

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

 $\times \square$

Due durch Chature	A white a
Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TFBGA
Supplier Device Package	144-TFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512efe144t-e-jwx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber						
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Buffer Type Type		Description		
				Inte	er-Integr	ated Circui	it 1		
SCL1	44	66	B37	95	I/O	ST	I2C1 Synchronous Serial Clock Input/Output		
SDA1	43	67	A45	96	I/O	ST	I2C1 Synchronous Serial Data Input/Output		
	Inter-Integrated Circuit 2								
SCL2	—	59	A41	85	I/O	ST	I2C2 Synchronous Serial Clock Input/Output		
SDA2	—	60	B34	86	I/O	ST	I2C2 Synchronous Serial Data Input/Output		
				Inte	er-Integr	ated Circui	it 3		
SCL3	51	58	A39	80	I/O	ST	I2C3 Synchronous Serial Clock Input/Output		
SDA3	50	57	B31	79	I/O	ST	I2C3 Synchronous Serial Data Input/Output		
				Inte	er-Integr	ated Circui	it 4		
SCL4	6	12	B7	16	I/O	ST	I2C4 Synchronous Serial Clock Input/Output		
SDA4	5	11	A8	15	I/O	ST	I2C4 Synchronous Serial Data Input/Output		
Inter-Integrated Circuit 5									
SCL5	42	65	A44	91	I/O	ST	I2C5 Synchronous Serial Clock Input/Output		
SDA5	41	64	B36	90	I/O	ST	I2C5 Synchronous Serial Data Input/Output		
Legend:	CMOS = CMOS-compatible input or output Analog = Analog input P = Power								

TABLE 1-10: I2C1 THROUGH I2C5 PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output

I = Input

PPS = Peripheral Pin Select

COMPARATOR 1, COMPARATOR 2 AND CVREF PINOUT I/O DESCRIPTIONS TABLE 1-11:

		Pin Number									
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description				
Comparator Voltage Reference											
CVREF+	16	29	A20	40	I	Analog	Comparator Voltage Reference (High) Input				
CVREF-	15	28	B15	39	I	Analog	Comparator Voltage Reference (Low) Input				
CVREFOUT	23	34	B19	49	0	Analog	Comparator Voltage Reference Output				
					Comp	arator 1					
C1INA	11	20	B11	25	I	Analog	Comparator 1 Positive Input				
C1INB	12	21	A13	26	I	Analog	Comparator 1 Selectable Negative Input				
C1INC	5	11	A8	15	I	Analog					
C1IND	4	10	B6	14	I	Analog	1				
C10UT	PPS	PPS	PPS	PPS	0	_	Comparator 1 Output				
			•	•	Comp	arator 2	•				
C2INA	13	22	A14	31	I	Analog	Comparator 2 Positive Input				
C2INB	14	23	A16	34	I	Analog	Comparator 2 Selectable Negative Input				
C2INC	10	16	B9	21	I	Analog	1				
C2IND	6	12	B7	16	I	Analog]				
C2OUT	PPS	PPS	PPS	PPS	0	—	Comparator 2 Output				
Legend:	CMOS = CMOS-compatible input or output				•	Analog =	Analog input P = Power				
	ST = Schm	itt Trigger ir	put with C	MOS level	S	O = Outpu	ut I = Input				

TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	r-1	R-0	R-0	R-1	R-1	R-1	R-1	R-0	
31.24		MMU Size<5:0>						IS<2>	
22.16	R-1	R-0	R-0	R-1	R-1	R-0	R-1	R-1	
23.10	IS<1	IS<1:0>			IL<2:0>			IA<2:0>	
15.0	R-0	R-0	R-0	R-0	R-1	R-1	R-0	R-1	
10.0		DS<2:0>			DL<2:0>		DA<	:2:1>	
7.0	R-1	U-0	U-0	R-1	R-1	R-0	R-1	R-1	
7:0	DA<0>	_	_	PC	WR	CA	EP	FP	

REGISTER 3-2: CONFIG1: CONFIGURATION REGISTER 1; CP0 REGISTER 16, SELECT 1

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 **Reserved:** This bit is hardwired to a '1' to indicate the presence of the Config2 register.

bit 30-25	MMU Size<5:0>: Contains the number of TLB entries minus 1
	001111 = 16 TLB entries
bit 24-22	IS<2:0>: Instruction Cache Sets bits
	010 = Contains 256 instruction cache sets per way
bit 21-19	IL<2:0>: Instruction-Cache Line bits
	011 = Contains instruction cache line size of 16 bytes
bit 18-16	IA<2:0: Instruction-Cache Associativity bits
	011 = Contains 4-way instruction cache associativity
bit 15-13	DS<2:0>: Data-Cache Sets bits
	000 = Contains 64 data cache sets per way
bit 12-10	DL<2:0>: Data-Cache Line bits
	011 = Contains data cache line size of 16 bytes
bit 9-7	DA<2:0>: Data-Cache Associativity bits
	011 = Contains the 4-way set associativity for the data cache
bit 6-5	Unimplemented: Read as '0'
bit 4	PC: Performance Counter bit
	1 = The processor core contains Performance Counters
bit 3	WR: Watch Register Presence bit
	1 = No Watch registers are present
bit 2	CA: Code Compression Implemented bit
	0 = No MIPS16e [®] present
bit 1	EP: EJTAG Present bit
	1 = Core implements EJTAG
bit 0	FP: Floating Point Unit bit
	1 = Floating Point Unit is present

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—		—	—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—		—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—		—	—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-1
		_				_		NF

REGISTER 3-4: CONFIG5: CONFIGURATION REGISTER 5; CP0 REGISTER 16, SELECT 5

Legend:	r = Reserved		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-1 Unimplemented: Read as '0'

bit 0 NF: Nested Fault bit

1 = Nested Fault feature is implemented

REGISTER 3-5: CONFIG7: CONFIGURATION REGISTER 7; CP0 REGISTER 16, SELECT 7

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	WII	—	—	—	—	-	—	—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—		—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	—	—	—	—		—	—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	_	—	—

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 WII: Wait IE Ignore bit

1 = Indicates that this processor will allow an interrupt to unblock a WAIT instruction

bit 30-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
31.24				FCC<7:1>				FS	
22.10	R/W-x	R/W-x	R/W-x	R-0	R-1	R-1	R/W-x	R/W-x	
23:16	FCC<0>	FO	FN	MAC2008	ABS2008	NAN2008	CAUSE<5:4>		
	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
15:8		CALISE	ENABLES<4:1>						
	CAUSE<3:0>				V	Z	0	U	
	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
7:0	ENABLES<0>			FLAGS<4:0>	DM (1)0			<1·0>	
	I	V	Z	0	U	I	r.ivi<1.U>		

REGISTER 3-10: FCSR: FLOATING POINT CONTROL AND STATUS REGISTER; CP1 REGISTER 31

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 FCC<7:1>: Floating Point Condition Code bits

These bits record the results of floating point compares and are tested for floating point conditional branches and conditional moves.

bit 24 **FS:** Flush to Zero control bit

1 = Denormal input operands are flushed to zero. Tiny results are flushed to either zero or the applied format's smallest normalized number (MinNorm) depending on the rounding mode settings.
 0 = Denormal input operands result in an Unimplemented Operation exception.

bit 23 FCC<0>: Floating Point Condition Code bits

These bits record the results of floating point compares and are tested for floating point conditional branches and conditional moves.

- bit 22 **FO:** Flush Override Control bit
 - 1 = The intermediate result is kept in an internal format, which can be perceived as having the usual mantissa precision but with unlimited exponent precision and without forcing to a specific value or taking an exception.
 - 0 = Handling of Tiny Result values depends on setting of the FS bit.

bit 21 FN: Flush to Nearest Control bit

- 1 = Final result is rounded to either zero or 2E_min (MinNorm), whichever is closest when in Round to Nearest (RN) rounding mode. For other rounding modes, a final result is given as if FS was set to 1.
 0 = Handling of Tiny Result values depends on setting of the FS bit.
- bit 20 MAC2008: Fused Multiply Add mode control bit
 - 0 = Unfused multiply-add. Intermediary multiplication results are rounded to the destination format.
- bit 19 ABS2008: Absolute value format control bit
 - 1 = ABS.fmt and NEG.fmt instructions compliant with IEEE Standard 754-2008. The ABS and NEG functions accept QNAN inputs without trapping.
- bit 18 NAN2008: NaN Encoding control bit
 - 1 = Quiet and signaling NaN encodings recommended by the IEEE Standard 754-2008. A quiet NaN is encoded with the first bit of the fraction being 1 and a signaling NaN is encoded with the first bit of the fraction being 0.

bit 17-12 CAUSE<5:0>: FPU Exception Cause bits

These bits indicated the exception conditions that arise during execution of an FPU arithmetic instruction.

bit 17 E: Unimplemented Operation bit

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress ()		e								В	its								s
Virtual Add (BF81 #	Register Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0550	055047	31:16	_	—	-	—	-	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
05FC	OFF047	15:0		•	•		•			VOFF<15:1>	•							—	0000
0600		31:16	_	—	_	_	—	_	_	_	—	_	—	—	—		VOFF<	17:16>	0000
0000	011040	15:0		-		-				VOFF<15:1>	•		-	-			_	_	0000
0604	OFF049	31:16	_	—	_	_	—	_	_	—	_	—	—		—	_	VOFF<	17:16>	0000
0004	011040	15:0 VOFF<15:1> -											—	0000					
0608	OFF050	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
	0.1.000	15:0								VOFF<15:1>	, 						1	_	0000
0600	OFF051	31:16		—	—	—	—	_	_	—	—	—	—	—	—	—	VOFF<	17:16>	0000
		15:0		i	-	i	i	1	1	VOFF<15:1>	, i	1	i	i	1		r	—	0000
0610	OFF052	31:16		_	—	_	—	_	_	_	_	_	_	_	_	—	VOFF<	17:16>	0000
		15:0								VOFF<15:1>	, 						1/055		0000
0614	OFF053	31:16		_	_	_	—	_		-	_		_	_	_	_	VOFF<	17:16>	0000
		15:0								VOFF<15:1>	> 						VOFF	-	0000
0618	OFF054	31:16		_	_	_	_	_	_	VOEE -15:1>	_	_	_		—	_	VUFF<	17:16>	0000
		31.16			_		_			VOFF<15.12							VOFE	17:16	0000
061C	OFF055	15.0								VOFE<15:1							VOITS		0000
		31.16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	VOFF<	17:16>	0000
0620	OFF056	15:0								VOFF<15:1>	•							_	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	VOFF<	17:16>	0000
0624	OFF057	15:0								VOFF<15:1>	•							_	0000
		31:16	_	—	_		—	_	_	_	_	_	—	_	_	_	VOFF<	17:16>	0000
0628	OFF058	15:0			•		•			VOFF<15:1>	•							_	0000
0000	055050	31:16	_	—	_	_	_	_	_	—	_	—	—	—	_	—	VOFF<	17:16>	0000
0620	OFF059	15:0								VOFF<15:1>	•							—	0000
0620	OFFORD	31:16	_	—	—	_	—	_	_	_	—	_	—	—	_	-	VOFF<	17:16>	0000
0030		15:0								VOFF<15:1>								_	0000
0624	OFE061	31:16	_	—	-	—	-	—	-	—	—	—	—	—	—	—	VOFF<	17:16>	0000
0034		15:0								VOFF<15:1>	,							_	0000
Lege	nd: v=	inknow	n value on F	Reset: — = u	nimplemente	d read as '0	' Reset value	s are shown i	n hexadecima	1									

DS60001320D-page 134

x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Note 1: **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

3: This bit or register is not available on devices without a CAN module.

4: This bit or register is not available on 100-pin devices.

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24		—	—	—	—		—					
22.16	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
23.10	CHAIRQ<7:0> ⁽¹⁾											
15.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
10.0	CHSIRQ<7:0> ⁽¹⁾											
7:0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0				
	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN							

REGISTER 10-8: DCHxECON: DMA CHANNEL x EVENT CONTROL REGISTER

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

and set CHAIF flag

bit 31-24 Unimplemented: Read as '0'

bit 23-16	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will abort any transfers in progress
	•
	•
	•

00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag 00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag

bit 15-8 CHSIRQ<7:0>: Channel Transfer Start IRQ bits⁽¹⁾

11111111 = Interrupt 255 will initiate a DMA transfer

• 00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer

bit 7 CFORCE: DMA Forced Transfer bit

1 = A DMA transfer is forced to begin when this bit is written to a '1'

0 = This bit always reads '0'

bit 6 CABORT: DMA Abort Transfer bit

- 1 = A DMA transfer is aborted when this bit is written to a '1'
- 0 = This bit always reads '0'

bit 5 **PATEN:** Channel Pattern Match Abort Enable bit

- 1 = Abort transfer and clear CHEN on pattern match
- 0 = Pattern match is disabled
- bit 4 SIRQEN: Channel Start IRQ Enable bit
 - 1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs
 - 0 = Interrupt number CHSIRQ is ignored and does not start a transfer
- bit 3 AIRQEN: Channel Abort IRQ Enable bit
 - 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs
 - 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
- bit 2-0 Unimplemented: Read as '0'
- Note 1: See Table 7-2: "Interrupt IRQ, Vector, and Bit Location" for the list of available interrupt IRQ sources.

11.1 **USB OTG Control Registers**

TABLE 11-1: USB REGISTER MAP 1

ŝŝ											Bits								
Virtual Addres (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
-		31:16	_	_	—	—	—	_	_	_	EP7TXIF	EP6TXIF	EP5TXIF	EP4TXIF	EP3TXIF	EP2TXIF	EP1TXIF	EP0IF	0000
3000	USBCSR0	15:0	ISOUPD ⁽¹⁾	SOFT CONN ⁽¹⁾	HSEN	HSMODE	RESET	RESUME	SUSP MODE	SUSPEN	_	(2)	(2)	FUN	IC<6:0>(1)	(2)	(2)	(2)	2000
		24.40	_(-)	_(2)															0.077
3004	USBCSR1	15:0		_								EPOINE	EPSTAIE		EPSIAE	EPZIALE		EPUIE	0066
		31.16										SESSPECIE			SOEIE	DESETIE			0000
3008	USBCSR2	15.0	VDUSERRIE	SESSRUIE	DISCOME	CONNE	SOFIE	RESETIE	RESUMEIE	SUSFIE	ED7DVIE	EDEDVIE	EDEDVIE		ED2DVIE	EDODYIE		303FIF	0.000
		31.16	EORCEHST			FORCEHS		TESTK	TESTI						LF SIXAL		2:05	_	0000
300C	USBCSR3	15.0	-	-	-	-		TEOIR	12010	i wat						\$0.02		0000	
							_(1)	(1)	(1)		SVC SETEND ⁽¹⁾	SVCRPR ⁽¹⁾	SEND STALL ⁽¹⁾	SETUP END ⁽¹⁾	DATAEND ⁽¹⁾	SENT STALL ⁽¹⁾	тхркт	RXPKT	0000
3010	USB IE0CSR0 ⁽³⁾	31:16	_	-	_	_	DISPING ⁽²⁾	DTWREN ⁽²⁾	DATA TGGL ⁽²⁾	FLSHFIFO	NAK TMOUT ⁽²⁾	STATPKT ⁽²⁾	REQPKT ⁽²⁾	ERROR ⁽²⁾	SETUP PKT ⁽²⁾	RXSTALL ⁽²⁾	RDY	RDY	0000
		15:0	—	-	_	—	—	—	—	—	—	—	—	—	-	—	-	—	0000
2019	USB	31:16	_	_	_		١	NAKLIM<4:0	(2)		SPEE	D<1:0> ⁽²⁾	—	_	_	_	_		0000
3018	IE0CSR2 ⁽³⁾	15:0	_	_	_	—		—	_	_	—			RXC	CNT<6:0>				0000
2010	USB	31:16	MPRXEN	MPTXEN	BIGEND	HBRXEN	HBTXEN	DYNFIFOS	SOFTCONE	UTMIDWID	_	—	—	—	_	—	_	_	xx00
3010	IE0CSR3(3)	15:0	_	—	_	_	_	—	_		_	—	_	—	_	—	—	_	0000
		31.16	AUTOSET	ISO ⁽¹⁾	MODE	DMA	FRC	DMA	(1)	(1)	INCOMP TX ⁽¹⁾		SENT STALL ⁽¹⁾	SEND STALL ⁽¹⁾	FLUSH	UNDER RUN ⁽¹⁾	FIFONE	ТХРКТ	0000
3010	IENCSR0 ⁽⁴⁾	51.10	AUTOOLT		MODE	REQEN	DATTG	REQMD	DTWREN ⁽²⁾	DATA TGGL ⁽²⁾	NAK TMOUT ⁽²⁾	GERDT	RXSTALL ⁽²⁾	SETUPPKT ⁽²⁾	TEOON	ERROR ⁽²⁾		RDY	0000
		15:0		M	ULT<4:0>				•	-			TXMAXP<10:0>	>					0000
				ISO ⁽¹⁾	DMA	DISNYET ⁽¹⁾	DMA	(1)	(1)	INCOM		SENTSTALL ⁽¹⁾	SENDSTALL ⁽¹⁾		DATAERR ⁽¹⁾	OVERRUN ⁽¹⁾		RXPKT	0000
3014	USB IENCSR1 ⁽⁴⁾	31:16	AUTOCLR	AUTORQ ⁽²⁾	REQEN	PIDERR ⁽²⁾	REQMD	DATA TWEN ⁽²⁾	DATA TGGL ⁽²⁾	PRX	CLRDT	RXSTALL ⁽²⁾	REQPKT ⁽²⁾	FLUSH	DERR- NAKT ⁽¹⁾	ERROR ⁽²⁾	FIFOFULL	RDY	0000
		15:0	15:0 MULT<4:0> RXMAXP<10:0>										0000						
3018	USB (1)	31:16		TXINTERV<7:0> ⁽²⁾ SPEED<1:0> ⁽²⁾ PROTOCOL<1:0>									TEP<3:	0>		0000			
	IENCSR2(*)	15:0	—	—			r				F	XCNT<13:0>					1	1	0000
301C	USB	31:16		RXFIFOSZ	2<3:0>			TXFIFC)SZ<3:0>					_		_	—		0000
	IENCSR3(1)*/	15:0				RXINTER	RV<7:0>				SPEE	ED<1:0>	PROTO	COL<1:0>		TEP<3:	0>		0000
3020	USB	31:16								D	ATA<31:16>								0000
	FIF00	15:0								D	DATA<15:0>								0000
3024	USB	31:16								D	ATA<31:16>								0000
	FIFU1	15:0	0 DATA<15:0> 0000																

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Device mode. 2: Host mode.

3:

Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0). Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7). 4:

TAE	BLE 11	-1:	USB REGISTER MAP 1 (CONTINUED)																								
SS						-			-		Bits	-	-				-	-									
Virtual Addre: (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets								
	USB	31:16			•													•	0000								
3128	E2CSR2	15:0		Indexed by the same bits in USBIE2CSR2																							
2120	USB	31:16		Indexed by the same bits in USBIE2CSR3																							
3120	E2CSR3	15:0		Indexed by the same bits in USBIE2CSR3 0000																							
3130	USB	31:16		Indexed by the same bits in LISRIE3CSR0 0000																							
0.00	E3CSR0	15:0		Indexed by the same bits in USBIE3CSR0																							
3134	USB	31:16		Indexed by the same bits in USBIE3CSR1																							
	4 E3CSR1 15:0																										
3138	38 USB 31:16 Indexed by the same bits in USBIE3CSR2																										
	38 E3CSR2 15:0																										
313C	USB E3CSR3	15:0	31:16 Indexed by the same bits in USBIE3CSR3																								
		31.16																	0000								
3140	E4CSR0	15:0							Inde	exed by the	same bits in L	SBIE4CSR0							0000								
-	LISB	31:16																	0000								
3144	E4CSR1	15:0							Inde	exed by the s	same bits in L	SBIE4CSR1							0000								
	USB	31:16																	0000								
3148	E4CSR2	15:0							Inde	exed by the s	same bits in L	SBIE4CSR2							0000								
24.40	USB	31:16							المحدا	مطاهبه طاهمه									0000								
3140	E4CSR3	15:0							Inde	exed by the s		SDIE4CSR3							0000								
3150	USB	31:16							Inde	exed by the	same hits in l	SBIE5CSR0							0000								
0.00	E5CSR0	15:0								5,104 57 410 4		00.2000.00							0000								
3154	USB	31:16							Inde	exed by the	same bits in L	SBIE5CSR1							0000								
	ESCORT	15:0								•									0000								
3158	USB E5CSR2	31:16							Inde	exed by the s	same bits in L	SBIE5CSR2							0000								
	LJUGINZ	15:0																	0000								
315C	USB E5CSR3	15:0							Inde	exed by the	same bits in L	SBIE5CSR3							0000								
	1100	31.16																	0000								
3160	E6CSR0	15:0							Inde	exed by the	same bits in L	SBIE6CSR0							0000								
-	LICR	31:16																	0000								
3164	E6CSR1	15:0							Inde	exed by the	same bits in L	SBIE6CSR1							0000								
	USB	31:16										001500005							0000								
3168	E6CSR2	15:0	0 Indexed by the same bits in USBIE6CSR2 0000																								
2400	USB	31:16	31:16 0000																								
3160	Indexed by the same bits in USBIE6CSR3																										
Leger Note	nd: x 1: D	: = unkno Device m	own value on ode.	Reset; — = un	implemented	d, read as '0'	'. Reset valu	es are showr	n in hexadecir	nal.						gend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.											

1: 2: 3: 4:

Device mode.
 Host mode.
 Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0).
 Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0
31.24	VBUSERRIE	SESSRQIE	DISCONIE	CONNIE	SOFIE	RESETIE	RESUMEIE	SUSPIE
22.16	R-0, HS	R-0, HS	R-0, HS					
23.10	VBUSERRIF	SESSRQIF	DISCONIF	CONNIF	SOFIF	RESETIF	RESUMEIF	SUSPIF
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	—	—	—	—	—	—	—
7:0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	U-0
	EP7RXIE	EP6RXIE	EP5RXIE	EP4RXIE	EP3RXIE	EP2RXIE	EP1RXIE	_

REGISTER 11-3: USBCSR2: USB CONTROL STATUS REGISTER 2

Legend:	HS = Hardware Set		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 30 SESSRQIE: Session Request Interrupt Enable bit 1 = Session request interrupt is enabled 0 = Session request interrupt is disabled bit 29 DISCONIE: Device Disconnect Interrupt Enable bit 1 = Device disconnect interrupt is enabled 0 = Device connection Interrupt is disabled bit 28 CONNIE: Device Connection Interrupt Enable bit 1 = Device connection Interrupt is enabled 0 = Device connection interrupt is disabled bit 27 SOFIE: Start of Frame Interrupt Enable bit 1 = Start of Frame event interrupt is disabled bit 26 RESETIE: Reset/Babble Interrupt Enable bit 1 = Interrupt when reset (Device mode) or Babble (Host mode) is enabled 0 = Reset/Babble interrupt is disabled bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is disabled
bit 29 DISCONIE: Device Disconnect Interrupt Enable bit 1 = Device disconnect interrupt is enabled 0 = Device disconnect interrupt is disabled bit 28 CONNIE: Device Connection Interrupt Enable bit 1 = Device connection interrupt is enabled 0 = Device connection interrupt is disabled bit 27 SOFIE: Start of Frame Interrupt Enable bit 1 = Start of Frame event interrupt is enabled 0 = Start of Frame event interrupt is disabled bit 26 RESETIE: Reset/Babble Interrupt Enable bit 1 = Interrupt when reset (Device mode) or Babble (Host mode) is enabled 0 = Reset/Babble interrupt is disabled bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt 0 = No interrupt 0 = No interrupt
bit 28 CONNIE: Device Connection Interrupt Enable bit 1 = Device connection interrupt is enabled 0 = Device connection interrupt is disabled bit 27 SOFIE: Start of Frame Interrupt Enable bit 1 = Start of Frame event interrupt is enabled 0 = Start of Frame event interrupt is disabled bit 26 RESETIE: Reset/Babble Interrupt Enable bit 1 = Interrupt when reset (Device mode) or Babble (Host mode) is enabled 0 = Reset/Babble interrupt is disabled bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt
bit 27 SOFIE: Start of Frame Interrupt Enable bit 1 = Start of Frame event interrupt is enabled 0 = Start of Frame event interrupt is disabled bit 26 RESETIE: Reset/Babble Interrupt Enable bit 1 = Interrupt when reset (<i>Device mode</i>) or Babble (<i>Host mode</i>) is enabled 0 = Reset/Babble interrupt is disabled bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt
bit 26 RESETIE: Reset/Babble Interrupt Enable bit 1 = Interrupt when reset (Device mode) or Babble (Host mode) is enabled 0 = Reset/Babble interrupt is disabled bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt
bit 25 RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is disabled bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt
bit 24 SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt
bit 23 VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt
bit 22 SESSRQIF: Session Request Interrupt bit 1 = Session request signaling has been detected 0 = No session request detected
 bit 21 DISCONIF: Device Disconnect Interrupt bit 1 = In Host mode, indicates when a device disconnect is detected. In Device mode, indicates when session ends. 0 = No device disconnect detected
bit 20 CONNIF: Device Connection Interrupt bit 1 = In <i>Host mode</i> , indicates when a device connection is detected 0 = No device connection detected

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—		—	—	—	_	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—		—	—	—	_	—
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
10.0					—	DMABRSTM<1:0>		DMAERR
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0		DMAE	P<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN

REGISTER 11-21: USBDMAxC: USB DMA CHANNEL 'x' CONTROL REGISTER ('x' = 1-8)

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-11 Unimplemented: Read as '0'

- bit 10-9 DMABRSTM<1:0>: DMA Burst Mode Selection bit
 - 11 = Burst Mode 3: INCR16, INCR8, INCR4 or unspecified length
 - 10 = Burst Mode 2: INCR8, INCR4 or unspecified length
 - 01 = Burst Mode 1: INCR4 or unspecified length
 - 00 = Burst Mode 0: Bursts of unspecified length

bit 8 DMAERR: Bus Error bit

- 1 = A bus error has been observed on the input
- 0 = The software writes this to clear the error
- bit 7-4 DMAEP<3:0>: DMA Endpoint Assignment bits
 - These bits hold the endpoint that the DMA channel is assigned to. Valid values are 0-7.

bit 3 DMAIE: DMA Interrupt Enable bit

- 1 = Interrupt is enabled for this channel
- 0 = Interrupt is disabled for this channel

bit 2 DMAMODE: DMA Transfer Mode bit

- 1 = DMA Mode1 Transfers
- 0 = DMA Mode0 Transfers
- bit 1 DMADIR: DMA Transfer Direction bit
 - 1 = DMA Read (TX endpoint)
 - 0 = DMA Write (RX endpoint)

bit 0 DMAEN: DMA Enable bit

- 1 = Enable the DMA transfer and start the transfer
- 0 = Disable the DMA transfer

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R/W-1, HS
31:24	—	—	—	—	—	USBIF	USBRF	USBWKUP
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
	r-1	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	—	—	—	—	—	—	USB IDOVEN	USB IDVAL
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	PHYIDEN	VBUS MONEN	ASVAL MONEN	BSVAL MONEN	SEND MONEN	USBIE	USBRIE	USB WKUPEN

REGISTER 11-30: USBCRCON: USB CLOCK/RESET CONTROL REGISTER

l egend.

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bi

bit 31-27	Unimplemented: Read as '0'							
bit 26	JSBIF: USB General Interrupt Flag bit 1 = An event on the USB Bus has occurred 0 = No interrupt from USB module or interrupts have not been enabled							
bit 25	USBRF: USB Resume Flag bit 1 = Resume from Suspend state. Device wake-up activity can be started. 0 = No Resume activity detected during Suspend, or not in Suspend state							
bit 24	USBWK: USB Activity Status bit 1 = Connect, disconnect, or other activity on USB detected since last cleared 0 = No activity detected on USB							
	Note: This bit should be cleared just prior to entering sleep, but it should be checked that no activit has already occurred on USB before actually entering sleep.							
bit 23-14	Unimplemented: Read as '0'							
bit 15	Reserved: Read as '1'							
bit 14-10	Unimplemented: Read as '0'							
bit 9	USBIDOVEN: USB ID Override Enable bit 1 = Enable use of USBIDVAL bit 0 = Disable use of USBIDVAL and instead use the PHY value							
bit 8	USBIDVAL: USB ID Value bit 1 = ID override value is 1 0 = ID override value is 0							
bit 7	PHYIDEN: PHY ID Monitoring Enable bit 1 = Enable monitoring of the ID bit from the USB PHY 0 = Disable monitoring of the ID bit from the USB PHY							
bit 6	VBUSMONEN: VBUS Monitoring for OTG Enable bit 1 = Enable monitoring for VBUS in VBUS Valid range (between 4.4V and 4.75V) 0 = Disable monitoring for VBUS in VBUS Valid range							
bit 5	ASVALMONEN: A-Device VBUS Monitoring for OTG Enable bit 1 = Enable monitoring for VBUS in Session Valid range for A-device (between 0.8V and 2.0V) 0 = Disable monitoring for VBUS in Session Valid range for A-device							

BSVALMONEN: B-Device VBUS Monitoring for OTG Enable bit

0 = Disable monitoring for VBUS in Session Valid range for B-device

1 = Enable monitoring for VBUS in Session Valid range for B-device (between 0.8V and 4.0V)

© 2015-2016 Microchip Technology Inc.

bit 4

12.4.3 CONTROLLING PPS

PPS features are controlled through two sets of SFRs: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

12.4.4 INPUT MAPPING

The inputs of the PPS options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The [*pin name*]R registers, where [*pin name*] refers to the peripheral pins listed in Table 12-2, are used to configure peripheral input mapping (see Register 12-1). Each register contains sets of 4 bit fields. Programming these bit fields with an appropriate value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field is shown in Table 12-2.

For example, Figure 12-2 illustrates the remappable pin selection for the U1RX input.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31-24	DESC_EN	—	CF	RY_MODE<2:	0>	—	—	_	
23-16	_	SA_ FETCH_EN	_	—	LAST_BD	LIFM	PKT_ INT_EN	CBD_ INT_EN	
15-8				BD_BUFLI	EN<15:8>				
7-0				BD_BUFL	EN<7:0>				
bit 31 bit 30	DESC_EN : Descriptor Enable 1 = The descriptor is owned by hardware. After processing the BD, hardware resets this bit to '0'. 0 = The descriptor is owned by software Unimplemented. Must be written as io'.								
hit 29-27			Mode						
	111 = Reserved 110 = Reserved 101 = Reserved 100 = Reserved 011 = CEK operation 010 = KEK operation 001 = Preboot authentication 000 = Normal operation								
bit 22	SA_FETCH_ 1 = Fetch SA 0 = Use curr	_ EN: Fetch Se A from the SA rent fetched SA	curity Associa pointer. This to or the intern	ation From Ex pit needs to b al SA	tternal Memore e set to '1' for	ry r every new pa	acket.		
bit 21-20	Unimpleme	nted: Must be	written as '0'						
bit 19	 Unimplemented: Must be written as '0' LAST_BD: Last Buffer Descriptors 1 = Last Buffer Descriptor in the chain 0 = More Buffer Descriptors in the chain After the last BD, the CEBDADDR goes to the base address in CEBDPADDR. 								
bit 18	LIFM: Last In Frame In case of Receive Packets (from H/W-> Host), this field is filled by the Hardware to indicate whether the packet goes across multiple buffer descriptors. In case of transmit packets (from Host -> H/W), this field indicates whether this BD is the last in the frame.								
bit 17	PKT_INT_E Generate an	N: Packet Inter interrupt after	rrupt Enable processing th	ne current bul	fer descriptor	, if it is the en	d of the pack	et.	
bit 16	CBD_INT_E Generate an	N: CBD Interru interrupt after	upt Enable processing th	ne current buf	fer descriptor				
bit 15-0	BD_BUFLE	N<15:0>: Buffe	er Descriptor th of the buffe	Length er and is upda	ated with the a	actual length f	filled by the re	eceiver.	

FIGURE 26-2: FORMAT OF BD_CTRL

FIGURE 26-3: FORMAT OF BD_SADDR

		26/18/10/2	27/19/11/3	28/20/12/4	29/21/13/5	30/22/14/6	31/23/15/7	Range
BD_SAADDR<31:24>								
BD_SAADDR<23:16>								
BD_SAADDR<15:8>								
BD_SAADDR<7:0>								7-0
-			DR<15:8>)DR<7:0>	BD_SAAD BD_SAAD				15-8 7-0

bit 31-0 **BD_SAADDR<31:0>:** Security Association IP Session Address The sessions' SA pointer has the keys and IV values.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R-0, HS, HC							
31.24	ARDY31 ⁽¹⁾	ARDY30 ⁽¹⁾	ARDY29 ⁽¹⁾	ARDY28 ⁽¹⁾	ARDY27 ⁽¹⁾	ARDY26 ⁽¹⁾	ARDY25 ⁽¹⁾	ARDY24 ⁽¹⁾
00.16	R-0, HS, HC							
23.10	ARDY23 ⁽¹⁾	ARDY22 ⁽¹⁾	ARDY21 ⁽¹⁾	ARDY20 ⁽¹⁾	ARDY19 ⁽¹⁾	ARDY18	ARDY17	ARDY16
15.0	R-0, HS, HC							
15.6	ARDY15	ARDY14	ARDY13	ARDY12	ARDY11	ARDY10	ARDY9	ARDY8
7.0	R-0, HS, HC							
7:0	ARDY7	ARDY6	ARDY5	ARDY4	ARDY3	ARDY2	ARDY1	ARDY0

REGISTER 28-12: ADCDSTAT1: ADC DATA READY STATUS REGISTER 1

Legend:	HS = Hardware Set	HC = Hardware Cleared			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-0 ARDY31:ARDY0: Conversion Data Ready for Corresponding Analog Input Ready bits

- 1 = This bit is set when converted data is ready in the data register
- 0 = This bit is cleared when the associated data register is read

Note 1: This bit is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0							
31.24	—	—		_	—	_		—
22.16	U-0							
23.10	—	—		_	—	—		—
45.0	U-0	U-0	U-0	R-0, HS, HC				
10.0	—	—		ARDY44	ARDY43	ARDY42 ⁽²⁾	ARDY41 ⁽²⁾	ARDY40 ⁽²⁾
7.0	R-0, HS, HC							
7:0	ARDY39 ⁽²⁾	ARDY38 ⁽²⁾	ARDY37 ⁽²⁾	ARDY36 ⁽²⁾	ARDY35 ⁽²⁾	ARDY34 ⁽¹⁾	ARDY33 ⁽¹⁾	ARDY32 ⁽¹⁾

REGISTER 28-13: ADCDSTAT2: ADC DATA READY STATUS REGISTER 2

Legend:	HS = Hardware Set	HC = Hardware Cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-0 ARDY44:ARDY32: Conversion Data Ready for Corresponding Analog Input Ready bits

1 = This bit is set when converted data is ready in the data register

 $\ensuremath{\texttt{0}}$ = This bit is cleared when the associated data register is read

Note 1: This bit is not available on 64-pin devices.

2: This bit is not available on 64 -pin and 100-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	FEN	—	—	ADC4EN	ADC3EN	ADC2EN	ADC1EN	ADC0EN
22:16	R/W-0	R-0, HS, HC	R-0, HS, HC	U-0	U-0	U-0	U-0	U-0
23.10	FIEN	FRDY	FWROVERR	_	—	—	—	
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0				FCNT	<7:0>			
7:0	R-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
	FSIGN	—	—		_		ADCID<2:0>	•

REGISTER 28-22: ADCFSTAT: ADC FIFO STATUS REGISTER

Legend:	HS = Hardware Set	HC = Hardware Cleared			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31	FEN: FIFO Enable bit								
	1 = FIFO is enabled								
	0 = FIFO is disabled; no data is being saved into the FIFO								
bit 30-29	Unimplemented: Read as '0'								
bit 28-24	ADC4EN:ADC0EN: ADCx Enable bits ('x' = 0 through 4)								
	1 = Converted output data of ADCx is stored in the FIFO								
	0 = Converted output data of ADCx is not stored in the FIFO								
	Note: While using FIFO, the output data is additionally stored in the respective output data register (ADCDATAx).								
bit 23	FIEN: FIFO Interrupt Enable bit								
	 1 = FIFO interrupts are enabled; an interrupt is generated once the FRDY bit is set 0 = FIFO interrupts are disabled 								
bit 22	FRDY: FIFO Data Ready Interrupt Status bit								
	1 = FIFO has data to be read								
	0 = No data is available in the FIFO								
	Note: This bit is cleared when the FIFO output data in ADCFIFO has been read and there is no additional data ready in the FIFO (that is, the FIFO is empty).								
bit 21	FWROVERR: FIFO Write Overflow Error Status bit								
	 1 = A write overflow error in the FIFO has occurred (circular FIFO) 0 = A write overflow error in the FIFO has not occurred 								
	Note: This bit is cleared after ADCFSTAT<23:16> are read by software.								
bit 15-8	FCNT<7:0>: FIFO Data Entry Count Status bit								
	The value in these bits indicates the number of data entries in the FIFO.								
bit 7	FSIGN: FIFO Sign Setting bit								
	This bit reflects the sign of data stored in the ADCFIFO register.								
bit 6-3	Unimplemented: Read as '0'								
bit 2-0	ADCID<2:0>: ADCx Identifier bits ('x' = 0 through 4)								
	These bits specify the ADC module whose data is stored in the FIFO.								
	111 = Reserved								
	110 = Reserved								
	101 = Reserved								
	•								
	•								
	•								
	000 - Converted data of ADCO is Stored in FIFO								

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	—	—	—	—	
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	—		_	—		—	—	
15.9	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.0	HTEN	MPEN		NOTPM		PMMODE<3:0>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0	CRCERREN	CRCOKEN	RUNTERREN	RUNTEN	UCEN	NOTMEEN	MCEN	BCEN	

REGISTER 30-11: ETHRXFC: ETHERNET CONTROLLER RECEIVE FILTER CONFIGURATION REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **HTEN:** Enable Hash Table Filtering bit
 - 1 = Enable Hash Table Filtering
 - 0 = Disable Hash Table Filtering
- bit 14 **MPEN:** Magic Packet[™] Enable bit 1 = Enable Magic Packet Filtering 0 = Disable Magic Packet Filtering
 - 0 = Disable Magic Packet Filtering
- bit 13 Unimplemented: Read as '0'
- bit 12 NOTPM: Pattern Match Inversion bit
 - 1 = The Pattern Match Checksum must not match for a successful Pattern Match to occur
 - 0 = The Pattern Match Checksum must match for a successful Pattern Match to occur

This bit determines whether Pattern Match Checksum must match in order for a successful Pattern Match to occur.

- bit 11-8 **PMMODE<3:0>:** Pattern Match Mode bits
 - 1001 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Packet = Magic Packet)^(1,3)
 - 1000 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Hash Table Filter match)^(1,1)
 - 0111 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Broadcast Address)⁽¹⁾
 - 0110 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Broadcast Address)⁽¹⁾
 - 0101 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Unicast Address)⁽¹⁾
 - 0100 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Unicast Address)⁽¹⁾
 - 0011 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Station Address)⁽¹⁾
 - 0010 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Station Address)⁽¹⁾
 - 0001 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches)⁽¹⁾
 - 0000 = Pattern Match is disabled; pattern match is always unsuccessful

Note 1: XOR = True when either one or the other conditions are true, but not both.

- 2: This Hash Table Filter match is active regardless of the value of the HTEN bit.
- 3: This Magic Packet Filter match is active regardless of the value of the MPEN bit.

Note 1: This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0.

36.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

36.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

36.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

36.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

FIGURE 37-2: EXTERNAL CLOCK TIMING

TABLE 37-17: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: } 2.1V \ to \ 3.6V \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \ for \ Industrial \\ & -40^\circ C \leq TA \leq +125^\circ C \ for \ Extended \end{array}$					
Param. No.	Symbol	Characteristics	Minimum	Typical ⁽¹⁾	Maximum	Units	Conditions
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	64	MHz	EC (Note 2,3)
OS13		Oscillator Crystal Frequency	4	—	32	MHz	HS (Note 2,3)
OS15			32	32.768	100	kHz	Sosc (Note 2)
OS20	Tosc	Tosc = 1/Fosc		_	_	_	See parameter OS10 for Fosc value
OS30	TosL, TosH	External Clock In (OSC1) High or Low Time	0.375 x Tosc	—	—	ns	EC (Note 2)
OS31	TosR, TosF	External Clock In (OSC1) Rise or Fall Time	—	—	7.5	ns	EC (Note 2)
OS40	Tost	Oscillator Start-up Timer Period (Only applies to HS, HSPLL, and Sosc Clock Oscillator modes)	_	1024	_	Tosc	(Note 2)
OS41	TFSCM	Primary Clock Fail Safe Time-out Period	—	2	—	ms	(Note 2)
OS42	Gм	External Oscillator Transconductance	_	400	_	μA/V	VDD = 3.3V, TA = +25°C, HS (Note 2)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are characterized but are not tested.

2: This parameter is characterized, but not tested in manufacturing.

3: See parameter OS50 for PLL input frequency limitations.

APPENDIX B: MIGRATING FROM PIC32MZ EC TO PIC32MZ EF

This appendix provides an overview of considerations for migrating from PIC32MZ EC devices to the PIC32MZ EF family of devices. The code developed for PIC32MZ EC devices can be ported to PIC32MZ EF devices after making the appropriate changes outlined in the following sections. The PIC32MZ EF devices are similar to PIC32MZ EC devices, with many feature improvements and new capabilities.

B.1 Oscillator and PLL Configuration

A number of new features have been added to the oscillator and PLL to enhance their ability to work with crystals and to change frequencies.

Table B-1 summarizes the differences (indicated by **Bold** type) between the family differences for the oscillator.

PIC32MZ EC Feature	PIC32MZ EF Feature				
Primary Oscillator Crystal Power					
On PIC32MZ EC devices, the crystal HS Posc mode is only functional with crystals that have certain characteristics, such as very low ESR.	On PIC32MZ EF devices, some DEVCFG0 bits have been added to allow control over the strength of the oscillator and to add a kick start boost. POSCBOOST (DEVCFG0<21>) 1 = Boost the kick start of the oscillator 0 = Normal start of the oscillator POSCGAIN<1:0> (DEVCFG0<20:19>) 11 = 2x gain setting 10 = 1.5x gain setting 01 = 0.5x gain setting 00 = 1x gain setting Note that the default for POSCGAIN (2x gain setting) may over- drive crystals and shorten their life. It is the responsibility of the designer to ensure crystals are operated properly.				
Secondary Oscillator Crystal Power					
On PIC32MZ EC devices, the Secondary Oscillator (Sosc) is not functional.	On PIC32MZ EF devices, the Secondary Oscillator is now functional, and provides similar strength and kick start boost features as the POSC. SOSCBOOST (DEVCFG0<18>) 1 = Boost the kick start of the oscillator 0 = Normal start of the oscillator SOSCGAIN<1:0> (DEVCFG0<17:16>) 11 = 2x gain setting 10 = 1.5x gain setting 01 = 0.5x gain setting 00 = 1x gain setting Note that the default for SOSCGAIN (2x gain setting) may over- drive crystals and shorten their life. It is the responsibility of the designer to ensure crystals are operated properly.				
Clock Status Bits					
On PIC32MZ EC devices, the SOSCRDY bit (OSCCON<22>) indicates when the Secondary Oscillator is ready. There are no indications of other oscillator status.	A new register, CLKSTAT, has been added, which includes the SOSCRDY bit (CLKSTAT<4>). In addition, new status bits are available: • LPRCRDY (CLKSTAT<5>) • POSCRDY (CLKSTAT<2>) • DIVSPLLRDY (CLKSTAT<1>) • FRCRDY (CLKSTAT<0>)				
Clock Switching					
On PIC32MZ EC devices, clock switches occur as soon as the switch command is issued. Also, the only clock sources that can be divided are the output of the PLL, and the FRC.	To reduce power spikes during clock switches, PIC32MZ EF devices add a clock slewing feature, so that clock switches can be controlled in their rate and size. The SLEWCON register controls this feature. The SLEWCON register also features a SYSCLK divider, so that all of the possible clock sources may be divided further as needed.				

TABLE B-1: OSCILLATOR DIFFERENCES