

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512efe144t-i-pl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber							
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description			
				Seria	al Periph	eral Interfa	ice 1			
SCK1	49	76	A52	109	I/O	ST	SPI1 Synchronous Serial Clock Input/Output			
SDI1	PPS	PPS	PPS	PPS	I	ST	SPI1 Data In			
SDO1	PPS	PPS	PPS	PPS	0	—	SPI1 Data Out			
SS1	PPS	PPS	PPS	PPS	I/O	ST	SPI1 Slave Synchronization Or Frame Pulse I/O			
				Seria	al Periph	eral Interfa	ice 2			
SCK2	4	10	B6	14	I/O	ST	SPI2 Synchronous Serial Clock Input/output			
SDI2	PPS	PPS	PPS	PPS	I	ST	SPI2 Data In			
SDO2	PPS	PPS	PPS	PPS	0	—	SPI2 Data Out			
SS2	PPS	PPS	PPS	PPS	I/O	ST	SPI2 Slave Synchronization Or Frame Pulse I/O			
Serial Peripheral Interface 3										
SCK3	29	43	A28	61	I/O	ST	SPI3 Synchronous Serial Clock Input/Output			
SDI3	PPS	PPS	PPS	PPS	I	ST	SPI3 Data In			
SDO3	PPS	PPS	PPS	PPS	0	—	SPI3 Data Out			
SS3	PPS	PPS	PPS	PPS	I/O	ST	SPI3 Slave Synchronization Or Frame Pulse I/O			
				Seria	al Periph	eral Interfa	ice 4			
SCK4	44	69	A46	98	I/O	ST	SPI4 Synchronous Serial Clock Input/Output			
SDI4	PPS	PPS	PPS	PPS	I	ST	SPI4 Data In			
SDO4	PPS	PPS	PPS	PPS	0	—	SPI4 Data Out			
SS4	PPS	PPS	PPS	PPS	I/O	ST	SPI4 Slave Synchronization Or Frame Pulse I/O			
				Seria	al Periph	eral Interfa	ice 5			
SCK5	—	39	A26	57	I/O	ST	SPI5 Synchronous Serial Clock Input/Output			
SDI5	—	PPS	PPS	PPS	I	ST	SPI5 Data In			
SDO5	—	PPS	PPS	PPS	0	—	SPI5 Data Out			
SS5	—	PPS	PPS	PPS	I/O	ST	SPI5 Slave Synchronization Or Frame Pulse I/O			
				Seria	al Periph	eral Interfa	ice 6			
SCK6	_	48	A32	70	I/O	ST	SPI6 Synchronous Serial Clock Input/Output			
SDI6	_	PPS	PPS	PPS	I	ST	SPI6 Data In			
SDO6	_	PPS	PPS	PPS	0	_	SPI6 Data Out			
SS6	—	PPS	PPS	PPS	I/O	ST	SPI6 Slave Synchronization Or Frame Pulse I/O			
Legend:	CMOS = C	MOS-comp	atible input	or output		Analog =	Analog input P = Power			
	ST - Schm	itt Trigger in	nout with C	MOS level	S	O = Output	ut I – Input			

TABLE 1-9: SPI1 THROUGH SPI 6 PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer O = Output

I = Input

PPS = Peripheral Pin Select

The FPU implements a high-performance 7-stage pipeline:

- Decode, register read and unpack (FR stage)
- Multiply tree, double pumped for double (M1 stage)
- Multiply complete (M2 stage)
- Addition first step (A1 stage)
- Addition second and final step (A2 stage)
- Packing to IEEE format (FP stage)
- Register writeback (FW stage)

The FPU implements a bypass mechanism that allows the result of an operation to be forwarded directly to the instruction that needs it without having to write the result to the FPU register and then read it back.

Table 3-5 lists the Coprocessor 1 Registers for the FPU.

Register Number	Register Name	Function
0	FIR	Floating Point implementation register. Contains information that identifies the FPU.
25	FCCR	Floating Point condition codes register.
26	FEXR	Floating Point exceptions register.
28	FENR	Floating Point enables register.
31	FCSR	Floating Point Control and Status register.

TABLE 3-5: FPU (CP1) REGISTERS

3.2 Power Management

The processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or halting the clocks, which reduces system power consumption during Idle periods.

3.2.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 33.0 "Power-Saving Features".

3.2.2 LOCAL CLOCK GATING

The majority of the power consumed by the processor core is in the clock tree and clocking registers. The PIC32MZ family makes extensive use of local gatedclocks to reduce this dynamic power consumption.

3.3 L1 Instruction and Data Caches

3.3.1 INSTRUCTION CACHE (I-CACHE)

The I-Cache is an on-core memory block of 16 Kbytes. Because the I-Cache is virtually indexed, the virtual-tophysical address translation occurs in parallel with the cache access rather than having to wait for the physical address translation. The tag holds 22 bits of physical address, a valid bit, and a lock bit. The LRU replacement bits are stored in a separate array.

The I-Cache block also contains and manages the instruction line fill buffer. Besides accumulating data to be written to the cache, instruction fetches that reference data in the line fill buffer are serviced either by a bypass of that data, or data coming from the external interface. The I-Cache control logic controls the bypass function.

The processor core supports I-Cache locking. Cache locking allows critical code or data segments to be locked into the cache on a per-line basis, enabling the system programmer to maximize the efficiency of the system cache.

The cache locking function is always available on all I-Cache entries. Entries can then be marked as locked or unlocked on a per entry basis using the CACHE instruction.

3.3.2 DATA CACHE (D-CACHE)

The D-Cache is an on-core memory block of 4 Kbytes. This virtually indexed, physically tagged cache is protected. Because the D-Cache is virtually indexed, the virtual-to-physical address translation occurs in parallel with the cache access. The tag holds 22 bits of physical address, a valid bit, and a lock bit. There is an additional array holding dirty bits and LRU replacement algorithm bits for each set of the cache.

In addition to I-Cache locking, the processor core also supports a D-Cache locking mechanism identical to the I-Cache. Critical data segments are locked into the cache on a per-line basis. The locked contents can be updated on a store hit, but cannot be selected for replacement on a cache miss.

The D-Cache locking function is always available on all D-Cache entries. Entries can then be marked as locked or unlocked on a per-entry basis using the CACHE instruction.

3.3.3 ATTRIBUTES

The processor core I-Cache and D-Cache attributes are listed in the Configuration registers (see Register 3-1 through Register 3-4).

3.4 EJTAG Debug Support

The processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the processor core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification specify which registers are selected and how they are used.

3.5 MIPS DSP ASE Extension

The MIPS DSP Application-Specific Extension Revision 2 is an extension to the MIPS32 architecture. This extension comprises new integer instructions and states that include new HI/LO accumulator register pairs and a DSP control register. This extension is crucial in a wide range of DSP, multimedia, and DSPlike algorithms covering Audio and Video processing applications. The extension supports native fractional format data type operations, register Single Instruction Multiple Data (SIMD) operations, such as add, subtract, multiply, and shift. In addition, the extension includes the following features that are essential in making DSP algorithms computationally efficient:

- · Support for multiplication of complex operands
- · Variable bit insertion and extraction
- Implementation and use of virtual circular buffers
- Arithmetic saturation and overflow handling support
- Zero cycle overhead saturation and rounding operations

3.6 microMIPS ISA

The processor core supports the microMIPS ISA, which contains all MIPS32 ISA instructions (except for branch-likely instructions) in a new 32-bit encoding scheme, with some of the commonly used instructions also available in 16-bit encoded format. This ISA improves code density through the additional 16-bit instructions while maintaining a performance similar to MIPS32 mode. In microMIPS mode, 16-bit or 32-bit instructions will be fetched and recoded to legacy MIPS32 instruction opcodes in the pipeline's I stage, so that the processor core can have the same microAptiv UP microarchitecture. Because the microMIPS instruction stream can be intermixed with 16-bit halfword or 32-bit word size instructions on halfword or word boundaries, additional logic is in place to address the misalignment word issues, thus minimizing performance loss.

REGISTE	ER 3-0. FI	IR. FLUATIN				SISIER, CP	IREGISTE	κυ						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.24	U-0	U-0	U-0	R-1	U-0	U-0	U-0	R-1						
31.24	—	—	—	UFRP	—		—	FC						
23.16	R-1	R-1	R-1	R-1	R-0	R-0	R-1	R-1						
23.10	HAS2008	F64	L	W	MIPS3D	PS	D	S						
15.8	R-1	R-0	R-1	R-0	R-0	R-1	R-1	R-1						
10.0				PRID<	7:0>									
7:0	R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x						
				REVISIO	N<7:0>									
Legend:														
Legena:														
R = Read	able bit		VV = VVritable	e Dit		emented bit, re	ead as '0'							
-n = Value	e at POR		1' = Bit is set	et	$0^{\prime} = Bit is cl$	eared	x = Bit is uni	known						
hit 21 20	Unimplomon	tod. Dood oo	· • ·											
bit 31-29 Unimplemented: Read as '0'														
DIL 20	UFRP: User Mode FR Switching Instruction bit													
	 0 = User mode FR switching instructions are supported 0 = User mode FR switching instructions are not supported 													
bit 27-25	0 = User mode FR switching instructions are not supported Unimplemented: Read as '0'													
bit 24	FC: Full Convert Ranges bit													
51121	1 = Full convert ranges are implemented (all numbers can be converted to another type by the FPU)													
	0 = Full convert ranges are not implemented													
bit 23	HAS008: IEEE-754-2008 bit													
	1 = MAC2008	3, ABS2008, N	AN2008 bits	exist within th	e FCSR regi	ster								
	0 = MAC2009), ABS2008, a	nd NAN2008	bits do not ex	ist within the	FCSR registe	er							
bit 22	F64: 64-bit F	PU bit				0								
	1 = This is a 6	64-bit FPU												
	0 = This is no	t a 64-bit FPU	I											
bit 21	L: Long Fixed	d Point Data T	ype bit											
	1 = Long fixed	d point data ty	pes are imple	emented										
	0 = Long fixed	d point data ty	pes are not ir	nplemented										
bit 20	W: Word Fixe	d Point data t	ype bit											
	1 = Word fixe	d point data ty	pes are imple	emented										
L:10		a point data ty	pes are not in	npiemented										
DIT 19		'S-3D ASE DIt	ad a											
	0 = MIPS-3D	is not implemente	ented											
bit 18	PS: Paired Si	ngle Floating	Point data bit											
	1 = PS floatin	g point is impl	emented											
	0 = PS floatin	g point is not	implemented											
bit 17	D: Double-pre	ecision (64-bit)) Floating Poi	nt Data bit										
	1 = Double-pr	recision floatin	ig point data t	ypes are impl	emented									
	0 = Double-pr	recision floatin	ig point data t	sypes are not i	mplemented									
bit 16	S: Single-pred	cision (32-bit)	Floating Poin	t Data bit										
	1 = Single-pre	ecision floating	g point data ty	pes are imple	emented									
	0 = Single-pre	ecision floating	g point data ty	vpes are not ir	nplemented									
bit 15-8	PRID<7:0>: F	Processor Ider	ntification bits		•	() () = 0	_							
	These bits all	ow software to	o distinguish b	between the v	arious types	ot MIPS proce	essors. For							
	PIC32 device	s with the M-C	lass core, thi	s value is 0xA	7.									
bit 7-0	REVISION<7	:0>: Processo	r Revision Ide	entification bit	S,									
	i nese bits allo	ow sonware to) aistinguish b	etween one re	evision and a	nother of the s	ame process	or type. This						

REGISTER 3-6: FIR: FLOATING POINT IMPLEMENTATION REGISTER; CP1 REGISTER 0

number is increased on major revisions of the processor core

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	—	—	—	—			—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—	—	—	_			_
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	-	—	—	—	—			—
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
7.0				FCC<	7:0>			

REGISTER 3-7: FCCR: FLOATING POINT CONDITION CODES REGISTER; CP1 REGISTER 25

Legend:								
R = Readable bit	W = Writable bit	U = Unimplemented b	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **FCC<7:0>:** Floating Point Condition Code bits These bits record the results of floating point compares and are tested for floating point conditional branches and conditional moves.

TABLE 7-2: INTERRUPT IRQ, VECTOR, AND BIT LOCATION (CONTINUED)

	YOTO VILLEN NUMBER	IRQ	Martan		Interru	upt Bit Locatior	ı	Persistent
Interrupt Source.	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
System Bus Protection Violation	_SYSTEM_BUS_PROTECTION_VECTOR	106	OFF106<17:1>	IFS3<10>	IEC3<10>	IPC26<20:18>	IPC26<17:16>	Yes
Crypto Engine Event	_CRYPTO_VECTOR	107	OFF107<17:1>	IFS3<11>	IEC3<11>	IPC26<28:26>	IPC26<25:24>	Yes
Reserved	—	108	—	—	_	—	_	_
SPI1 Fault	_SPI1_FAULT_VECTOR	109	OFF109<17:1>	IFS3<13>	IEC3<13>	IPC27<12:10>	IPC27<9:8>	Yes
SPI1 Receive Done	_SPI1_RX_VECTOR	110	OFF110<17:1>	IFS3<14>	IEC3<14>	IPC27<20:18>	IPC27<17:16>	Yes
SPI1 Transfer Done	_SPI1_TX_VECTOR	111	OFF111<17:1>	IFS3<15>	IEC3<15>	IPC27<28:26>	IPC27<25:24>	Yes
UART1 Fault	_UART1_FAULT_VECTOR	112	OFF112<17:1>	IFS3<16>	IEC3<16>	IPC28<4:2>	IPC28<1:0>	Yes
UART1 Receive Done	_UART1_RX_VECTOR	113	OFF113<17:1>	IFS3<17>	IEC3<17>	IPC28<12:10>	IPC28<9:8>	Yes
UART1 Transfer Done	_UART1_TX_VECTOR	114	OFF114<17:1>	IFS3<18>	IEC3<18>	IPC28<20:18>	IPC28<17:16>	Yes
I2C1 Bus Collision Event	_I2C1_BUS_VECTOR	115	OFF115<17:1>	IFS3<19>	IEC3<19>	IPC28<28:26>	IPC28<25:24>	Yes
I2C1 Slave Event	_I2C1_SLAVE_VECTOR	116	OFF116<17:1>	IFS3<20>	IEC3<20>	IPC29<4:2>	IPC29<1:0>	Yes
I2C1 Master Event	117	OFF117<17:1>	IFS3<21>	IEC3<21>	IPC29<12:10>	IPC29<9:8>	Yes	
PORTA Input Change Interrupt ⁽²⁾	_CHANGE_NOTICE_A_VECTOR	118	OFF118<17:1>	IFS3<22>	IEC3<22>	IPC29<20:18>	IPC29<17:16>	Yes
PORTB Input Change Interrupt	_CHANGE_NOTICE_B_VECTOR	119	OFF119<17:1>	IFS3<23>	IEC3<23>	IPC29<28:26>	IPC29<25:24>	Yes
PORTC Input Change Interrupt	_CHANGE_NOTICE_C_VECTOR	120	OFF120<17:1>	IFS3<24>	IEC3<24>	IPC30<4:2>	IPC30<1:0>	Yes
PORTD Input Change Interrupt	_CHANGE_NOTICE_D_VECTOR	121	OFF121<17:1>	IFS3<25>	IEC3<25>	IPC30<12:10>	IPC30<9:8>	Yes
PORTE Input Change Interrupt	_CHANGE_NOTICE_E_VECTOR	122	OFF122<17:1>	IFS3<26>	IEC3<26>	IPC30<20:18>	IPC30<17:16>	Yes
PORTF Input Change Interrupt	_CHANGE_NOTICE_F_VECTOR	123	OFF123<17:1>	IFS3<27>	IEC3<27>	IPC30<28:26>	IPC30<25:24>	Yes
PORTG Input Change Interrupt	_CHANGE_NOTICE_G_VECTOR	124	OFF124<17:1>	IFS3<28>	IEC3<28>	IPC31<4:2>	IPC31<1:0>	Yes
PORTH Input Change Interrupt ^(2,3)	_CHANGE_NOTICE_H_VECTOR	125	OFF125<17:1>	IFS3<29>	IEC3<29>	IPC31<12:10>	IPC31<9:8>	Yes
PORTJ Input Change Interrupt ^(2,3)	_CHANGE_NOTICE_J_VECTOR	126	OFF126<17:1>	IFS3<30>	IEC3<30>	IPC31<20:18>	IPC31<17:16>	Yes
PORTK Input Change Interrupt ^(2,3,4)	_CHANGE_NOTICE_K_VECTOR	127	OFF127<17:1>	IFS3<31>	IEC3<31>	IPC31<28:26>	IPC31<25:24>	Yes
Parallel Master Port	_PMP_VECTOR	128	OFF128<17:1>	IFS4<0>	IEC4<0>	IPC32<4:2>	IPC32<1:0>	Yes
Parallel Master Port Error	_PMP_ERROR_VECTOR	129	OFF129<17:1>	IFS4<1>	IEC4<1>	IPC32<12:10>	IPC32<9:8>	Yes
Comparator 1 Interrupt	_COMPARATOR_1_VECTOR	130	OFF130<17:1>	IFS4<2>	IEC4<2>	IPC32<20:18>	IPC32<17:16>	No
Comparator 2 Interrupt	_COMPARATOR_2_VECTOR	131	OFF131<17:1>	IFS4<3>	IEC4<3>	IPC32<28:26>	IPC32<25:24>	No
USB General Event	_USB1_VECTOR	132	OFF132<17:1>	IFS4<4>	IEC4<4>	IPC33<4:2>	IPC33<1:0>	Yes
USB DMA Event	_USB1_DMA_VECTOR	133	OFF133<17:1>	IFS4<5>	IEC4<5>	IPC33<12:10>	IPC33<9:8>	Yes

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EF Family Features" for the list of available peripherals.

2: This interrupt source is not available on 64-pin devices.

3: This interrupt source is not available on 100-pin devices.

4: This interrupt source is not available on 124-pin devices.

REGISTER 7-2: PRISS: PRIORITY SHADOW SELECT REGISTER (CONTINUED) bit 15-12 PRI3SS<3:0>: Interrupt with Priority Level 3 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 3 uses Shadow Set 0) 0111 = Interrupt with a priority level of 3 uses Shadow Set 7 0110 = Interrupt with a priority level of 3 uses Shadow Set 6 0001 = Interrupt with a priority level of 3 uses Shadow Set 1 0000 = Interrupt with a priority level of 3 uses Shadow Set 0 bit 11-8 **PRI2SS<3:0>:** Interrupt with Priority Level 2 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 2 uses Shadow Set 0) 0111 = Interrupt with a priority level of 2 uses Shadow Set 7 0110 = Interrupt with a priority level of 2 uses Shadow Set 6 0001 = Interrupt with a priority level of 2 uses Shadow Set 1 0000 = Interrupt with a priority level of 2 uses Shadow Set 0 PRI1SS<3:0>: Interrupt with Priority Level 1 Shadow Set bits⁽¹⁾ bit 7-4 1xxx = Reserved (by default, an interrupt with a priority level of 1 uses Shadow Set 0) 0111 = Interrupt with a priority level of 1 uses Shadow Set 7 0110 = Interrupt with a priority level of 1 uses Shadow Set 6 0001 = Interrupt with a priority level of 1 uses Shadow Set 1 0000 = Interrupt with a priority level of 1 uses Shadow Set 0 bit 3-1 Unimplemented: Read as '0' bit 0 SS0: Single Vector Shadow Register Set bit 1 = Single vector is presented with a shadow set 0 = Single vector is not presented with a shadow set

Note 1: These bits are ignored if the MVEC bit (INTCON<12>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
23:16	-	—	—	—	—	—	—	—						
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
	—	—	—	—	—	—	—	—						
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
10.0		CHSPTR<15:8>												
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
7:0				CHSPTF	R<7:0>									

REGISTER 10-14: DCHxSPTR: DMA CHANNEL x SOURCE POINTER REGISTER

Legend:

Logonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSPTR<15:0>: Channel Source Pointer bits

111111111111111 = Points to byte 65,535 of the source

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31.24		—	—		—		—	—					
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
		—	—		—	—	—	—					
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
10.0	CHDPTR<15:8>												
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
7:0				CHDPTF	R<7:0>								

REGISTER 10-15: DCHxDPTR: DMA CHANNEL x DESTINATION POINTER REGISTER

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHDPTR<15:0>: Channel Destination Pointer bits

111111111111111 = Points to byte 65,535 of the destination

TABLE 14-1: TIMER2 THROUGH TIMER9 REGISTER MAP (CONTINUED)

ess										В	its								
Virtual Addr (BF84_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0010		31:16		—	—	—	—	—	—		—		—		—	—			0000
0010		15:0								TMR7	<15:0>								0000
0020	DD7	31:16		-			_			_	_	_	_		-	_			0000
0020		15:0								PR7<	:15:0>	-				-			FFFF
0500		31:16	-	_	_	_	—	_	_	_	—	_	—		_	_			0000
UEUU	10001	15:0	ON	—	SIDL	—	-	—	—	—	TGATE	-	TCKPS<2:0:	>	T32	—	TCS	-	0000
0510	TMDO	31:16	—	_	—	—	—	—	—	_	—	_	—	—	_	_	—	—	0000
UEIU	TIVIRO	15:0								TMR8	<15:0>								0000
0520		31:16	—	_	—	—	—	—	—	_	—	_	—	—	_	_	—	—	0000
0E20	FRO	15:0								PR8<	:15:0>								FFFF
1000	TOCON	31:16	—	_	—	—	—	—	—	_	—	_	—	—	_	_	—	—	0000
1000	T9CON	15:0	ON	_	SIDL	—	_	_	_		TGATE		TCKPS<2:0:	>	_	—	TCS	_	0000
1010		31:16	_	_	_	—	_	_	_		_		_	_	_	—	_	_	0000
1010	TWR9	15:0								TMR9	<15:0>								0000
1020	DBO	31:16	—	—	—	—	—	—	—		—		—	—	—	—	—	—	0000
1020	PR9	15:0		•			•			PR9<	:15:0>	•							FFFF

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

TABLE 21-1: I2C1 THROUGH I2C5 REGISTER MAP (CONTINUED)

sse										В	ts								
Virtual Addr (BF82_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0420	IDCOMER	31:16	_		_	_			_			_		_	_	_		_	0000
0430	IZCONOR	15:0	—	_	_	_							Address Ma	ask Registe	r				0000
0440	12C3BRG	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0.10	.2005.10	15:0							Bau	d Rate Ger	erator Reg	ister							0000
0450	I2C3TRN	31:16	_	—		—	_	_	_	_	—	—	—	-		—	—	—	0000
-		15:0	—	_		_	—	_	_	_		1		I ransmit	Register	1			0000
0460	I2C3RCV	31:16	_	_		_	_		_	_	_			Dessive	—	_	_		0000
		15:0		_		_	_		_			DOIE		Receive	Register				0000
0600	I2C4CON	15.0					STRICT			SMENI					BCEN			SEN	1000
		31.16																	0000
0610	I2C4STAT	15:0	ACKSTAT	TRSTAT	ACKTIM	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
		31:16	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	0000
0620	I2C4ADD	15:0		_	_	_	_	_					Address	Register					0000
0620		31:16	_	_	_	_	_	-	_	_	_	_	—	_	—	_	_	—	0000
0630	12041VISK	15:0	_	_	—	_							Address Ma	ask Registe	r				0000
0640		31:16	—	_	_	—	-		_	-		-	—	_	—	_	-	-	0000
0040	1204010	15:0			-				Bau	d Rate Ger	erator Reg	ister							0000
0650	I2C4TRN	31:16	_	_		_	_	_	_		_	—	—	—		—	_	—	0000
		15:0	—	—	_	—	—	—	—	—		-		Transmit	Register	-			0000
0660	I2C4RCV	31:16	_	_		_	_	_		_	_	—	_			_	—	—	0000
		15:0	_	_		_	_	_	_					Receive	Register				0000
0800	I2C5CON	31:16		_	-	-	-	—	—	PCIE SCI	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000		
		15:0	ON		SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
0810	I2C5STAT	15.0		TPSTAT				- BCI	- CCSTAT			-	— D/A		_		DRE	TRE	0000
		31.16						BOL		ADD10		12001							0000
0820	I2C5ADD	15:0		_	_	_	_	_					Address	Register					0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0830	I2C5MSK	15:0	_		_	_	_	_					Address Ma	ask Registe	r				0000
0040	1005000	31:16	_	_	_	_	_	_	_	—	_	_	_	_	—	_	—	_	0000
0840	12C2BKG	15:0							Bau	d Rate Ger	erator Reg	ister							0000
0850		31:16			—	_	—		—	_	_			—		—	—		0000
0000	12001 KIN	15:0	_	_	—	—	_		_	_				Transmit	Register				0000
0860	I2C5RCV	31:16	_	_		—	_	—	-	_	—	—	—	—	—	—	—	—	0000
0000	1200100	15:0	_	—	—	—	—	—	—	—				Receive	Register				0000

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

2: This register is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04-04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
31:24		YEAR1	0<3:0>		YEAR01<3:0>				
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
23:16		MONTH	10<3:0>		MONTH01<3:0>				
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
15:8		DAY10	<3:0>		DAY01<3:0>				
7.0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	
7:0	_	—			WDAY01<3:0>				
Legend:	Legend:								
R = Read	able bit		W = Writable	e bit	U = Unimplemented bit, read as '0'				

'0' = Bit is cleared

x = Bit is unknown

REGISTER 25-4: RTCDATE: REAL-TIME CLOCK DATE VALUE REGISTER

bit 31-28 YEAR10<3:0>: Binary-Coded Decimal Value of Years bits, 10 digits

'1' = Bit is set

bit 27-24 YEAR01<3:0>: Binary-Coded Decimal Value of Years bits, 1 digit

bit 23-20 MONTH10<3:0>: Binary-Coded Decimal Value of Months bits, 10 digits; contains a value from 0 to 1

bit 19-16 **MONTH01<3:0>:** Binary-Coded Decimal Value of Months bits, 1 digit; contains a value from 0 to 9

bit 15-12 DAY10<3:0>: Binary-Coded Decimal Value of Days bits, 10 digits; contains a value from 0 to 3

bit 11-8 DAY01<3:0>: Binary-Coded Decimal Value of Days bits, 1 digit; contains a value from 0 to 9

bit 7-4 Unimplemented: Read as '0'

-n = Value at POR

bit 3-0 WDAY01<3:0>: Binary-Coded Decimal Value of Weekdays bits,1 digit; contains a value from 0 to 6

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

27.0 RANDOM NUMBER GENERATOR (RNG)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 49. "Crypto Engine (CE) and Random Number Generator (RNG)" (DS60001246) in the "PIC32 Family Reference Manual", which is available the Microchip site from web (www.microchip.com/PIC32).

The Random Number Generator (RNG) core implements a thermal noise-based, True Random Number Generator (TRNG) and a cryptographically secure Pseudo-Random Number Generator (PRNG).

The TRNG uses multiple ring oscillators and the inherent thermal noise of integrated circuits to generate true random numbers that can initialize the PRNG.

The PRNG is a flexible LSFR, which is capable of manifesting a maximal length LFSR of up to 64-bits.

The following are some of the key features of the Random Number Generator:

- TRNG:
 - Up to 25 Mbps of random bits
 - Multi-Ring Oscillator based design
 - Built-in Bias Corrector
- PRNG:
 - LSFR-based
 - Up to 64-bit polynomial length
 - Programmable polynomial
 - TRNG can be seed value

TABLE 27-1: RANDOM NUMBER GENERATOR BLOCK DIAGRAM

REGISTER 28-1: ADCCON1: ADC CONTROL REGISTER 1 (CONTINUED)

bit 3 STRGLVL: Scan Trigger High Level/Positive Edge Sensitivity bit

- 1 = Scan trigger is high level sensitive. Once STRIG mode is selected (TRGSRCx<4:0> in the ADCTRGx register), the scan trigger will continue for all selected analog inputs, until the STRIG option is removed.
- 0 = Scan trigger is positive edge sensitive. Once STRIG mode is selected (TRGSRCx<4:0> in the ADCTRGx register), only a single scan trigger will be generated, which will complete the scan of all selected analog inputs.
- bit 2-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	ADCCFG<31:24>									
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	ADCCFG<23:16>									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	ADCCFG<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	ADCCFG<7:0>									

REGISTER 28-33: ADCxCFG: ADCx CONFIGURATION REGISTER 'x' ('x' = 0 THROUGH 4 AND 7)

Legend:

- J			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 ADCCFG<31:0>: ADC Module Configuration Data bits

Prior to enabling the ADC, these registers should be written with the corresponding value stored in DEVADCx in software during ADC initialization.

Note: The bits in this register can only change when the applicable ANEN*x* bit in the ADCANCON register is cleared.

NOTES:

32.0 COMPARATOR VOLTAGE REFERENCE (CVREF)

Note:	This data sheet summarizes the
	features of the PIC32MZ EF family of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to Section 20. "Comparator
	Voltage Reference (CVREF)"
	(DS60001109) in the "PIC32 Family
	Reference Manual", which is available
	from the Microchip web site
	(www.microchip.com/PIC32).

The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/VSS or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output.

The comparator voltage reference has the following features:

- High and low range selection
- · Sixteen output levels available for each range
- Internally connected to comparators to conserve device pins
- Output can be connected to a pin

A block diagram of the CVREF module is illustrated in Figure 32-1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
31:24	—			—			CRYPTPG<1:0>		
00.40	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	
23:16	FCPC	G<1:0>	SQI1P	G<1:0>	—	—	ETHPG<1:0>		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	
15:8	CAN2F	PG<1:0>	CAN1F	PG<1:0>	—	— USBPG<1:0>		G<1:0>	
7:0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	
	—	_	DMAP	G<1:0>		—	CPUPO	G<1:0>	

REGISTER 34-10: CFGPG: PERMISSION GROUP CONFIGURATION REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-26 Unimplemented: Read as '0'

bit 25-24	CRYPTPG<1:0>: Crypto Engine Permission Group bits
	11 = Initiator is assigned to Permission Group 3
	10 = Initiator is assigned to Permission Group 2
	01 = Initiator is assigned to Permission Group 1
	00 = Initiator is assigned to Permission Group 0
bit 23-22	FCPG<1:0>: Flash Control Permission Group bits
	Same definition as bits 25-24.
bit 21-20	SQI1PG<1:0>: SQI Module Permission Group bits
	Same definition as bits 25-24.
bit 19-18	Unimplemented: Read as '0'
bit 17-16	ETHPG<1:0>: Ethernet Module Permission Group bits
	Same definition as bits 25-24.
bit 15-14	CAN2PG<1:0>: CAN2 Module Permission Group bits
	Same definition as bits 25-24.
bit 13-12	CAN1PG<1:0>: CAN1 Module Permission Group bits
	Same definition as bits 25-24.
bit 11-10	Unimplemented: Read as '0'
bit 9-8	USBPG<1:0>: USB Module Permission Group bits
	Same definition as bits 25-24.
bit 7-6	Unimplemented: Read as '0'

- bit 5-4 **DMAPG<1:0>:** DMA Module Permission Group bits Same definition as bits 25-24.
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 **CPUPG<1:0>:** CPU Permission Group bits Same definition as bits 25-24.

			Standard Operating Conditions: 2.1V to 3.6V						
AC CHA	AC CHARACTERISTICS ⁽²⁾			(unless otherwise stated)					
			Operat	Operating temperature $-40^{\circ}C \le IA \le +85^{\circ}C$ for Industrial					
	[-40°C \leq TA \leq +125°C for Extended					
Param.	Symbol	Characteristics	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions		
	Town	Comple Time for							
AD60a	ISAMP	ADC7 (Class 2 and	0				Source impedance $\leq 200\Omega$		
		Class 2 Inputs) with	a a				CVDCPL<2:0>(ADCCON2<28:26>) = 001		
		the CVDEN hit	11				CVDCPL < 2:0> (ADCCON2 < 28:26>) = 0.11		
		(ADCCON1<11>) = 1	12	—	—	TAD	CVDCPL < 2:0> (ADCCON2 < 28:26>) = 100		
			14				CVDCPL < 2:0> (ADCCON2 < 28:26>) = 1.01		
			16				CVDCPL<2:0> (ADCCON2<28:26>) = 110		
			17				CVDCPL<2:0> (ADCCON2<28:26>) = 111		
							Source Impedance $\leq 500\Omega$		
			10				CVDCPL<2:0> (ADCCON2<28:26>) = 001		
			12	_	_	Тар	CVDCPL<2:0> (ADCCON2<28:26>) = 010		
			14				CVDCPL<2:0> (ADCCON2<28:26>) = 011		
			16			IAD	CVDCPL<2:0> (ADCCON2<28:26>) = 100		
			18				CVDCPL<2:0> (ADCCON2<28:26>) = 101		
			19				CVDCPL<2:0> (ADCCON2<28:26>) = 110		
			21				CVDCPL<2:0> (ADCCON2<28:26>) = 111		
			40				Source Impedance $\leq 1 \text{ K}\Omega$		
			13				CVDCPL<2:0> (ADCCON2<28:26>) = 001		
			16				CVDCPL<2:0> (ADCCON2<28:26>) = 010		
			10	_	_	TAD	CVDCPL<2.0>(ADCCON2<28.26>) = 011		
			23				CVDCPL < 2:0> (ADCCON2<28:26>) = 100		
			26				CVDCPI < 2:0> (ADCCON2 < 28:26>) = 110		
			28				CVDCPL<2:0> (ADCCON2<28:26>) = 111		
							Source Impedance $\leq 5 \text{ K}\Omega$		
			41				CVDCPL<2:0> (ADCCON2<28:26>) = 001		
			48				CVDCPL<2:0> (ADCCON2<28:26>) = 010		
			56			TAD	CVDCPL<2:0> (ADCCON2<28:26>) = 011		
			63	—	—	IAD	CVDCPL<2:0> (ADCCON2<28:26>) = 100		
			70				CVDCPL<2:0> (ADCCON2<28:26>) = 101		
			78				CVDCPL<2:0> (ADCCON2<28:26>) = 110		
			85				CVDCPL<2:0> (ADCCON2<28:26>) = 111		

TABLE 37-40: ADC SAMPLE TIMES WITH CVD ENABLED

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.

NOTES:

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B