

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512eff100t-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-2: BO	OT FLASH 1 SEQUENCE	AND CONFIGURATION	WORDS SUMMARY
---------------	---------------------	-------------------	---------------

SS										B	its								
Virtual Addre (BFC4_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
FF40	ABF1DEVCFG3	31:0																·	xxxx
FF44	ABF1DEVCFG2	31:0																	xxxx
FF48	ABF1DEVCFG1	31:0																	xxxx
FF4C	ABF1DEVCFG0	31:0																	XXXX
FF50	ABF1DEVCP3	31:0																	XXXX
FF54	ABF1DEVCP2	31:0							Note	• See Tab	le 34-2 for	the hit desc	rintions						XXXX
FF58	ABF1DEVCP1	31:0							Note	. Occ 100	04-2101		npuona.						xxxx
FF5C	ABF1DEVCP0	31:0																	xxxx
FF60	ABF1DEVSIGN3	31:0																	xxxx
FF64	ABF1DEVSIGN2	31:0																xxxx	
FF68	ABF1DEVSIGN1	31:0																	xxxx
FF6C	ABF1DEVSIGN0	31:0		xx														xxxx	
FFC0	BF1DEVCFG3	31:0		2														xxxx	
FFC4	BF1DEVCFG2	31:0																	xxxx
FFC8	BF1DEVCFG1	31:0																	xxxx
FFCC	BF1DEVCFG0	31:0																	xxxx
FFD0	BF1DEVCP3	31:0																	xxxx
FFD4	BF1DEVCP2	31:0							Note	• See Tab	le 34-1 for	the hit desc	rintions						xxxx
FFD8	BF1DEVCP1	31:0							Hote	. 000 100			inpuorio.						xxxx
FFDC	BF1DEVCP0	31:0																	xxxx
FFE0	BF1DEVSIGN3	31:0																	xxxx
FFE4	BF1DEVSIGN2	31:0																	xxxx
FFE8	BF1DEVSIGN1	31:0																	xxxx
FFEC	BF1DEVSIGN0	31:0																	xxxx
FFF0	BF1SEQ3	31:16								CSEQ	<15:0>								xxxx
	ļļ	10:0								ISEQ	<15:0>								XXXX
FFF4	BF1SEQ2	31:16 15:0													$\vdash =$	XXXX			
		31.16	_	_	_	_	_		_	_	_	_	_	_	_	_	_	<u> </u>	XXXX
FFF8	BF1SEQ1	15:0	_												XXXX				
	ł ł	31.16	_				_	_					_		_		_		XXXX
FFFC	BF1SEQ0	15:0	_	_	_	_	_	_		_	_	_	_	_	_	_	_		XXXX

x = unknown value on Reset; — = Reserved, read as '1'. Reset values are shown in hexadecimal. Legend:

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

TABLE 4-20: SYSTEM BUS TARGET 12 REGISTER MAP

ess											Bits								
Virtual Addr (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
D000		31:16	MULTI	—	—	_		CODE	<3:0>		—	_	—	—	—	—	—	_	0000
Б 020	SBITZELOGT	15:0				INI	TID<7:0>					REGIO	N<3:0>		_	C	MD<2:0>		0000
D004		31:16	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	0000
Б 024	SBI IZELOGZ	15:0	_	_	_	_	_	_	_	_	-	_	_	_	_	_	GROU	P<1:0>	0000
B028	SBT12ECON	31:16	-	_	_	_	—	_	_	ERRP	_	_	_	_	_	_	—	_	0000
		15:0	-	_	_	_	—	_	_	_	_	_	_	_	_	_	—	_	0000
Daga		31:16	_	—	—	_	—	_	_	_	_	_	_	—	_	—	—	_	0000
Б030	SBI IZECLRS	15:0	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	CLEAR	0000
DODO		31:16	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	0000
DU30	SBT 12ECLRIVI	15:0	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	CLEAR	0000
DO40		31:16								BA	SE<21:6>								xxxx
Б040	SBITZREGU	15:0			BA	\SE<5:0>			PRI	_			SIZE<4:0	>		_	_	_	xxxx
DOEO		31:16	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	xxxx
D050	SB112RD0	15:0	_	_	_	_	_	_	_	_	_	_	_	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
DOED		31:16	_	_	_	—	—	_	_	_	_	_	_	_	—	_	—	—	xxxx
B028	38112WR0	15:0	_	_	_	_	_	_	_	_	_	_	_		GROUP3	GROUP2	GROUP1	GROUP0	xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

		IRQ			Interru	upt Bit Location	า	Persistent
Interrupt Source ⁽¹⁾	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
ADC Data 19 ⁽²⁾	_ADC_DATA19_VECTOR	78	OFF078<17:1>	• IFS2<14>	IEC2<14>	IPC19<20:18>	IPC19<17:16>	Yes
ADC Data 20 ⁽²⁾	_ADC_DATA20_VECTOR	79	OFF079<17:1>	IFS2<15>	IEC2<15>	IPC19<28:26>	IPC19<25:24>	Yes
ADC Data 21 ⁽²⁾	_ADC_DATA21_VECTOR	80	OFF080<17:1>	IFS2<16>	IEC2<16>	IPC20<4:2>	IPC20<1:0>	Yes
ADC Data 22 ⁽²⁾	_ADC_DATA22_VECTOR	81	OFF081<17:1>	IFS2<17>	IEC2<17>	IPC20<12:10>	IPC20<9:8>	Yes
ADC Data 23 ⁽²⁾	_ADC_DATA23_VECTOR	82	OFF082<17:1>	IFS2<18>	IEC2<18>	IPC20<20:18>	IPC20<17:16>	Yes
ADC Data 24 ⁽²⁾	_ADC_DATA24_VECTOR	83	OFF083<17:1>	IFS2<19>	IEC2<19>	IPC20<28:26>	IPC20<25:24>	Yes
ADC Data 25 ⁽²⁾	_ADC_DATA25_VECTOR	84	OFF084<17:1>	IFS2<20>	IEC2<20>	IPC21<4:2>	IPC21<1:0>	Yes
ADC Data 26 ⁽²⁾	_ADC_DATA26_VECTOR	85	OFF085<17:1>	IFS2<21>	IEC2<21>	IPC21<12:10>	IPC21<9:8>	Yes
ADC Data 27 ⁽²⁾	_ADC_DATA27_VECTOR	86	OFF086<17:1>	IFS2<22>	IEC2<22>	IPC21<20:18>	IPC21<17:16>	Yes
ADC Data 28 ⁽²⁾	_ADC_DATA28_VECTOR	87	OFF087<17:1>	IFS2<23>	IEC2<23>	IPC21<28:26>	IPC21<25:24>	Yes
ADC Data 29 ⁽²⁾	_ADC_DATA29_VECTOR	88	OFF088<17:1>	IFS2<24>	IEC2<24>	IPC22<4:2>	IPC22<1:0>	Yes
ADC Data 30 ⁽²⁾	_ADC_DATA30_VECTOR	89	OFF089<17:1>	IFS2<25>	IEC2<25>	IPC22<12:10>	IPC22<9:8>	Yes
ADC Data 31 ⁽²⁾	_ADC_DATA31_VECTOR	90	OFF090<17:1>	IFS2<26>	IEC2<26>	IPC22<20:18>	IPC22<17:16>	Yes
ADC Data 32 ⁽²⁾	_ADC_DATA32_VECTOR	91	OFF091<17:1>	IFS2<27>	IEC2<27>	IPC22<28:26>	IPC22<25:24>	Yes
ADC Data 33 ⁽²⁾	_ADC_DATA33_VECTOR	92	OFF092<17:1>	IFS2<28>	IEC2<28>	IPC23<4:2>	IPC23<1:0>	Yes
ADC Data 34 ⁽²⁾	_ADC_DATA34_VECTOR	93	OFF093<17:1>	IFS2<29>	IEC2<29>	IPC23<12:10>	IPC23<9:8>	Yes
ADC Data 35 ^(2,3)	_ADC_DATA35_VECTOR	94	OFF094<17:1>	IFS2<30>	IEC2<30>	IPC23<20:18>	IPC23<17:16>	Yes
ADC Data 36 ^(2,3)	_ADC_DATA36_VECTOR	95	OFF095<17:1>	IFS2<31>	IEC2<31>	IPC23<28:26>	IPC23<25:24>	Yes
ADC Data 37 ^(2,3)	_ADC_DATA37_VECTOR	96	OFF096<17:1>	IFS3<0>	IEC3<0>	IPC24<4:2>	IPC24<1:0>	Yes
ADC Data 38 ^(2,3)	_ADC_DATA38_VECTOR	97	OFF097<17:1>	IFS3<1>	IEC3<1>	IPC24<12:10>	IPC24<9:8>	Yes
ADC Data 39 ^(2,3)	_ADC_DATA39_VECTOR	98	OFF098<17:1>	IFS3<2>	IEC3<2>	IPC24<20:18>	IPC24<17:16>	Yes
ADC Data 40 ^(2,3)	_ADC_DATA40_VECTOR	99	OFF099<17:1>	IFS3<3>	IEC3<3>	IPC24<28:26>	IPC24<25:24>	Yes
ADC Data 41 ^(2,3)	_ADC_DATA41_VECTOR	100	OFF100<17:1>	IFS3<4>	IEC3<4>	IPC25<4:2>	IPC25<1:0>	Yes
ADC Data 42 ^(2,3)	_ADC_DATA42_VECTOR	101	OFF101<17:1>	IFS3<5>	IEC3<5>	IPC25<12:10>	IPC25<9:8>	Yes
ADC Data 43	_ADC_DATA43_VECTOR	102	OFF102<17:1>	IFS3<6>	IEC3<6>	IPC25<20:18>	IPC25<17:16>	Yes
ADC Data 44	_ADC_DATA44_VECTOR	103	OFF103<17:1>	IFS3<7>	IEC3<7>	IPC25<28:26>	IPC25<25:24>	Yes
Core Performance Counter Interrupt	_CORE_PERF_COUNT_VECTOR	104	OFF104<17:1>	IFS3<8>	IEC3<8>	IPC26<4:2>	IPC26<1:0>	No
Core Fast Debug Channel Interrupt	_CORE_FAST_DEBUG_CHAN_VECTOR	105	OFF105<17:1>	IFS3<9>	IEC3<9>	IPC26<12:10>	IPC26<9:8>	Yes

TABLE 7-2: INTERRUPT IRQ, VECTOR, AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EF Family Features" for the list of available peripherals.

2: This interrupt source is not available on 64-pin devices.

3: This interrupt source is not available on 100-pin devices.

4: This interrupt source is not available on 124-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	IFS31	IFS30	IFS29	IFS28	IFS27	IFS26	IFS25	IFS24
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	IFS23	IFS22	IFS21	IFS20	IFS19	IFS18	IFS17	IFS16
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.6	IFS15	IFS14	IFS13	IFS12	IFS11	IFS10	IFS9	IFS8
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	IFS7	IFS6	IFS5	IFS4	IFS3	IFS2	IFS1	IFS0

REGISTER 7-5: IFSx: INTERRUPT FLAG STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IFS31-IFS0: Interrupt Flag Status bits

- 1 = Interrupt request has occurred
- 0 = No interrupt request has occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 7-2 for the exact bit definitions.

REGISTER 7-6: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	IEC31	IEC30	IEC29	IEC28	IEC27	IEC26	IEC25	IEC24
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	IEC23	IEC22	IEC21	IEC20	IEC19	IEC18	IEC17	IEC16
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	IEC15	IEC14	IEC13	IEC12	IEC11	IEC10	IEC9	IEC8
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	IEC7	IEC6	IEC5	IEC4	IEC3	IEC2	IEC1	IEC0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IEC31-IEC0: Interrupt Enable bits

1 = Interrupt is enabled

0 = Interrupt is disabled

Note: This register represents a generic definition of the IECx register. Refer to Table 7-2 for the exact bit definitions.

DECIST	
REGIST	(ENDPOINT 1-7) (CONTINUED)
bit 26	DATATWEN: Data Toggle Write Enable Control bit (Host mode)
	1 = DATATGGL can be written
	0 = DATATGGL is not writable
bit 25	DATATGGL: Data Toggle bit (Host mode)
	When read, this bit indicates the current state of the endpoint data toggle.
	If DATATWEN = 1, this bit may be written with the required setting of the data toggle.
	If DATATWEN = 0, any value written to this bit is ignored.
bit 24	INCOMPRX: Incomplete Packet Status bit
	 1 = The packet in the RX FIFO during a high-bandwidth Isochronous/Interrupt transfer is incomplete because parts of the data were not received 0 = Written by then software to clear this bit
	0 = while n by then software to clear this bit.
hit 23	CI RDT: Clear Data Toggle Control bit
517 20	1 = Reset the endpoint data toggle to 0
	0 = Leave endpoint data toggle alone
bit 22	SENTSTALL: STALL Handshake Status bit (Device mode)
	1 = STALL handshake is transmitted
	0 = Written by the software to clear this bit
	RXSTALL: STALL Handshake Receive Status bit (Host mode)
	 1 = A STALL handshake has been received. An interrupt is generated. 0 = Written by the software to clear this bit
bit 21	SENDSTALL: STALL Handshake Control bit (Device mode)
	1 = Issue a STALL handshake
	0 = Terminate stall condition
	REQPKT: IN Transaction Request Control bit (Host mode)
	1 = Request an IN transaction.
	0 = No request
	This bit is cleared when RXPKTRDY is set.
bit 20	FLUSH: Flush FIFO Control bit
	 1 = Flush the next packet to be read from the endpoint RX FIFO. The FIFO pointer is reset and the RXPKTRDY bit is cleared. This should only be used when RXPKTRDY is set. If the FIFO is double-buffered, FLUSH may need to be set twice to completely clear the FIFO. 0 = Normal FIFO operation
	This bit is automatically cleared.
bit 19	DATAERR: Data Packet Error Status bit (<i>Device mode</i>)
	1 = The data packet has a CRC or bit-stuff error.
	0 = No data error
	This bit is cleared when RXPKTRDY is cleared. This bit is only valid when the endpoint is operating in ISO mode. In Bulk mode, it always returns zero.

DERRNAKT: Data Error/NAK Time-out Status bit (Host mode)

- 1 = The data packet has a CRC or bit-stuff error. In Bulk mode, the RX endpoint is halted following the receipt of NAK responses for longer than the time set as the NAK limit.
- 0 = No data or NAK time-out error

12.2 Registers for Slew Rate Control

Some I/O pins can be configured for various types of slew rate control on its associated port. This is controlled by the Slew Rate Control bits in the SRCON1x and SRCON0x registers that are associated with each I/O port. The slew rate control is configured using the corresponding bit in each register, as shown in Table 12-1.

As an example, writing 0x0001, 0x0000 to SRCON1A and SRCON0A, respectively, will enable slew rate control on the RA0 pin and sets the slew rate to the slow edge rate.

SRCON1x	SRCON0x	Description
1	1	Slew rate control is enabled and is set to the slowest edge rate.
1	0	Slew rate control is enabled and is set to the slow edge rate.
0	1	Slew rate control is enabled and is set to the medium edge rate.
0	0	Slew rate control is disabled and is set to the fastest edge rate.

TABLE 12-1: SLEW RATE CONTROL BIT SETTINGS

Note: By default, all of the Port pins are set to the fastest edge rate.

12.3 CLR, SET, and INV Registers

Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read.

12.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin-count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only option. PPS configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The PPS configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

12.4.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the PPS feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable port number.

12.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digitalonly peripherals. These include general serial communications (UART, SPI, and CAN), general purpose timer clock inputs, timer-related peripherals (input capture and output compare), interrupt-on-change inputs, and reference clocks (input and output).

In comparison, some digital-only peripheral modules are never included in the PPS feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C among others. A similar requirement excludes all modules with analog inputs, such as the Analog-to-Digital Converter (ADC).

A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

SS										E	Bits								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	10.15	31:16	_	_	_	_	_	_	—	_	—	_	—	—	-	_	_	—	0000
1444	IC4R	15:0	—	—	—	—	—	-	—	—	—	-	—	—		IC4R	<3:0>		0000
	1055	31:16	—	—	—	—	-	_	—	—	—	-	—	—	-	—	_	_	0000
1448	IC5R	15:0		—	—	—	—	—	—	—	—	—	—	—		IC5R<3:0>			0000
4440	1000	31:16		—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
144C	IC6R	15:0		—	—	—	—	—	—	—	—	—	—	—		IC6R	<3:0>		0000
4.450	1070	31:16		—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1450	IC/R	15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC7R	<3:0>		0000
	1000	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—		—	0000
1454	IC8R	15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC8R	<3:0>		0000
4.450	1000	31:16			—	—	—	_	—	—	—	_	—	—	_	_	—	_	0000
1458	IC9R	15:0			—	—	—	_	—	—	—	_	—	—		IC9R	<3:0>		0000
4.400	00545	31:16			—	—	—	_	—	—	—	_	—	—	_	_	—	_	0000
1460	OCFAR	15:0			—	—	—	_	—	—	—	_	—	—		OCFA	R<3:0>		0000
		31:16			—	—	—	_	—	—	—	_	—	—	_	_	—	_	0000
1468	UIRXR	15:0			—	—	—	_	—	—	—	_	—	—		U1RX	R<3:0>		0000
	LUCTOR	31:16			—	—	—	_	—	—	—	_	—	—	_	_	—	_	0000
146C	UICISR	15:0			—	—	—	_	—	—	—	_	—	—		U1CTS	SR<3:0>		0000
4.470		31:16			—	—	—	_	—	—	—	_	—	—	_	_	—	_	0000
1470	U2RXR	15:0			—	—	—	_	—	—	—	_	—	—		U2RX	R<3:0>		0000
4 4 7 4	LIGOTOD	31:16	—	—	—	—	—	—	_	—	—	—	_	—	—	—	—	-	0000
1474	U2CISR	15:0	—	—	—	—	—	—	_	—	—	—	_	—		U2CTS	SR<3:0>		0000
4.470		31:16	—	—	—	—	—	—	_	—	—	—	_	—	—	—	—	-	0000
1478	UJRXR	15:0	—	—	—	—	—	—	_	—	—	—	_	—		U3RX	R<3:0>		0000
4.470	LIDOTOD	31:16	—	—	—	—	—	—	_	—	—	—	_	—	—	—	_	-	0000
147C	U3CTSR	15:0			—	—	—	_	—	—	—	_	—	—		U3CTS	SR<3:0>		0000
		31:16			—	—	—	_	—	—	—	_	—	—	_	_	—	_	0000
1480	U4RXR	15:0	—	—	—	-	-	-	-	—	—	-	-	—		U4RX	R<3:0>		0000
4.40.4		31:16	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	_	0000
1484	04CTSR	15:0	_	_	—	_	—	_	_	_	_	_	_	_		U4CTS	SR<3:0>		0000

TABLE 12-22: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

2: This register is not available on devices without a CAN module.

15.1 Deadman Timer Control Registers

TABLE 15-1: DEADMAN TIMER REGISTER MAP

ess				Bits															
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0400	DMTCON	31:16	—	—	—	—	_	—	—	—	—	—	—	_	—	—	—	—	0000
0/100	DIMITOON	15:0	ON	—	_	_	_	—	_	_	—	—	—	_	—	—	_	_	x000
0.410		31:16	—	—	—	—	—	—	—	_	—	—	—	_	—	—	—	—	0000
UNIT DIVIT RECENT 15:0 STEP1<7:0>					—	_	—	0000											
0420		31:16	_	—	—	—	-	_	—	_	—	—	—	-	—	—	_	—	0000
0420	DIVITCER	15:0	_	—	—	—		_	—	_				STEP	2<7:0>				0000
0430		31:16	—	—	—	—		—	_	_	—	—	—	_	—	—	_	—	0000
0430	DIVITSTAT	15:0	_	—	—	—		_	—	_	BAD1	BAD2	DMTEVENT	_	—	—	_	WINOPN	0000
0.4.0	DMTCNT	31:16								0		0.							0000
0A40	DIVITCINT	15:0		COUNTER<31:0> 0000															
0460	DMTRECNT	31:16		0000															
UAGO	DIVITESCINT	15:0		P30N1531.05 00xx															
										0000									
UA70 DMTPSINTV 15:0 PSINTV<31:0>										000x									

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

16.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). When enabled, the Watchdog Timer (WDT) operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are key features of the WDT module:

- Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle

FIGURE 16-1: WATCHDOG TIMER BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	-	—		—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	_	_	_	—	—
45.0	R-0, HS, HC	R-0, HS, HC	R/C-0, HS, HC	U-0	U-0	R/C-0, HS	R-0, HS, HC	R-0, HS, HC
15:8	ACKSTAT	TRSTAT	ACKTIM	—	—	BCL	GCSTAT	ADD10
7.0	R/C-0, HS, SC	R/C-0, HS, SC	R-0, HS, HC	R/C-0, HS, HC	R/C-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

REGISTER 21-2: I2CxSTAT: I²C STATUS REGISTER

Legend:	HS = Hardware Set	HC = Hardware Cleared	SC = Software Cleared
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit

bit 21 16 Linin nnla tod. De 24 <u>'</u>∩'

bit 31-16	Unimplemented: Read as 10
bit 15	ACKSTAT: Acknowledge Status bit (when operating as I ² C master, applicable to master transmit operation)
	1 = NACK received from slave
	0 = ACK received from slave
	Hardware set or clear at end of slave Acknowledge.
bit 14	TRSTAT: Transmit Status bit (when operating as I^2C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK)
	0 = Master transmit is not in progress
	Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.
bit 13	ACKTIM: Acknowledge Time Status bit (Valid in I ² C Slave mode only)
	 1 = I²C bus is in an Acknowledge sequence, set on the eight falling edge of SCL clock 0 = Not an Acknowledge sequence, cleared on 9th rising edge of SCL clock
bit 12-11	Unimplemented: Read as '0'
bit 10	BCL: Master Bus Collision Detect bit
	1 = A bus collision has been detected during a master operation
	0 = No collision
	Hardware set at detection of bus collision.
bit 9	GCSTAT: General Call Status bit
	1 = General call address was received
	0 = General call address was not received
	Hardware set when address matches general call address. Hardware clear at Stop detection.
bit 8	ADD10: 10-bit Address Status bit
	1 = 10-bit address was matched
	0 = 10-bit address was not matched
	Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.
bit 7	IWCOL: Write Collision Detect bit
	1 = An attempt to write the I2CxTRN register failed because the I^2C module is busy 0 = No collision
	Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).
bit 6	I2COV: Receive Overflow Flag bit
	 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow
	Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

26.1 Crypto Engine Control Registers

TABLE 26-2: CRYPTO ENGINE REGISTER MAP

ess				_	_			_	_		Bits				_	_			<i>"</i>
Virtual Addr (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
5000		31:16				REVISIO	ON<7:0>							VERSI	ON<7:0>				0000
5000	CEVER	15:0								IC	<15:0>								0000
5004	CECON	31:16		—	—	—	—	—	_	—	_		-		—	_	_	—	0000
3004	CECCIN	15:0		—	—	—	—	—	—	—	SWAPOEN	SWRST	SWAPEN		—	BDPCHST	BDPPLEN	DMAEN	0000
5008	CEBDADDR	31:16								BDPA									0000
0000	OLDBRODER	15:0								BBIT	DDI((01.0)								0000
500C	CEBDPADDR	31:16								BASEA	DDR<31:0>								0000
		15:0																	0000
5010	CESTAT	31:16	ER	RMODE<2	2:0>	E	RROP<2:0	0>	ERRPHA	ASE<1:0>	—	—		BDSTA	TE<3:0>		START	ACTIVE	0000
		15:0		1				i		BDC	FRL<15:0>					i	i		0000
5014	CEINTSRC	31:16	_		—	-	—	-		—	_	_			—	—	—		0000
		15:0	_	_	-	-	—	-		—		_	—	_	AREIF	PKTIF	CBDIF	PENDIF	0000
5018	CEINTEN	31:16	_									_			-	-	-	-	0000
		15:0					_			_			_		AREIE	PKTE	CBDIE	PENDIE	0000
501C	CEPOLLCON	31:16		—	—	_		_			-		—		—	_		—	0000
		15:0	KU BDPPLCON<15:0>									0000							
5020	CEHDLEN	31:16		_	_		_			_	_	_	_			_	_	_	0000
		15:0 HDRLEN<7:0>									0000								
5024	CETRLLEN	31:16	_	_	_		_	_		_	_	_	_			_	_	-	0000
		15:0	_	_					—	_				IKLKL	EIN<7:U>				0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER	28-5:	ADCIMCON1: ADC INPUT MODE CONTROL REGISTER 1 (CONTINUED)
bit 20	SIGN10:	AN10 Signed Data Mode bit
	1 = AN10) is using Signed Data mode
	0 = AN10) is using Unsigned Data mode
bit 19	DIFF9: A	N9 Mode bit
	1 = AN9	is using Differential mode
	0 = AN9	is using Single-ended mode
bit 18	SIGN9: A	AN9 Signed Data Mode bit
	1 = AN9	is using Signed Data mode
	0 = AN9	is using Unsigned Data mode
bit 17	DIFF8: A	N 8 Mode bit
	1 = AN8	is using Differential mode
	0 = AN8	is using Single-ended mode
bit 16	SIGN8: A	AN8 Signed Data Mode bit
	1 = AN8	is using Signed Data mode
	0 = AN8	is using Unsigned Data mode
bit 15	DIFF7: A	N7 Mode bit
	1 = AN7	is using Differential mode
	0 = AN7	is using Single-ended mode
bit 14	SIGN7: A	AN7 Signed Data Mode bit
	1 = AN7	is using Signed Data mode
	0 = AN7	is using Unsigned Data mode
bit 13	DIFF6: A	N6 Mode bit
	1 = AN6	is using Differential mode
	0 = AN6	is using Single-ended mode
bit 12	SIGN6: A	AN6 Signed Data Mode bit
	1 = AN6	is using Signed Data mode
	0 = AN6	is using Unsigned Data mode
bit 11	DIFF5: A	N5 Mode bit
	1 = AN5	is using Differential mode
	0 = AN5	is using Single-ended mode
bit 10	SIGN5: A	AN5 Signed Data Mode bit
	1 = AN5	is using Signed Data mode
	0 = AN5	is using Unsigned Data mode
bit 9	DIFF4: A	N4 Mode bit
	1 = AN4	is using Differential mode
	0 = AN4	is using Single-ended mode
bit 8	SIGN4: A	AN4 Signed Data Mode bit
	1 = AN4	is using Signed Data mode
	0 = AN4	is using Unsigned Data mode
bit 7	DIFF3: A	N3 Mode bit
	1 = AN3	is using Differential mode
	0 = AN3	is using Single-ended mode
bit 6	SIGN3: A	AN3 Signed Data Mode bit
	1 = AN3	is using Signed Data mode
	0 = AN3	is using Unsigned Data mode
bit 5	DIFF2: A	N2 Mode bit
	1 = AN2	is using Differential mode
	0 = AN2	is using Single-ended mode

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	R/W-0							
31:24	CSS31 ⁽¹⁾	CSS30 ⁽¹⁾	CSS29 ⁽¹⁾	CSS28 ⁽¹⁾	CSS27 ⁽¹⁾	CSS26 ⁽¹⁾	CSS25 ⁽¹⁾	CSS24 ⁽¹⁾
00.40	R/W-0							
23:16	CSS23 ⁽¹⁾	CSS22 ⁽¹⁾	CSS21 ⁽¹⁾	CSS20 ⁽¹⁾	CSS19 ⁽¹⁾	CSS18	CSS17	CSS16
15.0	R/W-0							
15.8	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8
7.0	R/W-0							
7:0	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0

REGISTER 28-10: ADCCSS1: ADC COMMON SCAN SELECT REGISTER 1

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CSS31:CSS0: Analog Common Scan Select bits^(2,3)

1 =Select ANx for input scan

0 =Skip ANx for input scan

Note 1: This bit is not available on 64-pin devices.

2: In addition to setting the appropriate bits in this register, Class 1 and Class 2 analog inputs must select the STRIG input as the trigger source if they are to be scanned through the CSS*x* bits. Refer to the bit descriptions in the ADCTRGx registers for selecting the STRIG option.

3: If a Class 1 or Class 2 input is included in the scan by setting the CSSx bit to '1' and by setting the TRGSRCx<4:0> bits to STRIG mode ('0b11), the user application must ensure that no other triggers are generated for that input using the RQCNVRT bit in the ADCCON3 register or the hardware input or any digital filter. Otherwise, the scan behavior is unpredictable.

REGISTE	GISTER 30-31: EMAC1MCFG: ETHERNET CONTROLLER MAC MILMANAGEMENT											
	CONFIGURATION REGISTER											
Di+	D''		D ''	D.1	D.1	i.	D''					

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	—	—	—	_	—	—	—	_
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—		—	—	—	-
15.9	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	RESETMGMT	_	—		—	—	—	-
7:0	U-0	U-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0		_		CLKSEI	NOPRE	SCANINC		

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **RESETMGMT:** Test Reset MII Management bit 1 = Reset the MII Management module 0 = Normal Operation
- bit 14-6 Unimplemented: Read as '0'

bit 1 NOPRE: Suppress Preamble bit

- 1 = The MII Management will perform read/write cycles without the 32-bit preamble field. Some PHYs support suppressed preamble
- 0 = Normal read/write cycles are performed

bit 0 SCANINC: Scan Increment bit

- 1 = The MII Management module will perform read cycles across a range of PHYs. The read cycles will start from address 1 through the value set in EMAC1MADR<PHYADDR>
- 0 = Continuous reads of the same PHY
- **Note 1:** Table 30-7 provides a description of the clock divider encoding.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

TABLE 30-7: MIIM CLOCK SELECTION

MIIM Clock Select	EMAC1MCFG<5:2>
TPBCLK5 divided by 4	000x
TPBCLK5 divided by 6	0010
TPBCLK5 divided by 8	0011
TPBCLK5 divided by 10	0100
TPBCLK5 divided by 14	0101
TPBCLK5 divided by 20	0110
TPBCLK5 divided by 28	0111
TPBCLK5 divided by 40	1000
TPBCLK5 divided by 48	1001
TPBCLK5 divided by 50	1010
Undefined	Any other combination

bit 5-2 **CLKSEL<3:0>:** MII Management Clock Select 1 bits⁽¹⁾ These bits are used by the clock divide logic in creating the MII Management Clock (MDC), which the IEEE 802.3 Specification defines to be no faster than 2.5 MHz. Some PHYs support clock rates up to 12.5 MHz.

31.0 COMPARATOR

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Comparator" (DS60001110) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Analog Comparator module consists of two comparators that can be configured in a variety of ways.

The following are key features of the Analog Comparator module:

- Differential inputs
- Rail-to-rail operation
- Selectable output polarity
- Selectable inputs:
 - Analog inputs multiplexed with I/O pins
 - On-chip internal absolute voltage reference
 - Comparator voltage reference (CVREF)
- Selectable interrupt generation

A block diagram of the comparator module is illustrated in Figure 31-1.

FIGURE 31-1: COMPARATOR BLOCK DIAGRAM

REGISTER 34-7: CFGCON: CONFIGURATION CONTROL REGISTER (CONTINUED)

- bit 7 IOANCPEN: I/O Analog Charge Pump Enable bit
 The analog IO charge pump improves analog performance when the device is operating at lower voltages. However, the charge pumps consume additional current.
 1 = Charge pump is enabled
 0 = Charge pump is disabled
- bit 6 Unimplemented: Read as '0'
- bit 5-4 ECCCON<1:0>: Flash ECC Configuration bits
 - 11 = ECC and dynamic ECC are disabled (ECCCON<1:0> bits are writable)
 - 10 = ECC and dynamic ECC are disabled (ECCCON<1:0> bits are locked)
 - 01 = Dynamic Flash ECC is enabled (ECCCON<1:0> bits are locked)
 - 00 = Flash ECC is enabled (ECCCON<1:0> bits are locked; disables word Flash writes)
- bit 3 JTAGEN: JTAG Port Enable bit
 - 1 = Enable the JTAG port
 - 0 = Disable the JTAG port
- bit 2 TROEN: Trace Output Enable bit
 - 1 = Enable trace outputs and start trace clock (trace probe must be present)0 = Disable trace outputs and stop trace clock
- bit 1 Unimplemented: Read as '0'
- bit 0 TDOEN: TDO Enable for 2-Wire JTAG
 - 1 = 2-wire JTAG protocol uses TDO
 - 0 = 2-wire JTAG protocol does not use TDO
- Note 1: To change this bit, the unlock sequence must be performed. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

36.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
 - MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
- MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit[™] 3
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

36.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- · Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window

Project-Based Workspaces:

- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

AC CHARACTERISTICS ⁽²⁾			Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated) Operating temperature -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended					
Param. No.	Symbol	Characteristics	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
Clock P								
AD50	TAD	ADC Clock Period	20	_	6250	ns	_	
Throug	hput Rate	!						
AD51	Fтр	Sample Rate for ADC0-ADC4 (Class 1 Inputs)	 	 	3.125 3.57 4.16 5	Msps Msps Msps Msps	$\begin{array}{l} \mbox{12-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{10-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{8-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{6-bit resolution Source Impedance} \leq 200\Omega \\ \end{array}$	
		Sample Rate for ADC7 (Class 2 and Class 3 Inputs)			2.94 3.33 3.84 4.55	Msps Msps Msps Msps	$\begin{array}{l} \mbox{12-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{10-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{8-bit resolution Source Impedance} \leq 200\Omega \\ \mbox{6-bit resolution Source Impedance} \leq 200\Omega \end{array}$	
Timing	Timing Parameters							
AD60	TSAMP	Sample Time for ADC0-ADC4 (Class 1 Inputs)	3 4 5 13	_	—	Tad	Source Impedance $\leq 200\Omega$, Max ADC clock Source Impedance $\leq 500\Omega$, Max ADC clock Source Impedance $\leq 1 \ K\Omega$, Max ADC clock Source Impedance $\leq 5 \ K\Omega$, Max ADC clock	
		Sample Time for ADC7 (Class 2 and 3 Inputs)	4 5 6 14		_	Tad	Source Impedance $\leq 200\Omega$, Max ADC clock Source Impedance $\leq 500\Omega$, Max ADC clock Source Impedance $\leq 1 \text{ K}\Omega$, Max ADC clock Source Impedance $\leq 5 \text{ K}\Omega$, Max ADC clock	
		Sample Time for ADC7 (Class 2 and 3 Inputs)	See Table 37-40	_		Tad	CVDEN (ADCCON1<11>) = 1	
AD62	Τςονν	Conversion Time (after sample time is complete)			13 11 9 7	Tad	12-bit resolution 10-bit resolution 8-bit resolution 6-bit resolution	
AD65	TWAKE	Wake-up time	_	500	_	TAD		
		Power Mode	_	20	—	μs	Lesser of 500 TAD or 20 µS.	

TABLE 37-39: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.

39.1 DC Characteristics

TABLE 39-1: OPERATING MIPS VS. VOLTAGE

	VDD Range	Temp. Range	Max. Frequency	Comment
Characteristic	(in volts) (Note 1)	(in °C)	PIC32MZ EF Devices	
MDC5	2.1V-3.6V	-40°C to +85°C	252 MHz	

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is guaranteed, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 37-5 for BOR values.

TABLE 39-2: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARA	CTERISTICS		Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial		
Parameter No.	Typical ⁽³⁾	Maximum ⁽⁶⁾	Units	Conditions	
Operating C	Current (IDD) ⁽¹)			
MDC27a	156	170	mA	252 MHz (Note 2)	
MDC27b	115	135	mA	252 MHz (Note 4,5)	

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

- **2:** The test conditions for IDD measurements are as follows:
 - Oscillator mode is EC+PLL with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 - OSC2/CLKO is configured as an I/O input pin
 - USB PLL is disabled (USBMD = 1), VUSB3V3 is connected to VSS
 - CPU, Program Flash, and SRAM data memory are operational, Program Flash memory Wait states are equal to four
 - L1 Cache and Prefetch modules are enabled
 - No peripheral modules are operating, (ON bit = 0), and the associated PMD bit is set. All clocks are disabled ON bit (PBxDIV<15>) = 0 (x ≠ 1,7)
 - WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
 - All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD
 - CPU executing while(1) statement from Flash
 - RTCC and JTAG are disabled
- **3:** Data in "Typical" column is at 3.3V, +25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: Note 2 applies with the following exceptions: L1 Cache and Prefetch modules are disabled, Program Flash memory Wait states are equal to seven.
- **6:** Data in the "Maximum" column is at 3.3V, +85°C at specified operating frequency, unless otherwise stated. Parameters are for design guidance only and are not tested.

A.9 Other Peripherals and Features

Most of the remaining peripherals on PIC32MZ EF devices act identical to their counterparts on PIC32MX-5XX/6XX/7XX devices. The main differences have to do with handling the increased peripheral bus clock speed and additional clock sources. Table A-10 lists the differences (indicated by **Bold** type) that will affect software and hardware migration.

TABLE A-10: PERIPHERAL DIFFERENCES

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature
ľ	² C
On PIC32MX devices, all pins are 5V-tolerant.	On PIC32MZ EF devices, the I2C4 port uses non-5V tolerant pins, and will have different VOL/VOH specifications.
	The Baud Rate Generator register has been expanded from 12 bits to 16 bits.
I2CxBRG<11:0>	I2CxBRG< 15 :0>
Watchd	og Timer
Clearing the Watchdog Timer on PIC32MX5XX/6XX/7XX devices required writing a '1' to the WDTCLR bit.	On PIC32MZ EF devices, the WDTCLR bit has been replaced with the 16-bit WDTCLRKEY, which must be written with a spe- cific value (0x5743) to clear the Watchdog Timer. In addition, the WDTSPGM (DEVCFG1<21>) bit is used to control operation of the Watchdog Timer during Flash programming.
WDTCLR (WDTCON<0>)	WDTCLRKEY<15:0> (WDTCON<31:16>)
RI	rcc
On PIC32MX devices, the output of the RTCC pin was selected between the Seconds Clock or the Alarm Pulse.	On PIC32MZ EF devices, the RTCC Clock is added as an option. RTCSECSEL has been renamed RTCOUTSEL and expanded to two bits.
RTCSECSEL (RTCCON<7>) 1 = RTCC Seconds Clock is selected for the RTCC pin 0 = RTCC Alarm Pulse is selected for the RTCC pin	RTCOUTSEL<1:0> (RTCCON<8:7>) 11 = Reserved 10 = RTCC Clock is presented on the RTCC pin 01 = Seconds Clock is presented on the RTCC pin 00 = Alarm Pulse is presented on the RTCC pin when the alarm interrupt is triggered
On PIC32MX devices, the Secondary Oscillator (Sosc) serves as the input clock for the RTCC module.	On PIC32MZ EF devices, an additional clock source, LPRC, is available as a choice for the input clock.
	RTCCLKSEL<1:0> (RTCCON<10:9>) 11 = Reserved 10 = Reserved 01 = RTCC uses the external 32.768 kHz Sosc 00 = RTCC uses the internal 32 kHz oscillator (LPRC)