

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512eff100-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
			•		PO	RTA	·
RA0	_	17	A11	22	I/O	ST	PORTA is a bidirectional I/O port
RA1	—	38	B21	56	I/O	ST	
RA2	—	59	A41	85	I/O	ST	
RA3	—	60	B34	86	I/O	ST	
RA4	—	61	A42	87	I/O	ST	
RA5	—	2	B1	2	I/O	ST	
RA6	—	89	A61	129	I/O	ST	
RA7	—	90	B51	130	I/O	ST	
RA9	—	28	B15	39	I/O	ST	
RA10	_	29	A20	40	I/O	ST]
RA14	_	66	B37	95	I/O	ST	
RA15	_	67	A45	96	I/O	ST	
					PO	RTB	
RB0	16	25	A18	36	I/O	ST	PORTB is a bidirectional I/O port
RB1	15	24	A17	35	I/O	ST	
RB2	14	23	A16	34	I/O	ST	
RB3	13	22	A14	31	I/O	ST	
RB4	12	21	A13	26	I/O	ST	
RB5	11	20	B11	25	I/O	ST	
RB6	17	26	B14	37	I/O	ST	
RB7	18	27	A19	38	I/O	ST	
RB8	21	32	B18	47	I/O	ST	
RB9	22	33	A23	48	I/O	ST	
RB10	23	34	B19	49	I/O	ST	_
RB11	24	35	A24	50	I/O	ST	_
RB12	27	41	A27	59	I/O	ST	_
RB13	28	42	B23	60	I/O	ST	-
RB14	29	43	A28	61	I/O	ST	-
RB15	30	44	B24	62	I/O	ST	
D O1		-				RTC	
RC1	—	6	B3	6	I/O	ST	PORTC is a bidirectional I/O port
RC2		7	A6	11	I/O	ST	4
RC3		8	B5	12	I/O	ST	4
RC4	-	9	A7	13	I/O	ST	4
RC12	31	49	B28	71	I/O	ST	4
RC13	47	72	B41	105	I/O	ST	4
RC14	48	73	A49	106	I/O	ST	4
RC15 Legend:	32	50 MOS-comp	A33	72	I/O	ST	Analog input P = Power

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select I = Input

		Pin Nu	mber					
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description	
				Inte	er-Integr	ated Circui	t 1	
SCL1	44	66	B37	95	I/O	ST	I2C1 Synchronous Serial Clock Input/Output	
SDA1	43	67	A45	96	I/O	ST	I2C1 Synchronous Serial Data Input/Output	
				Inte	er-Integr	ated Circui	t 2	
SCL2	—	59	A41	85	I/O	ST	I2C2 Synchronous Serial Clock Input/Output	
SDA2	—	60	B34	86	I/O	ST	I2C2 Synchronous Serial Data Input/Output	
				Inte	er-Integr	ated Circui	t 3	
SCL3	51	58	A39	80	I/O	ST	I2C3 Synchronous Serial Clock Input/Output	
SDA3	50	57	B31	79	I/O	ST	I2C3 Synchronous Serial Data Input/Output	
		•	•	Inte	er-Integr	ated Circui	t 4	
SCL4	6	12	B7	16	I/O	ST	I2C4 Synchronous Serial Clock Input/Output	
SDA4	5	11	A8	15	I/O	ST	I2C4 Synchronous Serial Data Input/Output	
Inter-Integrated Circuit 5								
SCL5	42	65	A44	91	I/O	ST	I2C5 Synchronous Serial Clock Input/Output	
SDA5	41	64	B36	90	I/O	ST	I2C5 Synchronous Serial Data Input/Output	
Legend:	CMOS = CI	MOS-comp	atible input	or output		Analog =	Analog input P = Power	

TABLE 1-10: I2C1 THROUGH I2C5 PINOUT I/O DESCRIPTIONS

end: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output

PPS = Peripheral Pin Select

TABLE 1-11: COMPARATOR 1, COMPARATOR 2 AND CVREF PINOUT I/O DESCRIPTIONS

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
				Comp	arator Vo	oltage Refe	rence
CVREF+	16	29	A20	40	Ι	Analog	Comparator Voltage Reference (High) Input
CVREF-	15	28	B15	39	I	Analog	Comparator Voltage Reference (Low) Input
CVREFOUT	23	34	B19	49	0	Analog	Comparator Voltage Reference Output
	Comparator 1						
C1INA	11	20	B11	25	Ι	Analog	Comparator 1 Positive Input
C1INB	12	21	A13	26	I	Analog	Comparator 1 Selectable Negative Input
C1INC	5	11	A8	15	I	Analog	
C1IND	4	10	B6	14	I	Analog	
C1OUT	PPS	PPS	PPS	PPS	0	_	Comparator 1 Output
	•		•	•	Comp	arator 2	·
C2INA	13	22	A14	31	I	Analog	Comparator 2 Positive Input
C2INB	14	23	A16	34	I	Analog	Comparator 2 Selectable Negative Input
C2INC	10	16	B9	21	I	Analog]
C2IND	6	12	B7	16	I	Analog]
C2OUT	PPS	PPS	PPS	PPS	0	—	Comparator 2 Output
Legend:		•	•	•		0	Analog input P = Power
C2IND 6 12 B7 16 C2OUT PPS PPS PPS PPS						Analog —	Analog input P = Power

TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select I = Input

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress f)	N -1	e								Bi	ts								Ś
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	055400	31:16	_		_	_	_	—	—	_	_	-	_	-	_	—	VOFF<	17:16>	000
0768 (OFF138	15:0						•	•	VOFF<15:1>				•		•		—	000
0760	OFF139	31:16	_	_	_	—	—	—	—	_	_	_	_	-	_	—	VOFF<	17:16>	000
07600	JFF 139	15:0								VOFF<15:1>								—	000
0770	OFF140	31:16	_	_	_	_		—	—	_	_	-	_	—	_	_	VOFF<	17:16>	000
0//0	011140	15:0								VOFF<15:1>								—	000
0774	OFF141	31:16	—	_	—	—	—	—	—	—	—	—	—	—	—	_	VOFF<	17:16>	000
0//4	011141	15:0								VOFF<15:1>								—	000
0778	OFF142	31:16	—	—	—	—	—		_	—	—	—	—	—	—		VOFF<	17:16>	0000
0110	011142	15:0			i			i	i	VOFF<15:1>			i		i	i	i	—	0000
077C	OFF143	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	_	VOFF<	17:16>	0000
00	011110	15:0								VOFF<15:1>							1	—	0000
0780	OFF144	31:16	—	—	—	—	—	—	—	—	—	—	—	-	—	—	VOFF<	17:16>	0000
		15:0								VOFF<15:1>							1		0000
0784	OFF145	31:16	—	_	—	—	—	—	—	—	_	—	—	—	—	_	VOFF<	17:16>	0000
		15:0								VOFF<15:1>							1	—	0000
0788	OFF146	31:16	—	_	—	—	—	—	—	—	_	—	—	—	—	_	VOFF<	17:16>	0000
		15:0								VOFF<15:1>							1	—	0000
078C	OFF147	31:16	—	—	—	—	—	—	—		—	—	—	—	—	—	VOFF<	17:16>	0000
	-	15:0								VOFF<15:1>				-				—	0000
0790	OFF148 ⁽²⁾	31:16	—	—	—	—	—	—	—		—	—	—	—	—	—	VOFF<	17:16>	0000
		15:0								VOFF<15:1>				-				—	0000
0794	OFF149 ⁽²⁾	31:16	—	_	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
	-	15:0								VOFF<15:1>								—	0000
0798	OFF150 ⁽²⁾	31:16	—		—	—	—	—	—	—	—	—	—	—	—	—	VOFF<		0000
		15:0								VOFF<15:1>								—	0000
079C	OFF151 ⁽³⁾	31:16	—	—	—	—	-	—	—	—	—	—	—	—	—	—	VOFF<		0000
	-	15:0								VOFF<15:1>								—	0000
07A0 (OFF152 ⁽³⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
		15:0								VOFF<15:1>								—	0000

DS60001320D-page 140

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Note 1: **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

3: This bit or register is not available on devices without a CAN module.

4: This bit or register is not available on 100-pin devices.

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—				_			—
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	_	_	_	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				CHSSIZ	<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CHSSIZ	<7:0>			

REGISTER 10-12: DCHxSSIZ: DMA CHANNEL x SOURCE SIZE REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSSIZ<15:0>: Channel Source Size bits

1111111111111111 = 65,535 byte source size

REGISTER 10-13: DCHxDSIZ: DMA CHANNEL x DESTINATION SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	_	_	_	_	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—		—	—	_	—		—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				CHDSIZ	<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CHDSIZ	<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **CHDSIZ<15:0>:** Channel Destination Size bits

111111111111111 = 65,535 byte destination size $\ensuremath{\cdot}$

 NOTES:

									n		Bits		•	•				
(BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0
28	USB E2CSR2	31:16 15:0		•		•	•		Inde	exed by the s	ame bits in U	SBIE2CSR2	·	·			•	
2C	USB E2CSR3	31:16 15:0		Indexed by the same bits in USBIE2CSR3														
30	USB E3CSR0	31:16 15:0		Indexed by the same bits in USBIE3CSR0														
34	USB E3CSR1	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE3CSR1						
8	USB E3CSR2	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE3CSR2						
С	USB E3CSR3	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE3CSR3						
)	USB E4CSR0	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE4CSR0						
4	USB E4CSR1	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE4CSR1						
3	USB E4CSR2	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE4CSR2						
2	USB E4CSR3	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE4CSR3						
)	USB E5CSR0	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE5CSR0						
4	USB E5CSR1	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE5CSR1						
в	USB E5CSR2	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE5CSR2						
С	USB E5CSR3	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE5CSR3						
0	USB E6CSR0	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE6CSR0						
4	USB E6CSR1	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE6CSR1						
3	USB E6CSR2	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE6CSR2						
С	USB E6CSR3	31:16 15:0							Inde	exed by the s	ame bits in U	SBIE6CSR3						

1: 2: 3: 4:

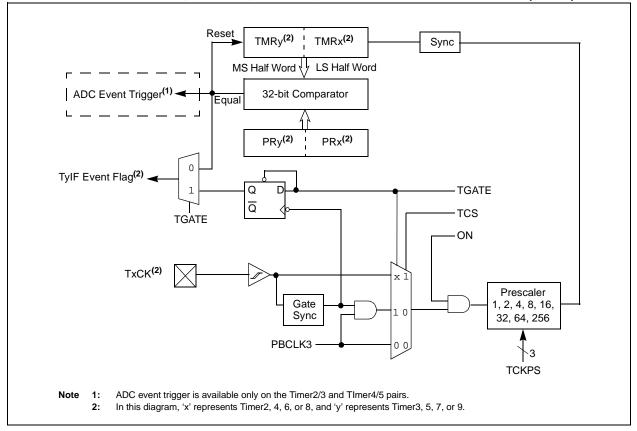
Device mode.
 Host mode.
 Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0).
 Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—						
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—		—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0		—						
7:0	R/W-0, HS	R/W-0, HS	R/W-0, HS					
7.0	DMA8IF	DMA7IF	DMA6IF	DMA5IF	DMA4IF	DMA3IF	DMA2IF	DMA1IF

REGISTER 11-20: USBDMAINT: USB DMA INTERRUPT REGISTER

Legend:

3						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			


bit 31-8 Unimplemented: Read as '0'

bit 7-0 **DMAxIF:** DMA Channel 'x' Interrupt bit

1 = The DMA channel has an interrupt event

0 = No interrupt event

All bits are cleared on a read of the register.

FIGURE 14-2: TIMER2/3, TIMER4/5, TIMER6/7, AND TIMER8/9 BLOCK DIAGRAM (32-BIT)

Bit Range	Bit Bit 31/23/15/7 30/22/14/6		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:0	RMCNT<2:0>		
00.40	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
23:16	MCLKSEL ⁽¹⁾	_		—	_	_	SPIFE	ENHBUF ⁽¹⁾		
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	ON	_	SIDL	DISSDO ⁽⁴⁾	MODE32	MODE32 MODE16		CKE ⁽²⁾		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	SSEN	CKP ⁽³⁾	MSTEN	DISSDI ⁽⁴⁾	STXISE	L<1:0>	SRXISEL<1:0>			

REGISTER 19-1: SPIxCON: SPI CONTROL REGISTER

Legend:

0							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31 FRMEN: Framed SPI Support bit

- 1 = Framed SPI support is enabled (\overline{SSx} pin used as FSYNC input/output)
 - 0 = Framed SPI support is disabled
- bit 30 **FRMSYNC:** Frame Sync Pulse Direction Control on <u>SSx</u> pin bit (Framed SPI mode only)
 - 1 = Frame sync pulse input (Slave mode)
 - 0 = Frame sync pulse output (Master mode)
- bit 29 FRMPOL: Frame Sync Polarity bit (Framed SPI mode only)
 - 1 = Frame pulse is active-high
 - 0 = Frame pulse is active-low
- bit 28 MSSEN: Master Mode Slave Select Enable bit
 - 1 = Slave select SPI support is enabled. The SS pin is automatically driven during transmission in Master mode. Polarity is determined by the FRMPOL bit.
 - 0 = Slave select SPI support is disabled.
- bit 27 FRMSYPW: Frame Sync Pulse Width bit
 - 1 = Frame sync pulse is one character wide
 - 0 = Frame sync pulse is one clock wide
- bit 26-24 **FRMCNT<2:0>:** Frame Sync Pulse Counter bits. Controls the number of data characters transmitted per pulse. This bit is only valid in Framed mode.
 - 111 = Reserved
 - 110 = Reserved
 - 101 = Generate a frame sync pulse on every 32 data characters
 - 100 = Generate a frame sync pulse on every 16 data characters
 - 011 = Generate a frame sync pulse on every 8 data characters
 - 010 = Generate a frame sync pulse on every 4 data characters
 - 001 = Generate a frame sync pulse on every 2 data characters

000 = Generate a frame sync pulse on every data character

- bit 23 MCLKSEL: Master Clock Enable bit⁽¹⁾
 - 1 = REFCLKO1 is used by the Baud Rate Generator
 - 0 = PBCLK2 is used by the Baud Rate Generator
- bit 22-18 Unimplemented: Read as '0'
- **Note 1:** This bit can only be written when the ON bit = 0. Refer to **Section 37.0** "**Electrical Characteristics**" for maximum clock frequency requirements.
 - 2: This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
 - **3:** When AUDEN = 1, the SPI/I²S module functions as if the CKP bit is equal to '1', regardless of the actual value of the CKP bit.
 - 4: This bit present for legacy compatibility and is superseded by PPS functionality on these devices (see Section 12.4 "Peripheral Pin Select (PPS)" for more information).

	IN 20-9. 0	GIIIIIIOIAI	. Sel INTER					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	_	_	_	_	_	_
22.10	U-0	U-0	U-0	U-0	U-0 U-0		U-0	U-0
23:16	—	—	—	—	_	—	—	—
	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS
15:8	_	—	_	-	DMA EIF	PKT COMPIF	BD DONEIF	CON THRIF
	R/W-1, HS	R/W-0, HS	R/W-1, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS	R/W-0, HS	R/W-1, HS
7:0	CON CON EMPTYIF FULLIF R		RXTHRIF ⁽¹⁾	RXFULLIF	RX EMPTYIF	TXTHRIF	TXFULLIF	TX EMPTYIF

REGISTER 20-9: SQI1INTSTAT: SQI INTERRUPT STATUS REGISTER

Legend:	HS = Hardware Set		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

b

hit 21 12	Unimplemented: Read as '0'
	•
bit 11	DMAEIF: DMA Bus Error Interrupt Flag bit
	1 = DMA bus error has occurred
	0 = DMA bus error has not occurred
bit 10	PKTCOMPIF: DMA Buffer Descriptor Processor Packet Completion Interrupt Flag bit
	1 = DMA BD packet is complete
	0 = DMA BD packet is in progress
bit 9	BDDONEIF: DMA Buffer Descriptor Done Interrupt Flag bit
	1 = DMA BD process is done
	0 = DMA BD process is in progress
bit 8	CONTHRIF: Control Buffer Threshold Interrupt Flag bit
	1 = The control buffer has more than THRES words of space available
	0 = The control buffer has less than THRES words of space available
bit 7	CONEMPTYIF: Control Buffer Empty Interrupt Flag bit
	1 = Control buffer is empty
	0 = Control buffer is not empty
bit 6	CONFULLIF: Control Buffer Full Interrupt Flag bit
	1 = Control buffer is full
	0 = Control buffer is not full
bit 5	RXTHRIF: Receive Buffer Threshold Interrupt Flag bit ⁽¹⁾
	1 = Receive buffer has more than RXINTTHR words of space available
	0 = Receive buffer has less than RXINTTHR words of space available
bit 4	RXFULLIF: Receive Buffer Full Interrupt Flag bit
	1 = Receive buffer is full
	0 = Receive buffer is not full

- b
- bit 3 **RXEMPTYIF:** Receive Buffer Empty Interrupt Flag bit
 - 1 = Receive buffer is empty
 - 0 = Receive buffer is not empty
- Note 1: In Boot/XIP mode, the POR value of the receive buffer threshold is zero. Therefore, this bit will be set to a '1', immediately after a POR until a read request on the System Bus is received.

Note: The bits in the register are cleared by writing a '1' to the corresponding bit position.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	_	_	_	-	-	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	—	_	_	—	-	-	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	—	_	_	_	_	_	—
7.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0		_	_	_	_	START	POLLEN	DMAEN

REGISTER 20-14: SQI1BDCON: SQI BUFFER DESCRIPTOR CONTROL REGISTER

Legend:

bit 0

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-3 Unimplemented: Read as '0'

- bit 2 START: Buffer Descriptor Processor Start bit
 - 1 = Start the buffer descriptor processor
 - 0 = Disable the buffer descriptor processor
- bit 1 **POLLEN:** Buffer Descriptor Poll Enable bit
 - 1 = BDP poll is enabled
 - 0 = BDP poll is not enabled
 - DMAEN: DMA Enable bit
 - 1 = DMA is enabled
 - 0 = DMA is disabled

REGISTER 20-15: SQI1BDCURADD: SQI BUFFER DESCRIPTOR CURRENT ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
21.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
31:24	BDCURRADDR<31:24>													
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
23:16	BDCURRADDR<23:16>													
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
15:8	BDCURRADDR<15:8>													
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
7:0				BDCURRAD	DDR<7:0>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BDCURRADDR<31:0>: Current Buffer Descriptor Address bits

These bits contain the address of the current descriptor being processed by the Buffer Descriptor Processor.

21.1 I²C Control Registers

TABLE 21-1: I2C1 THROUGH I2C5 REGISTER MAP

ess										Bi	ts								
Virtual Address (BF82_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	I2C1CON	31:16	_	_	—	—	—		_			PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
0000	12010011	15:0	ON		SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
0010	I2C1STAT	31:16		—	—	—		-	—	_	—	—	-	_	_	—	—	-	0000
		15:0	ACKSTAT	TRSTAT	ACKTIM	_		BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
0020	I2C1ADD	31:16	_	_			_			_	_	—			—	—		—	0000
		15:0	_										Address	Register					0000
0030	I2C1MSK	31:16 15:0			—				—	_	_	_	- Address Mr	ask Registe		_	—	—	0000
		31:16	_										Address Ma	ask Registe				_	0000
0040	I2C1BRG	15:0			_	_	_		Bau	d Rate Gen	erator Reg	ister	_	_	_	_	_		0000
		31:16		_	_	_		_					_	_	_	_	_	_	0000
0050	I2C1TRN	15:0	_	_	_	_		_	_	_				Transmit	Register				0000
		31:16	_	_	_	_	_	_	_	_	_	_	_		—	_	_	_	0000
0060	I2C1RCV	15:0	_	_	_	_		_	_	_				Receive	Register				0000
		31:16	_	_	_	_	_	_	_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
0200	12C2CON ⁽²⁾	15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
0040	12C2STAT ⁽²⁾	31:16	_		_	—	—		_	_		_	—	—	_	_	—		0000
0210	12025TAT-	15:0	ACKSTAT	TRSTAT	ACKTIM	_	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
0220	12C2ADD(2)	31:16	_		—	_	_		—	_	-	_	-	_	_	—	-		0000
0220	IZCZADD.	15:0	_	_	_	—	_	_					Address	Register			-		0000
0230	12C2MSK(2)	31:16	—	—	—	—	—	-	—	—	—	—	—	—	—	—	—	—	0000
0200		15:0	_			—	_						Address Ma	ask Registe	r				0000
0240	12C2BRG(2)	31:16	—	—	—	—	_	—	—	—	_	—	—	—	—	—	—	—	0000
		15:0							Bau	d Rate Gen	erator Reg	ister							0000
0250	12C2TRN(2)	31:16	_			_	_		_	_	_	—				_		_	0000
		15:0	_				_			_				Transmit	Register				0000
0260	I2C2RCV(2)	31:16	_	_	_	_		_	_	_	-		—	-	—	—	—	—	0000
		15:0	_							_		DOIE	0015	Receive		00005		DUEN	0000
0400	I2C3CON	31:16 15:0	ON				— STRICT	— A10M	— DISSLW	 SMEN	— GCEN	PCIE STREN	SCIE ACKDT	BOEN ACKEN	SDAHT RCEN	SBCDE PEN	AHEN RSEN	DHEN SEN	0000
		31:16			SIDL	SULREL		A10M	DISSLW	SIMEIN	GCEN		ACKDI	ACKEN	RCEN	PEN	KSEN	SEN —	1000
0410	I2C3STAT	15:0	 ACKSTAT	 TRSTAT	ACKTIM	_		BCL	GCSTAT	ADD10		I2COV	 D/A	 P		R/W	 RBF	 TBF	0000
		31:16	-				_	BCL	GCSTAT			12000		г 	3	R/W			0000
0420	I2C3ADD	15:0											Address	 Register					0000
Logon									chown in h				/1001033	register					0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

2: This register is not available on 64-pin devices.

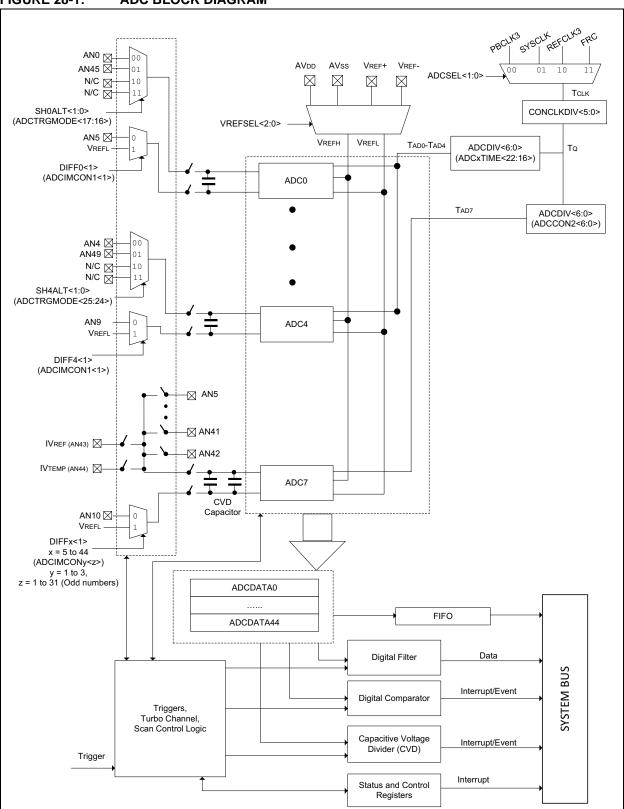
REGISTER 22-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 7-6	URXISEL<1:0>: Receive Interrupt Mode Selection bit 11 = Reserved
	 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full 00 = Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character)
bit 5	 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Data is being received
bit 3	 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character 0 = Parity error has not been detected
bit 2	 FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit.
	This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to empty state.
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed
bit 0	 URXDA: Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
31:24				ID<15	i:8>					
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
23:16	ID<7:0>									
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8	VERSION<7:0>									
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0				REVISIO	N<7:0>					

REGISTER 27-1: RNGVER: RANDOM NUMBER GENERATOR VERSION REGISTER

Legend:


Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 ID<15:0>: Block Identification bits

bit 15-8 VERSION<7:0>: Block Version bits

bit 7-0 REVISION<7:0>: Block Revision bits

Т

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	FLTEN7	MSEL	7<1:0>		F	SEL7<4:0>		
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	FLTEN6	MSEL6<1:0>		FSEL6<4:0>				
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	FLTEN5	MSEL	5<1:0>		F	SEL5<4:0>		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	FLTEN4	MSEL	4<1:0>		F	SEL4<4:0>		

REGISTER 29-11: CIFLTCON1: CAN FILTER CONTROL REGISTER 1

Legend:

R = Readable bit	W = Writable bit	able bit U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN7: Filter 7 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL7<1:0>: Filter 7 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 28-24	FSEL7<4:0>: FIFO Selection bits
511 20 21	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN6: Filter 6 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 22-21	
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 20-16	FSEL6<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 30-19: ETHMCOLFRM: ETHERNET CONTROLLER MULTIPLE COLLISION FRAMES STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	_	_	_	—	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	_	_	_	—	_	_
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	MCOLFRMCNT<15:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				MCOLFRM	CNT<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **MCOLFRMCNT<15:0>:** Multiple Collision Frame Count bits Increment count for frames that were successfully transmitted after there was more than one collision.

Note 1: This register is only used for TX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	r-0	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24	_	—	_	_	_	_	_	—
22.46	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23:16	—	—	_	_	—	—	_	—
45.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
15:8	_	—	_	_	_	—	_	—
7.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
7:0	_	_	_	_	_	_	_	_

REGISTER 34-1: DEVSIGN0/ADEVSIGN0: DEVICE SIGNATURE WORD 0 REGISTER

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 Reserved: Write as '0'

bit 30-0 Reserved: Write as '1'

Note: The DEVSIGN1 through DEVSIGN3 and ADEVSIGN1 through ADEVSIGN3 registers are used for Quad Word programming operation when programming the DEVSIGN0/ADESIGN0 registers, and do not contain any valid information.

REGISTER 34-2: DEVCP0/ADEVCP0: DEVICE CODE-PROTECT 0 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	r-1	r-1	r-1	R/P	r-1	r-1	r-1	r-1
31:24	_	—	—	CP	—	_	_	_
00.40	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23:16	_	—	—	_	—	_	_	—
45.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
15:8	_	—	—	_	—	_	_	_
7.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
7:0	_	_	_	_	_	_	_	_

Legend:	r = Reserved bit	Reserved bit P = Programmable bit		
R = Readable bit	W = Writable bit	W = Writable bit U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	$(1)^2 = Bit is set$ $(0)^2 = Bit is cleared$ $x = Bit is unknown$		

bit 31-29 Reserved: Write as '1'

bit 28 **CP:** Code-Protect bit

Prevents boot and program Flash memory from being read or modified by an external programming device. 1 = Protection is disabled

0 = Protection is enabled

bit 27-0 Reserved: Write as '1'

Note: The DEVCP1 through DEVCP3 and ADEVCP1 through ADEVCP3 registers are used for Quad Word programming operation when programming the DEVCP0/ADEVCP0 registers, and do not contain any valid information.

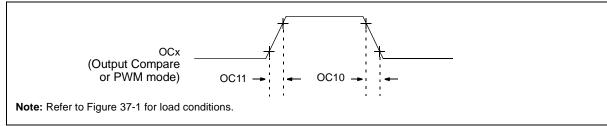
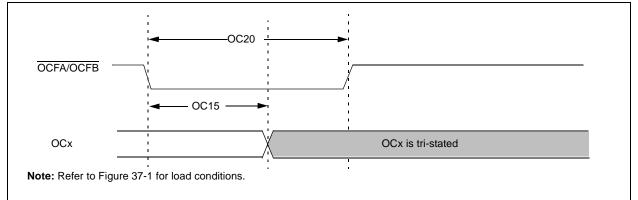

AC CHAI	RACTERIS	STICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteris	stics ⁽²⁾	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
DO31	TioR	Port Output Rise Tin I/O Pins: 4x Source Driver Pins RA3, RA9, RA10, RA RB0-RB2, RB4, RB6- RB13	- 14, RA15	_	_	9.5	ns	Cload = 50 pF
		RC12-RC15 RD0, RD6-RD7, RD1 ² RE8, RE9 RF2, RF3, RF8 RG15 RH0, RH1, RH4-RH6, RJ0-RJ2, RJ8, RJ9, F	, RH8-RH13	_	_	6	ns	Cload = 20 pF
		Port Output Rise Tin I/O Pins: 8x Source Driver Pins RA0-RA2, RA4, RA5 RB3, RB5, RB8-RB10 RB15 RC1-RC4	-	_		8	ns	Cload = 50 pF
		RD1-RD5, RD9, RD10 RD15 RE4-RE7 RF0, RF4, RF5, RF12 RG0, RG1, RG6-RG9 RH2, RH3, RH7, RH1 RJ3-RJ7, RJ10, RJ12 RK0-RK7	2, RF13 4, RH15	_	_	6	ns	Cload = 20 pF
		Port Output Rise Tin I/O Pins: 12x Source Driver Pin RA6, RA7		_	_	3.5	ns	CLOAD = 50 pF
		RE0-RE3 RF1 RG12-RG14		_	_	2	ns	CLOAD = 20 pF

TABLE 37-23: I/O TIMING REQUIREMENTS

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

FIGURE 37-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS


TABLE 37-28: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions	
OC10	TccF	OCx Output Fall Time	—	_	_	ns	See parameter DO32	
OC11	TCCR	OCx Output Rise Time	—	—	_	ns	See parameter DO31	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 37-9: OCx/PWM MODULE TIMING CHARACTERISTICS

TABLE 37-29: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristics ⁽¹⁾	Min	Typical ⁽²⁾	Max	Units	Conditions			
OC15	Tfd	Fault Input to PWM I/O Change	—	—	50	ns				
OC20	TFLT	Fault Input Pulse Width	50	—		ns				

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.