

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32 [®] M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TQFP
Supplier Device Package	144-TQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512efe144t-i-ph

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	ımber						
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description		
			Unive	ersal Asyr	nchronou	us Receive	r Transmitter 1		
U1RX	PPS	PPS	PPS	PPS	I	ST	UART1 Receive		
U1TX	PPS	PPS	PPS	PPS	0	—	UART1 Transmit		
U1CTS	PPS	PPS	PPS	PPS	I	ST	UART1 Clear to Send		
U1RTS	PPS	PPS	PPS	PPS	0		UART1 Ready to Send		
	•		Unive	ersal Asyr	nchronou	is Receive	r Transmitter 2		
U2RX	PPS	PPS	PPS	PPS	I	ST	UART2 Receive		
U2TX	PPS	PPS	PPS	PPS	0		UART2 Transmit		
U2CTS	PPS	PPS	PPS	PPS	I	ST	UART2 Clear To Send		
U2RTS	PPS	PPS	PPS	PPS	0	—	UART2 Ready To Send		
Universal Asynchronous Receiver Transmitter 3									
U3RX	PPS	PPS	PPS	PPS	I	ST	UART3 Receive		
U3TX	PPS	PPS	PPS	PPS	0	_	UART3 Transmit		
U3CTS	PPS	PPS	PPS	PPS	I	ST	UART3 Clear to Send		
U3RTS	PPS	PPS	PPS	PPS	0	_	UART3 Ready to Send		
			Unive	ersal Asyr	nchronou	is Receive	r Transmitter 4		
U4RX	PPS	PPS	PPS	PPS	I	ST	UART4 Receive		
U4TX	PPS	PPS	PPS	PPS	0	_	UART4 Transmit		
U4CTS	PPS	PPS	PPS	PPS	I	ST	UART4 Clear to Send		
U4RTS	PPS	PPS	PPS	PPS	0	_	UART4 Ready to Send		
			Unive	ersal Asyr	nchronou	us Receive	r Transmitter 5		
U5RX	PPS	PPS	PPS	PPS	I	ST	UART5 Receive		
U5TX	PPS	PPS	PPS	PPS	0	_	UART5 Transmit		
U5CTS	PPS	PPS	PPS	PPS	I	ST	UART5 Clear to Send		
U5RTS	PPS	PPS	PPS	PPS	0	_	UART5 Ready to Send		
			Unive	ersal Asyr	nchronou	us Receive	r Transmitter 6		
U6RX	PPS	PPS	PPS	PPS	I	ST	UART6 Receive		
U6TX	PPS	PPS	PPS	PPS	0	_	UART6 Transmit		
U6CTS	PPS	PPS	PPS	PPS	Ι	ST	UART6 Clear to Send		
U6RTS	PPS	PPS	PPS	PPS	0	_	UART6 Ready to Send		
Legend:	CMOS = C	MOS-comp	atible input	or output		Analog =	Analog input P = Power		

TABLE 1-8: UART1 THROUGH UART6 PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select

I = Input

Register Number	Register Name	Function
12	Status	Processor status and control.
	IntCtl	Interrupt control of vector spacing.
	SRSCtl	Shadow register set control.
	SRSMap	Shadow register mapping control.
	View_IPL	Allows the Priority Level to be read/written without
		extracting or inserting that bit from/to the Status register.
	SRSMAP2	Contains two 4-bit fields that provide the mapping from a vector number to the shadow set number to use when servicing such an interrupt.
13	Cause	Describes the cause of the last exception.
	NestedExc	Contains the error and exception level status bit values that existed prior to the current exception.
	View_RIPL	Enables read access to the RIPL bit that is available in the Cause register.
14	EPC	Program counter at last exception.
	NestedEPC	Contains the exception program counter that existed prior to the current exception.
15	PRID	Processor identification and revision
	Ebase	Exception base address of exception vectors.
	CDMMBase	Common device memory map base.
16	Config	Configuration register.
	Config1	Configuration register 1.
	Config2	Configuration register 2.
	Config3	Configuration register 3.
	Config4	Configuration register 4.
	Config5	Configuration register 5.
	Config7	Configuration register 7.
17	LLAddr	Load link address (MPU only).
18	WatchLo	Low-order watchpoint address (MPU only).
19	WatchHi	High-order watchpoint address (MPU only).
20-22	Reserved	Reserved in the PIC32 core.
23	Debug	EJTAG debug register.
	TraceControl	EJTAG trace control.
	TraceControl2	EJTAG trace control 2.
	UserTraceData1	EJTAG user trace data 1 register.
	TraceBPC	EJTAG trace breakpoint register.
	Debug2	Debug control/exception status 1.
24	DEPC	Program counter at last debug exception.
	UserTraceData2	EJTAG user trace data 2 register.
25	PerfCtl0	Performance counter 0 control.
	PerfCnt0	Performance counter 0.
	PerfCtl1	Performance counter 1 control.
	PerfCnt1	Performance counter 1.
26	ErrCtl	Software test enable of way-select and data RAM arrays for I-Cache and D-Cache (MPU only).
27	Reserved	Reserved in the PIC32 core.
28	TagLo/DataLo	Low-order portion of cache tag interface (MPU only).
29	Reserved	Reserved in the PIC32 core.
30	ErrorEPC	Program counter at last error exception.
31	DeSave	Debug exception save.

|--|

		('x' = 0-13)						
Bit Range	Bit Bit 31/23/15/7 30/22/14/6		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0, C	U-0	U-0	U-0	R/W-0, C	R/W-0, C	R/W-0, C	R/W-0, C
	MULTI	—	—	—				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—	—	—	—	_	_	_
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0				INITIE	0<7:0>			
7.0	R-0	R-0	R-0	R-0	U-0	R-0 R-0 R-0		
7.0		REGIO	N<3:0>		—		CMD<2:0>	

REGISTER 4-3: SBTxELOG1: SYSTEM BUS TARGET 'x' ERROR LOG REGISTER 1

Le	egend:	C = Clearable bit	
R	= Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n	= Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31 MULTI: Multiple Permission Violations Status bit

This bit is cleared by writing a '1'.

1 = Multiple errors have been detected

0 = No multiple errors have been detected

bit 30-28 Unimplemented: Read as '0'

bit 27-24 CODE<3:0>: Error Code bits

Indicates the type of error that was detected. These bits are cleared by writing a '1'.

- 1111 = Reserved
- 1101 = Reserved
- •
- •
- 0011 = Permission violation
- 0010 = Reserved
- 0001 = Reserved
- 0000 = No error
- bit 23-16 Unimplemented: Read as '0'
- bit 15-8 INITID<7:0>: Initiator ID of Requester bits
 - 11111111 = Reserved
 - 00001111 = Reserved 00001110 = Crypto Engine 00001101 = Flash Controller 00001100 = SQI1 00001011 = CAN2 00001010 = CAN1 00001001 = Ethernet Write 00001000 = Ethernet Read 00000111 = USB 00000110 = DMA Write (DMAPRI (CFGCON<25>) = 1) 00000101 = DMA Write (DMAPRI (CFGCON<25>) = 0) 00000100 = DMA Read (DMAPRI (CFGCON<25>) = 1) 00000011 = DMA Read (DMAPRI (CFGCON<25>) = 0) 00000010 = CPU (CPUPRI (CFGCON<24>) = 1) 00000001 = CPU (CPUPRI (CFGCON<25>) = 0) 00000000 = Reserved

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

ILCI31	_N <i>T-</i> Z. r	- NIJJ. F NI								
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit Bit Bit 28/20/12/4 27/19/11/3 26/18/1		Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24		PRI7SS	<3:0> ⁽¹⁾		PRI6SS<3:0> ⁽¹⁾					
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16		PRI5SS	<3:0> ⁽¹⁾		PRI4SS<3:0> ⁽¹⁾					
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0		PRI3S	S<3:0>			PRI2SS				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0		
7:0		PRI1SS	<3:0> ⁽¹⁾		_		—	SS0		

REGISTER 7-2: PRISS: PRIORITY SHADOW SELECT REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re-	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 **PRI7SS<3:0>:** Interrupt with Priority Level 7 Shadow Set bits⁽¹⁾

1xxx = Reserved (by default, an interrupt with a priority level of 7 uses Shadow Set 0) 0111 = Interrupt with a priority level of 7 uses Shadow Set 7 0110 = Interrupt with a priority level of 7 uses Shadow Set 6 0001 = Interrupt with a priority level of 7 uses Shadow Set 1 0000 = Interrupt with a priority level of 7 uses Shadow Set 0 bit 27-24 **PRI6SS<3:0>:** Interrupt with Priority Level 6 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 6 uses Shadow Set 0) 0111 = Interrupt with a priority level of 6 uses Shadow Set 7 0110 = Interrupt with a priority level of 6 uses Shadow Set 6 0001 = Interrupt with a priority level of 6 uses Shadow Set 1 0000 = Interrupt with a priority level of 6 uses Shadow Set 0 bit 23-20 PRI5SS<3:0>: Interrupt with Priority Level 5 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 5 uses Shadow Set 0) 0111 = Interrupt with a priority level of 5 uses Shadow Set 7 0110 = Interrupt with a priority level of 5 uses Shadow Set 6 0001 = Interrupt with a priority level of 5 uses Shadow Set 1 0000 = Interrupt with a priority level of 5 uses Shadow Set 0 bit 19-16 PRI4SS<3:0>: Interrupt with Priority Level 4 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 4 uses Shadow Set 0) 0111 = Interrupt with a priority level of 4 uses Shadow Set 7 0110 = Interrupt with a priority level of 4 uses Shadow Set 6 0001 = Interrupt with a priority level of 4 uses Shadow Set 1 0000 = Interrupt with a priority level of 4 uses Shadow Set 0

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0 R/W-0		R/W-0
	—	—	—		—	F	RCDIV<2:0>	
00.40	R/W-0	U-0	R/W-y	U-0	U-0	U-0	U-0	U-0
23.10	DRMEN	—	SLP2SPD ⁽¹⁾	_	—	_	—	—
45.0	U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
15:8	—		COSC<2:0>		—		NOSC<2:0>	
7.0	R/W-0	U-0	U-0	R/W-0	R/W-0, HS	U-0 R/W-y		R/W-y
7:0	CLKLOCK	_	_	SLPEN	CF		SOSCEN	OSWEN ⁽¹⁾

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

Legend:	y = Value set from Config	uration bits on POR	HS = Hardware Set
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

- bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits
 - 111 = FRC divided by 256 110 = FRC divided by 64
 - 101 = FRC divided by 32
 - 100 = FRC divided by 16
 - 011 = FRC divided by 8
 - 010 = FRC divided by 4
 - 001 = FRC divided by 2
 - 000 = FRC divided by 1 (default setting)
- bit 23 **DRMEN:** Dream Mode Enable bit
 - 1 = Dream mode is enabled
 - 0 = Dream mode is disabled
- bit 22 Unimplemented: Read as '0'
- bit 21 SLP2SPD: Sleep 2-speed Startup Control bit⁽¹⁾
 - 1 = Use FRC as SYSCLK until selected clock is ready
 - 0 = Use the selected clock directly
- bit 20-15 Unimplemented: Read as '0'
- bit 14-12 COSC<2:0>: Current Oscillator Selection bits
 - 111 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
 - 110 = Back-up Fast RC (BFRC) Oscillator
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Reserved
 - 010 = Primary Oscillator (Posc) (HS or EC)
 - 001 = System PLL (SPLL)
 - 000 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
- bit 11 Unimplemented: Read as '0'
- **Note 1:** The reset value for this bit depends on the setting of the IESO bit (DEVCFG1<7>). When IESO = 1, the reset value is '1'. When IESO = 0, the reset value is '0'.
- Note: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

REGISTE	ER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER
bit 10-8	NOSC<2:0>: New Oscillator Selection bits
	111 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
	110 = Reserved
	101 = Internal Low-Power RC (LPRC) Oscillator
	011 = Reserved
	010 = Primary Oscillator (Posc) (HS or EC)
	001 = System PLL (SPLL)
	000 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
	On Reset, these bits are set to the value of the FNOSC<2:0> Configuration bits (DEVCFG1<2:0>).
bit 7	CLKLOCK: Clock Selection Lock Enable bit
	1 = Clock and PLL selections are locked
	0 = Clock and PLL selections are not locked and may be modified
DIT 6-5	
bit 4	SLPEN: Sleep Mode Enable bit
	1 = Device will enter Sleep mode when a WAIT instruction is executed
hit 3	CE: Clock Eail Detect bit
DIL 3	1 - ESCM has detected a clock failure
	0 = No clock failure has been detected
bit 2	Unimplemented: Read as '0'
bit 1	SOSCEN: Secondary Oscillator (Sosc) Enable bit
	1 = Enable Secondary Oscillator
	0 = Disable Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit ⁽¹⁾
	1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits
	0 = Oscillator switch is complete
Note 1.	The reset value for this hit depends on the setting of the IESO hit (DEV(CEG1-75)). When $IESO = 1$, the
11016 1.	reset value is '1'. When IESO = 0, the reset value is '0'.

Note: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

9.1 Prefetch Control Registers

TABLE 9-1: PREFETCH REGISTER MAP

ess		0								Bit	s								ŝ
Virtual Addr (BF8E_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
	DDECON	31:16	_	—	_	_	_	PFMSECEN	—	—	-	—	—	—	—	—	—	_	0000
0000	PRECON	15:0		—	_	_	_	_	—	_	—	—	PREFE	N<1:0>	—	P	FMWS<2:0	>	0007
0010	DDEOTAT	31:16		_	_	_	PFMDED	PFMSEC	_	_	_	_	_	_	_	_	_	_	0000
0010	PRESTAT	15:0			_	_	_	_	_					PFMSEC	CNT<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

TABLE 12-23: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP

SS										B	its								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4500	DDA44D(1)	31:16	_	_	_	_	_	_	_	_		-	_	_	-	_	_	_	0000
1538	RPA14R**	15:0	—	_	—	—	—	—	_	—	_	—	_	—		RPA14	R<3:0>		0000
4500		31:16	_	—	—	-	—	—	—	-	_	_	—	-	_		_	_	0000
1530	KPAISK'	15:0		_	_	-	_	_	_			_	_	-		RPA15	R<3:0>		0000
1540		31:16		_	_	-	_	_	_			_	_	-					0000
1540	REDUR	15:0		—	—	—	—	—	—	—		—	—	—		RPB0	R<3:0>		0000
1511		31:16		_	_	_	_	_	_	_		_	_	_		_	_		0000
1544	REDIK	15:0		—	_	_	—	_	—	—		—	—	—		RPB1	२<3:0>		0000
1549	DDD2D	31:16	-	—	—	—	—	—	—	—	-	—	—	—	_	—	_	-	0000
1340	KF BZK	15:0	-	—	—	—	—	—	—	—	-	—	—	—		RPB2	R<3:0>		0000
154C	RDB3R	31:16	_		_	—	_	_		—	_	_		—	_	—		_	0000
1040	IN BOIN	15:0	_	—	—	—	—	—	—	—	_	—	—	—		RPB3	R<3:0>		0000
1554	RDB5R	31:16	_	—	—	—	—	—	—	—	_	—	—	—	_	—	—	—	0000
1554	KF B5K	15:0	_		_	—	_	_		—	_	_		—		RPB5	R<3:0>		0000
1558	RPB6R	31:16	_		_	—	_	_		—	_	_		—	_	—		_	0000
1000	IN BOIN	15:0	_	—	—	—	—	—	—	—	_	—	—	—		RPB6	R<3:0>		0000
155C	RPB7R	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1000	IN BIN	15:0	—	—	—	—	—	—	—	—	—	—	—	—		RPB7I	R<3:0>		0000
1560	RPB8R	31:16	_	—	—	—	—	—	—	—	_	—	—	—	_	—	_	_	0000
1000	IN BOIN	15:0	_	—	—	—	—	—	—	—	_	—	—	—		RPB8	R<3:0>		0000
1564	RPB9R	31:16	_	—	—	—	—	—	—	—	_	—	—	—	_	—		—	0000
1001	TH BOIL	15:0	-	—	—	—	—	—	—	—	_	—	—	—		RPB9	R<3:0>		0000
1568	RPB10R	31:16	_			-	-			—		-		—	—	—	_	—	0000
		15:0	_			-	-			—		-		—		RPB10	R<3:0>		0000
1578	RPB14R	31:16	—		—	—				—	_	—		—	—	—		—	0000
		15:0	_			—				—				—		RPB14	R<3:0>		0000
157C	RPB15R	31:16				—				_				—	_	—		—	0000
		15:0	—		—	—				—	_	—		—		RPB15	R<3:0>		0000
1584	RPC1R ⁽¹⁾	31:16	_			—				—				—	—	—		—	0000
		15:0	_			—				—				—		RPC1	R<3:0>		0000
1588	RPC2R ⁽¹⁾	31:16	_		_	—	_	_	_	—	_	_		—	—	—	—	—	0000
		15:0	—	-	—	—	-	-	-	—	—	-	-	—		RPC2I	≺<3:0>		0000
158C	RPC3R ⁽¹⁾	31:16	—	-	-	—	-	-	-	—	—	-	-	—	—		—	—	0000
		15:0	—	-	-	—	-	-	-	—	—	-	-	—		RPC3	≺<3:0>		0000
1590	RPC4R ⁽¹⁾	31:16	—	-	_	_	-	_	_	—	—	-	—	—	—		—	—	0000
		15:0	—	—	—	—	—	—	—	—	—	—	—	—		RPC4	R<3:0>		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

2: This register is not available on 64-pin and 100-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	_	—
45.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—	—	—	DEVSE	EL<1:0>	MODEBYTES<1:0>	
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				MODECO	DE<7:0>			

REGISTER 20-2: SQI1XCON2: SQI XIP CONTROL REGISTER 2

Legend:

5				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-12 Unimplemented: Read as '0'

bit 11-10 **DEVSEL<1:0>:** Device Select bits

- 11 = Reserved
- 10 = Reserved
- 01 = Device 1 is selected
- 00 = Device 0 is selected

bit 9-8 MODEBYTES<1:0>: Mode Byte Cycle Enable bits

- 11 = Three cycles
- 10 = Two cycles
- 01 = One cycle
- 00 = Zero cycles

bit 7-0 MODECODE<7:0>: Mode Code Value bits

These bits contain the 8-bit code value for the mode bits.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	r-0	R/W-0		
	—	—	—	—	—	—	—	SCHECK		
00.40	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	—	DASSERT	DEVSE	L<1:0> LANEMODE<1:0>			CMDINIT<1:0>			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	TXRXCOUNT<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
				TXRXCOU	INT<7:0>					

REGISTER 20-4: SQI1CON: SQI CONTROL REGISTER

Legend:	r = Reserved		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

- bit 25 Reserved: Must be programmed as '0'
- bit 24 SCHECK: Flash Status Check bit
 - 1 = Check the status of the Flash
 - 0 = Do not check the status of the Flash

bit 23 Unimplemented: Read as '0'

- bit 22 DASSERT: Chip Select Assert bit
 - 1 = Chip Select is deasserted after transmission or reception of the specified number of bytes
 0 = Chip Select is not deasserted after transmission or reception of the specified number of bytes

bit 21-20 DEVSEL<1:0>: SQI Device Select bits

- 11 = Reserved
- 10 = Reserved
- 01 = Select Device 1
- 00 = Select Device 0

bit 19-18 LANEMODE<1:0>: SQI Lane Mode Select bits

- 11 = Reserved
- 10 = Quad Lane mode
- 01 = Dual Lane mode
- 00 = Single Lane mode

bit 17-16 CMDINIT<1:0>: Command Initiation Mode Select bits

If it is Transmit, commands are initiated based on a write to the transmit register or the contents of TX FIFO. If CMDINIT is Receive, commands are initiated based on reads to the read register or RX FIFO availability.

- 11 = Reserved
- 10 = Receive
- 01 = Transmit
- 00 = Idle

bit 15-0 TXRXCOUNT<15:0>: Transmit/Receive Count bits

These bits specify the total number of bytes to transmit or receive (based on CMDINIT).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	-	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	-	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	_	—	—
7:0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
		_		_	_	START	POLLEN	DMAEN

REGISTER 20-14: SQI1BDCON: SQI BUFFER DESCRIPTOR CONTROL REGISTER

Legend:

bit 0

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-3 Unimplemented: Read as '0'

- bit 2 START: Buffer Descriptor Processor Start bit
 - 1 = Start the buffer descriptor processor
 - 0 = Disable the buffer descriptor processor
- bit 1 POLLEN: Buffer Descriptor Poll Enable bit
 - 1 = BDP poll is enabled
 - 0 = BDP poll is not enabled
 - DMAEN: DMA Enable bit
 - 1 = DMA is enabled
 - 0 = DMA is disabled

REGISTER 20-15: SQI1BDCURADD: SQI BUFFER DESCRIPTOR CURRENT ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
	BDCURRADDR<31:24>									
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
23:16	BDCURRADDR<23:16>									
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8	BDCURRADDR<15:8>									
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
				BDCURRAD	DDR<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BDCURRADDR<31:0>: Current Buffer Descriptor Address bits

These bits contain the address of the current descriptor being processed by the Buffer Descriptor Processor.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	—	—	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	—	—	—	—			
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	CS2 ⁽¹⁾	CS1 ⁽³⁾									
	ADDR15 ⁽²⁾	ADDR14 ⁽⁴⁾		ADDR<13:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
		ADDR<7:0>									

REGISTER 23-3: PMADDR: PARALLEL PORT ADDRESS REGISTER

Legend:

bit 15

5						
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 CS2: Chip Select 2 bit⁽¹⁾
 - 1 = Chip Select 2 is active
 - 0 = Chip Select 2 is inactive
 - ADDR<15>: Target Address bit 15⁽²⁾
- bit 14 CS1: Chip Select 1 bit⁽³⁾
 - 1 = Chip Select 1 is active 0 = Chip Select 1 is inactive
- bit 14 ADDR<14>: Target Address bit 14⁽⁴⁾
- bit 13-0 ADDR<13:0>: Address bits
- Note 1: When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.
 - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00.
 - 3: When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - **4:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Note: If the DUALBUF bit (PMCON<17>) = 0, the bits in this register control both read and write target addressing. If the DUALBUF bit = 1, the bits in this register are not used. In this instance, use the PMRADDR register for Read operations and the PMWADDR register for Write operations.

25.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. "Real-Time Calendar Clock and (RTCC)" (DS60001125) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Lowpower optimization provides extended battery lifetime while keeping track of time. The following are key features of the RTCC module:

- · Time: hours, minutes, and seconds
- 24-hour format (military time)
- · Visibility of one-half second period
- Provides calendar: Weekday, date, month and year
- Alarm intervals are configurable for half of a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month, and one year
- · Alarm repeat with decrementing counter
- · Alarm with indefinite repeat: Chime
- Year range: 2000 to 2099
- Leap year correction
- · BCD format for smaller firmware overhead
- Optimized for long-term battery operation
- Fractional second synchronization
- User calibration of the clock crystal frequency with auto-adjust
- Calibration range: ±0.66 seconds error per month
- Calibrates up to 260 ppm of crystal error
- Uses external 32.768 kHz crystal or 32 kHz internal oscillator
- Alarm pulse, seconds clock, or internal clock output on RTCC pin

© 2015-2016 Microchip Technology Inc.

FIGURE 25-1: RTCC BLOCK DIAGRAM

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

REGISTE	ER 25-2: RTCALRM: REAL-TIME CLOCK ALARM CONTROL REGISTER (CONTINUED)
bit 7-0	ARPT<7:0>: Alarm Repeat Counter Value bits ⁽²⁾
	11111111 = Alarm will trigger 256 times
	•
	•
	0000000 = Alarm will trigger one time
	The counter decrements on any alarm event. The counter only rolls over from $0x00$ to $0xFF$ if CHIME = 1.
Note 1:	Hardware clears the ALRMEN bit anytime the alarm event occurs, when $ARPT < 7:0 > = 0.0$ and $CHIME = 0.$
2:	This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.

Note: This register is reset only on a Power-on Reset (POR).

REGISTE	ER 28-1: ADCCON1: ADC CONTROL REGISTER 1 (CONTINUED)
bit 20-16	STRGSRC<4:0>: Scan Trigger Source Select bits 11111 = Reserved
	•
	•
	•
	01101 = Reserved
	01100 = Comparator 2 (COUT)
	01011 = COMPS
	01001 = OCMP3
	01000 = OCMP1
	00111 = TMR5 match
	00110 = TMR3 match
	00101 = TMR1 match
	00110 = INIO External Interrupt
	00011 = Global level software trigger (GLSWTRG)
	00001 = Global software edge trigger (GSWTRG)
	00000 = No Trigger
bit 15	ON: ADC Module Enable bit
	1 = ADC module is enabled
	0 = ADC module is disabled
	Note: The ON bit should be set only after the ADC module has been configured.
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit
	I = Discontinue module operation when device enters rate mode 0 = Continue module operation in Idle mode
bit 12	AICPMPEN: Analog Input Charge Pump Enable bit
511 12	1 = Analog input charge pump is enabled (default)
	0 = Analog input charge pump is disabled
bit 11	CVDEN: Capacitive Voltage Division Enable bit
	1 = CVD operation is enabled
	0 = CVD operation is disabled
bit 10	FSSCLKEN: Fast Synchronous System Clock to ADC Control Clock bit
	\perp = Fast synchronous system clock to ADC control clock is enabled
hit Q	ESPRCI KEN: East Synchronous Perinheral Clock to ADC Control Clock bit
DIL 9	1 = Fast synchronous peripheral clock to ADC control clock is enabled
	0 = Fast synchronous peripheral clock to ADC control clock is disabled
bit 8-7	Unimplemented: Read as '0'
bit 6-4	IRQVS<2:0>: Interrupt Vector Shift bits
	To determine interrupt vector address, this bit specifies the amount of left shift done to the ARDYx status bits in the ADCDSTAT1 and ADCDSTAT2 registers, prior to adding with the ADCBASE register.
	Interrupt Vector Address = Read Value of ADCBASE and Read Value of ADCBASE = Value written to
	ADCBASE + x << IRQVS<2:0>, where 'x' is the smallest active input ID from the ADCDSTAT1 or
	ADCDSTAT2 registers (which has highest priority).
	111 = Shift x left 7 bit position
	110 = Shift x left 6 bit position
	100 = Shift x left 4 bit position
	011 = Shift x left 3 bit position
	010 = Shift x left 2 bit position
	001 = Shift x left 1 bit position
	000 = Shift x left 0 bit position

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—	—	—	—	_	-	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—	—	—	_	—	—	—
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ADCBASE<15:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ADCBASE<7:0>							

REGISTER 28-24: ADCBASE: ADC BASE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 Unimplemented: Read as '0'

bit 15-0 ADCBASE<15:0>: ADC ISR Base Address bits

This register, when read, contains the base address of the user's ADC ISR jump table. The interrupt vector address is determined by the IRQVS<2:0> bits of the ADCCON1 register specifying the amount of left shift done to the ARDYx status bits in the ADCDSTAT1 and ADCDSTAT2 registers, prior to adding with ADCBASE register.

Interrupt Vector Address = Read Value of ADCBASE and Read Value of ADCBASE = Value written to ADCBASE + $x \ll$ IRQVS<2:0>, where 'x' is the smallest active analog input ID from the ADCDSTAT1 or ADCDSTAT2 registers (which has highest priority).

REGISTER	29-10: CIFLTCON0: CAN FILTER CONTROL REGISTER 0 (CONTINUED)
bit 15	FLTEN1: Filter 1 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 14-13	MSEL1<1:0>: Filter 1 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask T selected 00 = Acceptance Mask 0 selected
bit 12-8	FSFI 1<4:0>: EIFO Selection bits
511 12 0	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN0: Filter 0 Enable bit
	1 = Filter is enabled
bit 6-5	MSEL0<1:0>: Filter 0 Mask Select bits
	11 = Acceptance Mask 3 selected $10 = Acceptance Mask 2 selected$
	01 = Acceptance Mask 2 selected
	00 = Acceptance Mask 0 selected
bit 4-0	FSEL0<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
Noto: T	The bits in this register can only be medified if the corresponding filter and L (Γ T Γ N \rightarrow L (c)
note:	The bits in this register can only be modified if the corresponding filter enable (FLIENN) bit is 0.

33.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "Power-Saving Features" (DS60001130) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).

This section describes power-saving features for the PIC32MZ EF devices. These devices offer various methods and modes that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

33.1 Power Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the speed of PBCLK7, or selecting a lower power clock source (i.e., LPRC or Sosc).

In addition, the Peripheral Bus Scaling mode is available for each peripheral bus where peripherals are clocked at reduced speed by selecting a higher divider for the associated PBCLKx, or by disabling the clock completely.

33.2 Power-Saving with CPU Halted

Peripherals and the CPU can be Halted or disabled to further reduce power consumption.

33.2.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are Halted and the associated clocks are disabled. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:

- There can be a wake-up delay based on the oscillator selection
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode
- The BOR circuit remains operative during Sleep mode
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep

The processor will exit, or 'wake-up', from Sleep on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- · On any form of device Reset
- On a WDT time-out

If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the peripheral bus clocks will start running and the device will enter into Idle mode.

33.2.2 IDLE MODE

In Idle mode, the CPU is Halted; however, all clocks are still enabled. This allows peripherals to continue to operate. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

The device enters Idle mode when the SLPEN bit (OSCCON<4>) is clear and a WAIT instruction is executed.

The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode.
- On any form of device Reset
- On a WDT time-out interrupt

FIGURE 37-17: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)

TABLE 37-35: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$			
Param. No.	Symbol	Characteristics		Min. ⁽¹⁾ Max.		Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	TPBCLK2 * (BRG + 2)	-	μs	—
			400 kHz mode	TPBCLK2 * (BRG + 2)		μs	—
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)		μs	
IM11	THI:SCL	Clock High Time	100 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	—
			400 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	—
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)		μs	—
IM20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	CB is specified to be
			400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode (Note 2)		100	ns	

Note 1: BRG is the value of the I²C Baud Rate Generator.

- 2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
- **3:** The typical value for this parameter is 104 ns.

A.2 Analog-to-Digital Converter (ADC)

The PIC32MZ EF family of devices has a new 12-bit High-Speed Successive Approximation Register (SAR) ADC module that replaces the 10-bit ADC module in PIC32MX5XX/6XX/7XX devices; therefore, the use of **Bold** type to show differences is *not* used in the following table. Note that not all register differences are described in this section; however, the key feature differences are listed in Table A-3.

TABLE A-3:ADC DIFFERENCES

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature				
Clock Selection and Operating Frequency (TAD)					
On PIC32MX devices, the ADC clock was derived from either the FRC or from the PBCLK.	On PIC32MZ EF devices, the three possible sources of the ADC clock are FRC, REFCLKO3, and SYSCLK.				
ADRC (AD1CON3<15>) 1 = FRC clock 0 = Clock derived from Peripheral Bus Clock (PBCLK)	ADCSEL<1:0> (ADCCON3<31:30>) 11 = FRC 10 = REFCLKO3 01 = SYSCLK 00 = Reserved				
On PIC32MX devices, if the ADC clock was derived from the PBCLK, that frequency was divided further down, with a maximum divisor of 512, and a minimum divisor of two.	On PIC32MZ EF devices, any ADC clock source can be divided down separately for each dedicated ADC and the shared ADC, with a maximum divisor of 254. The input clock can also be fed directly to the ADC.				
ADCS<7:0> (AD1CON3<7:0>) 11111111 = 512 * TPB = TAD • • 00000001 = 4 * TPB = TAD 00000000 = 2 * TPB = TAD	ADCDIV<6:0> (ADCTIMEx<22:16>) ADCDIV<6:0> (ADCCON2<6:0>) 1111111 = 254 * TQ = TAD • • • 0000011 = 6 * TQ = TAD 0000010 = 4 * TQ = TAD 0000001 = 2 * TQ = TAD 0000000 = TQ = TAD				