERNAL PINS

Peripheral	High-Speed Signal Pins	Maximum Speed on Signal Pin			
EBI	EBIAx, EBIDx	50 MHz			
SQI1	SQICLK, SQICSx, SQIDx	50 MHz			
HS USB	D+, D-	480 MHz			

Due to these high-speed signals, it is important to consider several factors when designing a product that uses these peripherals, as well as the PCB on which these components will be placed. Adhering to these recommendations will help achieve the following goals:

- Minimize the effects of electromagnetic interference to the proper operation of the product
- Ensure signals arrive at their intended destination at the same time
- Minimize crosstalk
- Maintain signal integrity
- Reduce system noise
- Minimize ground bounce and power sag


2.9.1 SYSTEM DESIGN

2.9.1.1 Impedance Matching

When selecting parts to place on high-speed buses, particularly the SQI bus, if the impedance of the peripheral device does not match the impedance of the pins on the PIC32MZ EF device to which it is connected, signal reflections could result, thereby degrading the quality of the signal.

If it is not possible to select a product that matches impedance, place a series resistor at the load to create the matching impedance. See Figure 2-4 for an example.

FIGURE 2-4: SERIES RESISTOR

2.9.1.2 PCB Layout Recommendations

The following list contains recommendations that will help ensure the PCB layout will promote the goals previously listed.

Component Placement

- Place bypass capacitors as close to their component power and ground pins as possible, and place them on the same side of the PCB
- Devices on the same bus that have larger setup times should be placed closer to the PIC32MZ EF device

• Power and Ground

- Multi-layer PCBs will allow separate power and ground planes
- Each ground pin should be connected to the ground plane individually
- Place bypass capacitor vias as close to the pad as possible (preferably inside the pad)
- If power and ground planes are not used, maximize width for power and ground traces
- Use low-ESR, surface-mount bypass capacitors

• Clocks and Oscillators

- Place crystals as close as possible to the PIC32MZ EF device OSC/SOSC pins
- Do not route high-speed signals near the clock or oscillator
- Avoid via usage and branches in clock lines (SQICLK)
- Place termination resistors at the end of clock lines
- Traces
 - Higher-priority signals should have the shortest traces
 - Match trace lengths for parallel buses (EBIAx, EBIDx, SQIDx)
 - Avoid long run lengths on parallel traces to reduce coupling
 - Make the clock traces as straight as possible
 - Use rounded turns rather than right-angle turns
 - Have traces on different layers intersect on right angles to minimize crosstalk
 - Maximize the distance between traces, preferably no less than three times the trace width
 - Power traces should be as short and as wide as possible
 - High-speed traces should be placed close to the ground plane

3.1.4 FLOATING POINT UNIT (FPU)

The Floating Point Unit (FPU), Coprocessor (CP1), implements the MIPS Instruction Set Architecture for floating point computation. The implementation supports the ANSI/IEEE Standard 754 (IEEE for Binary Floating Point Arithmetic) for 32-bit and 64-bit floating point data formats. The FPU can be programmed to have thirty-two 32-bit or 64-bit floating point registers used for floating point operations.

The performance is optimized for 32-bit formats. Most instructions have one FPU cycle throughput and four FPU cycle latency. The FPU implements the multiply-add (MADD) and multiply-sub (MSUB) instructions with intermediate rounding after the multiply function. The result is guaranteed to be the same as executing a MUL and an ADD instruction separately, but the instruction latency, instruction fetch, dispatch bandwidth, and the total number of register accesses are improved.

IEEE denormalized input operands and results are supported by hardware for some instructions. IEEE denormalized results are not supported by hardware in general, but a fast flush-to-zero mode is provided to optimize performance. The fast flush-to-zero mode is enabled through the FCCR register, and use of this mode is recommended for best performance when denormalized results are generated.

The FPU has a separate pipeline for floating point instruction execution. This pipeline operates in parallel with the integer core pipeline and does not stall when the integer pipeline stalls. This allows long-running FPU operations, such as divide or square root, to be partially masked by system stalls and/or other integer unit instructions. Arithmetic instructions are always dispatched and completed in order, but loads and stores can complete out of order. The exception model is "precise" at all times.

Table 3-4 contains the floating point instruction latencies and repeat rates for the processor core. In this table, 'Latency' refers to the number of FPU cycles necessary for the first instruction to produce the result needed by the second instruction. The "Repeat Rate" refers to the maximum rate at which an instruction can be executed per FPU cycle.

TABLE 3-4: FPU INSTRUCTION LATENCIES AND REPEAT RATES

Op code	Latency (FPU Cycles)	Repeat Rate (FPU Cycles)
ABS.[S,D], NEG.[S,D], ADD.[S,D], SUB.[S,D], C.cond.[S,D], MUL.S	4	1
MADD.S, MSUB.S, NMADD.S, NMSUB.S, CABS.cond.[S,D]	4	1
CVT.D.S, CVT.PS.PW, CVT.[S,D].[W,L]	4	1
CVT.S.D, CVT.[W,L].[S,D], CEIL.[W,L].[S,D], FLOOR.[W,L].[S,D], ROUND.[W,L].[S,D], TRUNC.[W,L].[S,D]	4	1
MOV.[S,D], MOVF.[S,D], MOVN.[S,D], MOVT.[S,D], MOVZ.[S,D]	4	1
MUL.D	5	2
MADD.D, MSUB.D, NMADD.D, NMSUB.D	5	2
RECIP.S	13	10
RECIP.D	26	21
RSQRT.S	17	14
RSQRT.D	36	31
DIV.S, SQRT.S	17	14
DIV.D, SQRT.D	32	29
MTC1, DMTC1, LWC1, LDC1, LDXC1, LUXC1, LWXC1	4	1
MFC1, DMFC1, SWC1, SDC1, SDXC1, SUXC1, SWXC1	1	1

Legend: S = Single (32-bit) D = Double (64-bit)W = Word (32-bit) L = Long word (64-bit)

4.0 MEMORY ORGANIZATION

Note:	This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source.For detailed information, refer to Section 48 .
	"Memory Organization and Permissions" in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

PIC32MZ EF microcontrollers provide 4 GB of unified virtual memory address space. All memory regions, including program, data memory, SFRs and Configuration registers, reside in this address space at their respective unique addresses. The program and data memories can be optionally partitioned into user and kernel memories. In addition, PIC32MZ EF devices allow execution from data memory.

Key features include:

- 32-bit native data width
- Separate User (KUSEG) and Kernel (KSEG0/ KSEG1/KSEG2/KSEG3) mode address space
- Separate boot Flash memory for protected code
- Robust bus exception handling to intercept runaway code
- Cacheable (KSEG0/KSEG2) and non-cacheable (KSEG1/KSEG3) address regions
- Read/write permission access to predefined memory regions

4.1 Memory Layout

PIC32MZ EF microcontrollers implement two address schemes: virtual and physical. All hardware resources, such as program memory, data memory and peripherals, are located at their respective physical addresses. Virtual addresses are exclusively used by the CPU to fetch and execute instructions as well as access peripherals. Physical addresses are used by bus master peripherals, such as DMA and the Flash controller, that access memory independently of the CPU.

The main memory maps for the PIC32MZ EF devices are illustrated in Figure 4-1 through Figure 4-4. Figure 4-5 provides memory map information for boot Flash and boot alias. Table 4-1 provides memory map information for Special Function Registers (SFRs).

TABLE 4-6: SYSTEM BUS TARGETS AND ASSOCIATED PROTECTION REGISTERS (CONTINUED)

				SBTxREC	Gy Register				SBTxRD	y Register	SBTxWR	y Register
Target Number	Target Description ⁽⁵⁾	Name	Region Base (BASE<21:0>) (see Note 2)	Physical Start Address	Region Size (SIZE<4:0>) (see Note 3)	Region Size	Priority (PRI)	Priority Level	Name	Read Permission (GROUP3, GROUP2, GROUP1, GROUP0)	Name	Write Permission (GROUP3, GROUP2, GROUP1, GROUP0)
	Peripheral Set 2:	SBT6REG0	R	0x1F820000	R	64 KB	—	0	SBT6RD0	R/W ⁽¹⁾	SBT6WR0	R/W ⁽¹⁾
6	SPI1-SPI6 I2C1-I2C5 UART1-UART6 PMP	SBT6REG1	R/W	R/W	R/W	R/W	_	3	SBT6RD1	R/W ⁽¹⁾	SBT6WR1	R/W ⁽¹⁾
	Peripheral Set 3:	SBT7REG0	R	0x1F840000	R	64 KB	—	0	SBT7RD0	R/W ⁽¹⁾	SBT7WR0	R/W ⁽¹⁾
7	Timer1-Timer9 IC1-IC9 OC1-OC9 ADC Comparator 1 Comparator 2	SBT7REG1	R/W	R/W	R/W	R/W	_	3	SBT7RD1	R/W ⁽¹⁾	SBT7WR1	R/W ⁽¹⁾
	Peripheral Set 4:	SBT8REG0	R	0x1F860000	R	64 KB	—	0	SBT8RD0	R/W ⁽¹⁾	SBT8WR0	R/W ⁽¹⁾
8	PORTA-PORTK	SBT8REG1	R/W	R/W	R/W	R/W	—	3	SBT8RD1	R/W ⁽¹⁾	SBT8WR1	R/W ⁽¹⁾
	Peripheral Set 5:	SBT9REG0	R	0x1F880000	R	64 KB	—	0	SBT9RD0	R/W ⁽¹⁾	SBT9WR0	R/W ⁽¹⁾
9	CAN1 CAN2 Ethernet Controller	SBT9REG1	R/W	R/W	R/W	R/W	_	3	SBT9RD1	R/W ⁽¹⁾	SBT9WR1	R/W ⁽¹⁾
10	Peripheral Set 6: USB	SBT10REG0	R	0x1F8E3000	R	4 KB	_	0	SBT10RD0	R/W ⁽¹⁾	SBT10WR0	R/W ⁽¹⁾
11	External Memory via SQI1 and	SBT11REG0	R	0x30000000	R	64 MB	—	0	SBT11RD0	R/W ⁽¹⁾	SBT11WR0	R/W ⁽¹⁾
11	SQI1 Module	SBT11REG1	R	0x1F8E2000	R	4 KB	_	3	SBT11RD1	R/W ⁽¹⁾	SBT11WR1	R/W ⁽¹⁾
12	Peripheral Set 7: Crypto Engine	SBT12REG0	R	0x1F8E5000	R	4 KB	_	0	SBT12RD0	R/W ⁽¹⁾	SBT12WR0	R/W ⁽¹⁾
13	Peripheral Set 8: RNG Module	SBT13REG0	R	0x1F8E6000	R	4 KB	_	0	SBT13RD0	R/W ⁽¹⁾	SBT13WR0	R/W ⁽¹⁾
Legend:	R = Read; $R/W = R$	ead/Write;	'x' in a regist	er name = 0-13;	'y' ir	a register na	ame = 0-8.					

Reset values for these bits are '0', '1', '1', '1', respectively. Note 1:

2:

The BASE<21:0> bits must be set to the corresponding Physical Address and right shifted by 10 bits. For Read-only bits, this value is set by hardware on Reset. The SIZE<4:0> bits must be set to the corresponding Region Size, based on the following formula: Region Size = 2^(SIZE-1) x 1024 bytes. For read-only bits, this value is set by hardware on Reset. 3:

Refer to the Device Memory Maps (Figure 4-1 through Figure 4-4) for specific device memory sizes and start addresses. 4:

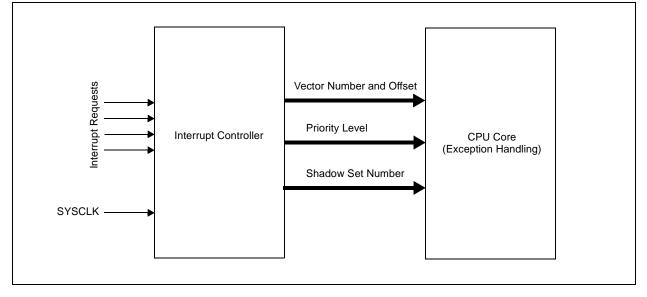
5: See Table 4-1for information on specific target memory size and start addresses.

6: The SBTxREG1 SFRs are reserved, and therefore, are not listed in this table for this target.

7.0 CPU EXCEPTIONS AND INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Interrupt Controller" (DS60001108) and Section 50. "CPU MIPS32[®] for Devices with microAptiv[™] and M-Class Cores" (DS60001192) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

PIC32MZ EF devices generate interrupt requests in response to interrupt events from peripheral modules. The Interrupt Controller module exists outside of the CPU and prioritizes the interrupt events before presenting them to the CPU.


The CPU handles interrupt events as part of the exception handling mechanism, which is described in **Section 7.1 "CPU Exceptions"**.

The Interrupt Controller module includes the following features:

- Up to 213 interrupt sources and vectors with dedicated programmable offsets, eliminating the need for redirection
- · Single and multi-vector mode operations
- · Five external interrupts with edge polarity control
- Interrupt proximity timer
- Seven user-selectable priority levels for each vector
- Four user-selectable subpriority levels within each priority
- Seven shadow register sets that can be used for any priority level, eliminating software context switch and reducing interrupt latency
- Software can generate any interrupt

Figure 7-1 shows the block diagram for the Interrupt Controller and CPU exceptions.

FIGURE 7-1: CPU EXCEPTIONS AND INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM

							-11 (7 - 0 10	•)					
Bit Range	Bit 31/23/15/7			Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31:24	—	—	—		—	—	_	—					
22.16	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0					
23:16	—	— — — — — VOFF<											
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8	VOFF<15:8>												
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0					
7:0				VOFF<7:1>				_					

REGISTER 7-8: OFFx: INTERRUPT VECTOR ADDRESS OFFSET REGISTER (x = 0-190)

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 Unimplemented: Read as '0'

bit 17-1 VOFF<17:1>: Interrupt Vector 'x' Address Offset bits

bit 0 Unimplemented: Read as '0'

		(ENDFOIN	1 1-7)											
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
31:24	AUTOSET	ISO	MODE		EPODATTO		—	—						
	AUTOSET		NODE	DIMAREQUI	FREDATIG	DIVIAREQIVID	DATAWEN	DATATGGL						
	R/W-0, HS	R/W-0, HC	R/W-0, HS	R/W-0	R/W-0	R/W-0, HS	R/W-0	R/W-0, HC						
23:16	INCOMPTX	CLRDT	SENTSTALL	SENDSTALL	FLUSH	UNDERRUN	FIEONE	עחסדאסעד						
	NAKTMOUT	GERDI	RXSTALL	SETUPPKT	FLUSH	TTG DMAREQMD DATAWEN DATATGGL 0 RW-0, HS RW-0 RW-0, HC 0 UNDERRUN ERROR FIFONE TXPKTRDY								
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
15:8			MULT<4:0>			T.	XMAXP<10:8	>						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7:0		TXMAXP<7:0>												

REGISTER 11-8: USBIENCSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 1-7)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 AUTOSET: Auto Set Control bit

- 1 = TXPKTRDY will be automatically set when data of the maximum packet size (value in TXMAXP) is loaded into the TX FIFO. If a packet of less than the maximum packet size is loaded, then TXPKTRDY will have to be set manually.
- 0 = TXPKTRDY must be set manually for all packet sizes
- **ISO:** Isochronous TX Endpoint Enable bit (Device mode)
- 1 = Enables the endpoint for Isochronous transfers
- 0 = Disables the endpoint for Isochronous transfers and enables it for Bulk or Interrupt transfers.
- This bit only has an effect in Device mode. In Host mode, it always returns zero.
- bit 29 MODE: Endpoint Direction Control bit
 - 1 = Endpoint is TX

bit 30

0 = Endpoint is RX

This bit only has any effect where the same endpoint FIFO is used for both TX and RX transactions.

- bit 28 DMAREQEN: Endpoint DMA Request Enable bit
 - 1 = DMA requests are enabled for this endpoint
 - 0 = DMA requests are disabled for this endpoint

bit 27 **FRCDATTG:** Force Endpoint Data Toggle Control bit

- 1 = Forces the endpoint data toggle to switch and the data packet to be cleared from the FIFO, regardless of whether an ACK was received.
- 0 = No forced behavior
- bit 26 DMAREQMD: Endpoint DMA Request Mode Control bit
 - 1 = DMA Request Mode 1
 - 0 = DMA Request Mode 0

This bit must not be cleared either before or in the same cycle as the above DMAREQEN bit is cleared.

- bit 25 DATAWEN: Data Toggle Write Enable bit (Host mode)
 - 1 = Enable the current state of the TX Endpoint data toggle (DATATGGL) to be written
 - 0 = Disables writing the DATATGGL bit
- bit 24 **DATATGGL:** Data Toggle Control bit (Host mode)

When read, this bit indicates the current state of the TX Endpoint data toggle. If DATAWEN = 1, this bit may be written with the required setting of the data toggle. If DATAWEN = 0, any value written to this bit is ignored.

REGISTER 11-8: USBIENCSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 1-7) (CONTINUED)

- bit 23 **INCOMPTX:** Incomplete TX Status bit (Device mode)
 - 1 = For high-bandwidth Isochronous endpoint, a large packet has been split into 2 or 3 packets for transmission but insufficient IN tokens have been received to send all the parts
 - 0 = Normal operation

In anything other than isochronous transfers, this bit will always return 0.

NAKTMOUT: NAK Time-out status bit (Host mode)

- 1 = TX endpoint is halted following the receipt of NAK responses for longer than the NAKLIM setting
- 0 = Written by software to clear this bit
- bit 22 **CLRDT:** Clear Data Toggle Control bit
 - 1 = Resets the endpoint data toggle to 0
 - 0 = Do not clear the data toggle
- bit 21 **SENTSTALL:** STALL handshake transmission status bit (Device mode)
 - 1 = STALL handshake is transmitted. The FIFO is flushed and the TXPKTRDY bit is cleared.
 - 0 = Written by software to clear this bit

RXSTALL: STALL receipt bit (Host mode)

- 1 = STALL handshake is received. Any DMA request in progress is stopped, the FIFO is completely flushed and the TXPKTRDY bit is cleared.
- 0 = Written by software to clear this bit
- bit 20 SENDSTALL: STALL handshake transmission control bit (Device mode)
 - 1 = Issue a STALL handshake to an IN token
 - 0 = Terminate stall condition

This bit has no effect when the endpoint is being used for Isochronous transfers.

SETUPPKT: Definition bit (Host mode)

- 1 = When set at the same time as the TXPKTRDY bit is set, send a SETUP token instead of an OUT token for the transaction. This also clears the Data Toggle.
- 0 = Normal OUT token for the transaction
- bit 19 **FLUSH:** FIFO Flush control bit
 - 1 = Flush the latest packet from the endpoint TX FIFO. The FIFO pointer is reset, TXPKTRDY is cleared and an interrupt is generated.
 - 0 = Do not flush the FIFO
- bit 18 UNDERRUN: Underrun status bit (Device mode)
 - 1 = An IN token has been received when TXPKTRDY is not set.
 - 0 = Written by software to clear this bit.

ERROR: Handshake failure status bit (Host mode)

- 1 = Three attempts have been made to send a packet and no handshake packet has been received
- 0 = Written by software to clear this bit.
- bit 17 FIFONE: FIFO Not Empty status bit
 - 1 = There is at least 1 packet in the TX FIFO
 - 0 = TX FIFO is empty
- bit 16 TXPKTRDY: TX Packet Ready Control bit

The software sets this bit after loading a data packet into the FIFO. It is cleared automatically when a data packet has been transmitted. This bit is also automatically cleared prior to loading a second packet into a double-buffered FIFO.

TABLE 12-11: PORTE REGISTER MAP FOR 100-PIN, 124-PIN, AND 144-PIN DEVICES ONLY

ess										В	its								
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0400	ANSELE	31:16		_			—		_	_		_	—		_	_		_	0000
0400	ANOLLL	15:0	—	_			—	_	ANSE9	ANSE8	ANSE7	ANSE6	ANSE5	ANSE4	_	_	—		03F0
0410	TRISE	31:16	—	—	—	—	—	_	—	—	—	—	—	-	—	—	—	—	0000
0110	HUGE	15:0	—	-	—	—	—	-	TRISE9	TRISE8	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	03FF
0420	PORTE	31:16	—	—	—	—	—		—	—	—	—	—		—	—	—	—	0000
0.20		15:0	—	—	—	—	—		RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
0430	LATE	31:16	—	—	—	—	—		—	—	—	—	—		—	—	—	—	0000
		15:0	—	_	—	—	—	_	LATE9	LATE8	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	XXXX
0440	ODCE	31:16	_	_	—	—	—	—	—	—		—	—		—	—	—	—	0000
		15:0	—	_	—	—	_	—	ODCE9	ODCE8	ODCE7	ODCE6	ODCE5	ODCE4	ODCE3	ODCE2	ODCE1	ODCE0	0000
0450	CNPUE	31:16	—	_	—	—	_	—	—	—	_	—	—	—	—	—	—	—	0000
		15:0	_	_	—	_	_	_	CNPUE9	CNPUE8	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPUE3	CNPUE2	CNPUE1	CNPUE0	0000
0460	CNPDE	31:16	_	_	—	_	_	_	—	_	_	—	—	_	—	—	—	—	0000
		15:0	_	_	_	_	_		CNPDE9	CNPDE8	CNPDE7	CNPDE6	CNPDE5	CNPDE4	CNPDE3	CNPDE2	CNPDE1	CNPDE0	0000
0470		31:16	_	_	_	_	-	_		_	_	_	_	_	_	_	_	_	0000
0470	CNCONE	15:0	ON	_	_	_	EDGE DETECT	_	—	—	-	_	—	_	_	_	_	_	0000
0480	CNENE	31:16	—	-	—	—	—	-	—	—	—	_	—		—	_	—	_	0000
0.00	0.12.12	15:0	_	_	—	_	_	_	CNENE9	CNENE8	CNENE7	CNENE6	CNENE5	CNENE4	CNENE3	CNENE2	CNENE1	CNENE0	0000
		31:16	—	—	—	—	—		—	—	—	—	—		—	_	—	—	0000
0490	CNSTATE	15:0	_	-	—	—	—	_	CN STATE9	CN STATE8	CN STATE7	CN STATE6	CN STATE5	CN STATE4	CN STATE3	CN STATE2	CN STATE1	CN STATE0	0000
04A0	CNNEE	31:16	_		-	_	-		_		-	I	-				_		0000
04A0	CININEL	15:0	_				-		CNNEE9	CNNEE8	CNNEE7	CNNEE6	CNNEE5	CNNEE4	CNNEE3	CNNEE2	CNNEE1	CNNEE0	0000
04B0	CNFE	31:16	_	_	—	_	_	_	—	_	_	-	_	-	_	-	_	-	0000
0400		15:0	_		—	—	_		CNFE9	CNFE8	CNFE7	CNFE6	CNFE5	CNFE4	CNFE3	CNFE2	CNFE1	CNFE0	0000
04C0	SRCON0E	31:16	—	_	—	—	—	_	—	—	—	_	—	—	_	_	—		0000
0400	SILCONUL	15:0	_		—	—	—	_	—	—	-		—	—	SR0E3	SR0E2	SR0E1	SR0E0	0000
04D0	SRCON1E	31:16	—	_	—	—	—	_	—	—	—	_	—	—	—	_	—	—	0000
0400	SILCONTE	15:0	_	-	—	_	_	_	-	—	_	-	_	—	SR1E3	SR1E2	SR1E1	SR1E0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

TABLE 12-15: PORTG REGISTER MAP FOR 100-PIN, 124-PIN, AND 144-PIN DEVICES ONLY

ess										Bits	5								
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0600	ANSELG	31:16			—			_	—	—	_	—	—			—			0000
		15:0	ANSG15	_	—	—	—	_	ANSG9	ANSG8	ANSG7	ANSG6	—	_	_	—		—	83C0
0610	TRISG	31:16	-	-	—	-			-	-	-	-	_	_			-	-	0000
		15:0	TRISG15	TRISG14	TRISG13	TRISG12			TRISG9	TRISG8	TRISG7	TRISG6	_				TRISG1	TRISG0	F3C3
0620	PORTG	31:16 15:0	 RG15	— RG14	— RG13	— RG12			RG9	RG8	RG7	RG6	_		_		RG1	RG0	0000
		31:16	RGIS	RG14	RGI3	RGIZ			KG9	KG8	KG7	RG0						RGU	xxxx 0000
0630	LATG	15:0	LATG15	LATG14	LATG13	LATG12			LATG9	LATG8	LATG7	LATG6					LATG1	LATG0	
		31:16								-	_				_	_			xxxx 0000
0640	ODCG	15:0	ODCG15	ODCG14	ODCG13	ODCG12			ODCG9	ODCG8	ODCG7	ODCG6	_	_		_	ODCG1	ODCG0	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	0000
0650	CNPUG	15:0	CNPUG15	CNPUG14	CNPUG13	CNPUG12	_	_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	_	_	_	_	CNPUG1	CNPUG0	0000
	01/22.0	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0660	CNPDG	15:0	CNPDG15	CNPDG14	CNPDG13	CNPDG12	_	_	CNPDG9	CNPDG8	CNPDG7	CNPDG6	_	_	_	_	CNPDG1	CNPDG0	0000
		31:16		—	—	—	—	_	—	—		—	_	_			—	—	0000
0670	CNCONG	15:0	ON	_	_	_	EDGE DETECT	_	_	_	_	-		_	_	_	_	_	0000
0680	CNENG	31:16		—	—	—	—	_	—	—		—	_	_			—	_	0000
0000	CINEING	15:0	CNENG15	CNENG14	CNENG13	CNENG12	—	_	CNENG9	CNENG8	CNENG7	CNENG6	_		-	_	CNENG1	CNENG0	0000
		31:16	—	—	—	—	—		—	—	-	—	_	-		—	—	—	0000
0690	CNSTATG	15:0	CN STATG15	CN STATG14	CN STATG13	CN STATG12	—	—	CN STATG9	CN STATG8	CN STATG7	CN STATG6	—	—	—	—	CN STATG1	CN STATG0	0000
06A0	CNNEG	31:16	_	—	—	_	—	_	—	—		—	_			_	_	_	0000
UUAU	CININEG	15:0	CNNEG15	CNNEG14	CNNEG13	CNNEG12	_		CNNEG9	CNNEG8	CNNEG7	CNNEG6	-			_	CNNEG1	CNNEG0	0000
06B0	CNFG	31:16		—		—	—	_			_	—	—	_	_	—	_		0000
0020		15:0	CNFG15	CNFG14	CNFG13	CNFG12	_	_	CNFG9	CNFG8	CNFG7	CNFG6	—	_	_	—	CNFG1	CNFG0	0000
06C0	SRCON0G	31:16	—	—	—	—	—		—	—		—	—	—		—		—	0000
5000		15:0	_	SR0G14	SR0G13	SR0G12			SR0G9			SR0G6	_	_	_	—			0000
06D0	SRCON1G	31:16	_	—	—	—		_	—	_		-	—	_	_				0000
		15:0	—	SR1G14	SR1G13	SR1G12	_	—	SR1G9	—	—	SR1G6	—	—	—	—	—	—	0000

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	-	_	_	—	_		_	_
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_	—	—	_		-	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0		-		—	_			_
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_	_		[pin name	e]R<3:0>	

REGISTER 12-1: [pin name]R: PERIPHERAL PIN SELECT INPUT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-4 Unimplemented: Read as '0'

bit 3-0 [*pin name*]R<3:0>: Peripheral Pin Select Input bits Where [*pin name*] refers to the pins that are used to configure peripheral input mapping. See Table 12-2 for input pin selection values.

Note: Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.

REGISTER 12-2: RPnR: PERIPHERAL PIN SELECT OUTPUT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	_		-	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	-	-		_			—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	_		_	—
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		_				RPnR	<3:0>	

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 **RPnR<3:0>:** Peripheral Pin Select Output bits See Table 12-3 for output pin selection values.

Note: Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_		—			_	_
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_		—	_		_	_
45.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—	—	—	DMAEIE	PKTCOMPIE	BDDONEIE	CONTHRIE
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CONEMPTYIE	CONFULLIE	RXTHRIE	RXFULLIE	RXEMPTYIE	TXTHRIE	TXFULLIE	TXEMPTYIE

U = Unimplemented bit, read as '0'

x = Bit is unknown

'0' = Bit is cleared

HS = Hardware Set

W = Writable bit

'1' = Bit is set

REGISTER 20-8: SQI1INTEN: SQI INTERRUPT ENABLE REGISTER

bit 31-12	Unimplemented: Read as '0'
bit 11	DMAEIE: DMA Bus Error Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 10	PKTCOMPIE: DMA Buffer Descriptor Packet Complete Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 9	BDDONEIE: DMA Buffer Descriptor Done Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 8	CONTHRIE: Control Buffer Threshold Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
oit 7	CONEMPTYIE: Control Buffer Empty Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 6	CONFULLIE: Control Buffer Full Interrupt Enable bit
	This bit enables an interrupt when the receive FIFO buffer is full.
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 5	RXTHRIE: Receive Buffer Threshold Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 4	RXFULLIE: Receive Buffer Full Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 3	RXEMPTYIE: Receive Buffer Empty Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 2	TXTHRIE: Transmit Threshold Interrupt Enable bit
	1 = Interrupt is enabled
L.1. A	0 = Interrupt is disabled
bit 1	TXFULLIE: Transmit Buffer Full Interrupt Enable bit
	1 = Interrupt is enabled
h :+ 0	0 = Interrupt is disabled
bit 0	TXEMPTYIE: Transmit Buffer Empty Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled

Legend:

R = Readable bit

-n = Value at POR

REGISTER 24-5: EBISMCON: EXTERNAL BUS INTERFACE STATIC MEMORY CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	_	—	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0
15:8	SMDV	VIDTH2<2:0>		SM	DWIDTH1<2	:0>	SMDWIDTH0<2:1>	
7.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-1
7:0	SMDWIDTH0<0>	—	—	—	—	_	_	SMRP

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-13 SMDWIDTH2<2:0>: Static Memory Width for Register EBISMT2 bits

- 111 = Reserved
- 110 = Reserved
- 101 = Reserved
- 100 = 8 bits
- 011 = Reserved
- 010 = Reserved
- 001 = Reserved 000 = 16 bits

bit 12-10 SMDWIDTH1<2:0>: Static Memory Width for Register EBISMT1 bits

- 111 = Reserved
- 110 = Reserved
- 101 = Reserved
- 100 = 8 bits
- 011 = Reserved
- 010 = Reserved
- 001 = Reserved
- 000 = 16 bits

bit 9-7 SMDWIDTH0<2:0>: Static Memory Width for Register EBISMT0 bits

- 111 = Reserved
- 110 = Reserved
- 101 = Reserved
- 100 **= 8 bits**
- 011 = Reserved
- 010 = Reserved
- 001 = Reserved
- 000 = 16 bits

bit 6-1 Unimplemented: Read as '0'

bit 0 SMRP: Flash Reset/Power-down mode Select bit

After a Reset, the controller internally performs a power-down for Flash, and then sets this bit to '1'.

- 1 = Flash is taken out of Power-down mode
- 0 = Flash is forced into Power-down mode

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	R/W-0	R-0, HS, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24	TRBEN	TRBERR	٦	RBMST<2:0	TRBSLV<2:0>				
22.16	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	FRACT	SELRES	S<1:0>	STRGSRC<4:0>					
45.0	R/W-0	U-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	U-0	
15:8	ON		SIDL	AICPMPEN	CVDEN	FSSCLKEN	FSPBCLKEN	—	
7.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	
7:0	_	- IRQVS<2:0>			STRGLVL	_	_		

REGISTER 28-1: ADCCON1: ADC CONTROL REGISTER 1

Legend:	HC = Hardware Set	HS = Hardware Cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

The status of this bit is valid only after the TRBEN bit is set.

1 = An error occurred while setting the Turbo channel and Turbo channel function to be disabled regardless

•
•

111 = Reserved

Note:

111 = Reserved

bit 31

bit 30

- 000 = ADC0 is selected as the Turbo Slave
- bit 23 FRACT: Fractional Data Output Format bit

TRBEN: Turbo Channel Enable bit 1 = Enable the Turbo channel 0 = Disable the Turbo channel

bit 29-27 TRBMST<2:0>: Turbo Master ADCx bits

bit 26-24 TRBSLV<2:0>: Turbo Slave ADCx bits

TRBERR: Turbo Channel Error Status bit

of the TRBEN bit being set to '1'. 0 = Turbo channel error did not occur

110 = ADC4 is selected as the Turbo Master

000 = ADC0 is selected as the Turbo Master

110 = ADC4 is selected as the Turbo Slave

- 1 = Fractional
- 0 = Integer
- bit 22-21 SELRES<1:0>: Shared ADC (ADC7) Resolution bits
 - 11 = 12 bits (default)
 - 10 = 10 bits
 - 01 = 8 bits
 - 00 = 6 bits
 - **Note:** Changing the resolution of the ADC does not shift the result in the corresponding ADCDATAx register. The result will still occupy 12 bits, with the corresponding lower unused bits set to '0'. For example, a resolution of 6 bits will result in ADCDATAx<5:0> being set to '0', and ADCDATAx<11:6> holding the result.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—	—	—	—	_	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—	—	—	—	_		—
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ADCBASE<15:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ADCBASE<7:0>							

REGISTER 28-24: ADCBASE: ADC BASE REGISTER

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

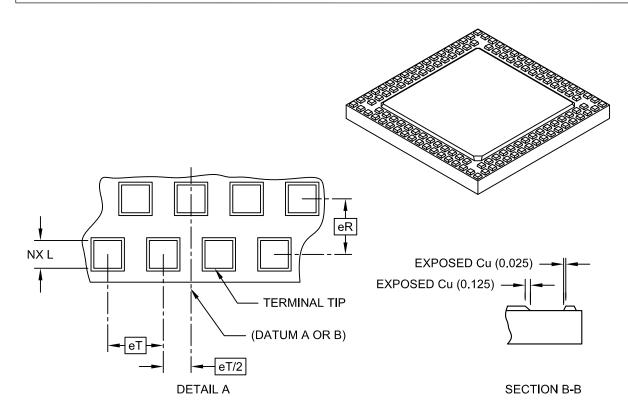
bit 31-0 Unimplemented: Read as '0'

bit 15-0 ADCBASE<15:0>: ADC ISR Base Address bits

This register, when read, contains the base address of the user's ADC ISR jump table. The interrupt vector address is determined by the IRQVS<2:0> bits of the ADCCON1 register specifying the amount of left shift done to the ARDYx status bits in the ADCDSTAT1 and ADCDSTAT2 registers, prior to adding with ADCBASE register.

Interrupt Vector Address = Read Value of ADCBASE and Read Value of ADCBASE = Value written to ADCBASE + $x \ll$ IRQVS<2:0>, where 'x' is the smallest active analog input ID from the ADCDSTAT1 or ADCDSTAT2 registers (which has highest priority).

35.0 INSTRUCTION SET


The PIC32MZ EF family instruction set complies with the MIPS32[®] Release 5 instruction set architecture. The PIC32MZ EF device family *does not* support the following features:

- Core extend instructions
- Coprocessor 2 instructions

Note: Refer to "MIPS32[®] Architecture for Programmers Volume II: The MIPS32[®] Instruction Set" at www.imgtec.com for more information.

124-Terminal Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	ILLIMETER	s
Dimension	MIN	NOM	MAX	
Number of Pins	N	124		
Pitch	eT	0.50 BSC		
Pitch (Inner to outer terminal ring)	eR	0.50 BSC		
Overall Height	A	0.80	0.85	0.90
Standoff	A1	0.00	-	0.05
Overall Width	E	9.00 BSC		
Exposed Pad Width	E2	6.40	6.55	6.70
Overall Length	D	9.00 BSC		
Exposed Pad Length	D2	6.40	6.55	6.70
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.20	0.25	0.30
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-193A Sheet 2 of 2