

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

	• · · ·
Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512eff100t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0 U-0		U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—		—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—		—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—		—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-1
7:0		_				_		NF

REGISTER 3-4: CONFIG5: CONFIGURATION REGISTER 5; CP0 REGISTER 16, SELECT 5

Legend:	r = Reserved		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-1 Unimplemented: Read as '0'

bit 0 NF: Nested Fault bit

1 = Nested Fault feature is implemented

REGISTER 3-5: CONFIG7: CONFIGURATION REGISTER 7; CP0 REGISTER 16, SELECT 7

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	WII	—	—	—	—	-	—	—
22:46	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—		—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	—	—	—	—		—	—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	_	—	—

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 WII: Wait IE Ignore bit

1 = Indicates that this processor will allow an interrupt to unblock a WAIT instruction

bit 30-0 Unimplemented: Read as '0'

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0					
31:24	—	—	—	—	—	—	—	—					
00.40	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0					
23.10	—	—	—	—	—	—	—	—					
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8	CHSSIZ<15:8>												
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
				CHSSIZ	2<7:0>								

REGISTER 10-12: DCHxSSIZ: DMA CHANNEL x SOURCE SIZE REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSSIZ<15:0>: Channel Source Size bits

1111111111111111 = 65,535 byte source size

REGISTER 10-13: DCHxDSIZ: DMA CHANNEL x DESTINATION SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.24	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0						
31:24	—	—	—	—	—	—	—	—						
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
23:16	—	—	—	—	—	—	—	—						
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
15:8	CHDSIZ<15:8>													
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
				CHDSIZ	<7:0>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16	Unimplemented: Read as '0)'
-----------	---------------------------	----

bit 15-0 **CHDSIZ<15:0>:** Channel Destination Size bits

111111111111111 = 65,535 byte destination size $\ensuremath{\cdot}$

TABLE 12-5: PORTB REGISTER MAP

ess										Bits									
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0100	ANSELB	31:16	—	—	—	—	—	—	—	—	—	—	—	—			—	—	0000
		15:0	ANSB15	ANSB14	ANSB13	ANSB12	ANSB11	ANSB10	ANSB9	ANSB8	ANSB7	ANSB6	ANSB5	ANSB41	ANSB3	ANSB2	ANSB1	ANSB0	FFFF
0110	TRISB	31:16					—				_	—		—	—	—	—	—	0000
		15:0	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
0120	PORTB	31:16					—				_	—		—	—	—	—	—	0000
	-	15:0	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX
0130	LATB	31:16	—	—	—			—		—	—	—	—		—	—	—	—	0000
		15:0	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX
0140	ODCB	31:16	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	0000
		15:0	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
0150	CNPUB	31:16	-																0000
		15:0	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB/	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNP0B0	0000
0160	CNPDB	31:16																	0000
		15:0	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
0170	CNCONB	31.10	_				EDGE	_											0000
		15:0	ON	—	—	—	DETECT	—	—	—	-	—	—	-	—	—	—	—	0000
0190		31:16	_	_	_	_	—	—	_	—	-	—	—	_	—	—	—	—	0000
0100	CINEIND	15:0	CNENB15	CNENB14	CNENB13	CNENB12	CNENB11	CNENB10	CNENB9	CNENB8	CNENB7	CNENB6	CNENB5	CNENB4	CNENB3	CNENB2	CNENB1	CNENB0	0000
		31:16	—		—		—	—	—	—		—	—	_	—	—	—	—	0000
0190	CNSTATB	15:0	CN STATB15	CN STATB14	CN STATB13	CN STATB12	CN STATB11	CN STATB10	CN STATB9	CN STATB8	CN STATB7	CN STATB6	CN STATB5	CN STATB4	CN STATB3	CN STATB2	CN STATB1	CN STATB0	0000
01 0 0		31:16	_	_	_	_	_	—	_	—	_	_	_	_	_	_	_	_	0000
UTAU	CININED	15:0	CNNEB15	CNNEB14	CNNEB13	CNNEB12	CNNEB11	CNNEB10	CNNEB9	CNNEB8	CNNEB7	CNNEB6	CNNEB5	CNNEB4	CNNEB3	CNNEB2	CNNEB1	CNNEB0	0000
0100	CNER	31:16	—	—	—	—	—	—	—	—	_	—	—	_	—	—	—	—	0000
0160	CINED	15:0	CNFB15	CNFB14	CNFB13	CNFB12	CNFB11	CNFB10	CNFB9	CNFB8	CNFB7	CNFB6	CNFB5	CNFB4	CNFB3	CNFB2	CNFB1	CNFB0	0000
0100	SPCONOP	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	0000
0100	SILCOND	15:0	_	SR0B14	_	—	—	SR0B10	SR0B9	SR0B8	—	—	SR0B5	—	SR0B3	—	—	—	0000
0100	SRCON1B	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0100	GILCONTD	15:0		SR1B14	_	_	—	SR1B10	SR1B9	SR1B8	-	-	SR1B5	_	SR1B3	-	_	-	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

15.1 Deadman Timer Control Registers

TABLE 15-1: DEADMAN TIMER REGISTER MAP

ess											Bits								
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0400	DMTCON	31:16	—	—	—	—	_	—	—	—	—	—	—	_	—	—	—	—	0000
0/100	DIMITOON	15:0	ON	—	_	_	_	—	—	_	—	—	—	_	—	—	_	_	x000
0.410		31:16	—	—	—	—	—	—	—	_	—	—	—	_	—	—	—	—	0000
0,110	DWITFREELK	15:0				STEP	1<7:0>				—	—	—	-	_	—	_	—	0000
0A20	DMTCLR	31:16	_	—	_	—	-	_	—	_	—	—	—		—	—	_	—	0000
		15:0	_	—	—	—		_	—	_	STEP2<7:0>						0000		
0420		31:16	—	—	—	—		—	_	_	—	—	—	_	—	—	_	—	0000
0430	DIVITSTAT	15:0	_	—	—	—		_	—	_	BAD1	BAD2	DMTEVENT	_	—	—	_	WINOPN	0000
0.4.0	DMTCNT	31:16								001		0.							0000
0A40	DIVITCINT	15:0								000	NIEK<31.	0>							0000
0460	DMTRECNT	31:16								De	NIT -21.0								0000
UAGO	DIVITESCINT	15:0								F30	JN1<31.02	>							00xx
0470		31:16									NTV -21.0								0000
0470	DIVITESINT	15:0								P3I	NTV<31:02	>							000x

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	—	—	—	—	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	POLLCON<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
				POLLCO	N<7:0>					

REGISTER 20-18: SQI1BDPOLLCON: SQI BUFFER DESCRIPTOR POLL CONTROL REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **POLLCON<15:0>:** Buffer Descriptor Processor Poll Status bits These bits indicate the number of cycles the BDP would wait before refetching the descriptor control word if the previous descriptor fetched was disabled.

REGISTER 20-19: SQI1BDTXDSTAT: SQI BUFFER DESCRIPTOR DMA TRANSMIT STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	R-x	R-x	R-x	R-x	U-0		
31:24	—	—	—		TXSTATE<3:0>					
23:16	U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x		
	—	—	—		TXBUFCNT<4:0>					
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15:8	—	—	—	—	—	—	—	—		
7:0	R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x		
				TXCURBUF	LEN<7:0>					

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-29 Unimplemented: Read as '0'

bit 28-25 **TXSTATE<3:0>:** Current DMA Transmit State Status bits These bits provide information on the current DMA receive states.

bit 24-21 Unimplemented: Read as '0'

bit 20-16 **TXBUFCNT<4:0>:** DMA Buffer Byte Count Status bits

These bits provide information on the internal FIFO space.

bit 15-8 **Unimplemented:** Read as '0'

bit 7-0 **TXCURBUFLEN<7:0>:** Current DMA Transmit Buffer Length Status bits These bits provide the length of the current DMA transmit buffer.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	—	—	—	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	PTEN<15:14>			PTEN<13:8>						
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
				PTEN	<7:0>					

REGISTER 23-6: PMAEN: PARALLEL PORT PIN ENABLE REGISTER

Legend:

0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-15 Unimplemented: Read as '0'

- bit 15-14 **PTEN<15:14>:** PMCS1 Strobe Enable bits
 - 1 = PMA15 and PMA14 function as either PMA<15:14> or PMCS1 and PMCS2⁽¹⁾
 0 = PMA15 and PMA14 function as port I/O
- bit 13-2 **PTEN<13:2>:** PMP Address Port Enable bits
 - 1 = PMA<13:2> function as PMP address lines
 - 0 = PMA<13:2> function as port I/O
- bit 1-0 PTEN<1:0>: PMALH/PMALL Strobe Enable bits
 - 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL⁽²⁾
 - 0 = PMA1 and PMA0 pads function as port I/O
 - Note 1: The use of these pins as PMA15 and PMA14 or CS1 and CS2 is selected by the CSF<1:0> bits in the PMCON register.
 - 2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by bits ADRMUX<1:0> in the PMCON register.

26.2 Crypto Engine Buffer Descriptors

Host software creates a linked list of buffer descriptors and the hardware updates them. Table 26-3 provides a list of the Crypto Engine buffer descriptors, followed by format descriptions of each buffer descriptor (see Figure 26-2 through Figure 26-9).

Name (see No	ote 1)	Bit 31/2315/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
BD_CTRL	31:24	DESC_EN	—	(CRY_MODE<2:0	>	—	—	—				
	23:16	_	SA_FETCH_EN	—	—	LAST_BD	LIFM	PKT_INT_EN	CBD_INT_EN				
	15:8				BD_BUFLEN	l<15:8>							
	7:0				BD_BUFLEN	N<7:0>							
BD_SA_ADDR	31:24		BD_SAADDR<31:24>										
	23:16				BD_SAADDR	<23:16>							
	15:8				BD_SAADDF	R<15:8>							
	7:0		BD_SAADR<7:0>										
BD_SCRADDR	31:24				BD_SRCADDF	R<31:24>							
	23:16				BD_SRCADDF	R<23:16>							
	15:8				BD_SRCADD	R<15:8>							
	7:0		BD_SRCADDR<7:0>										
BD_DSTADDR	31:24		BD_DSTADDR<31:24>										
	23:16		BD_DSTADDR<23:16>										
	15:8		BD_DSTADDR<15:8>										
	7:0	BD_DSTADDR<7:0>											
BD_NXTPTR	31:24	BD_NXTADDR<31:24>											
	23:16		BD_NXTADDR<23:16>										
	15:8		BD_NXTADDR<15:8>										
	7:0				BD_NXTADD)R<7:0>							
BD_UPDPTR	31:24				BD_UPDADDF	₹<31:24>							
	23:16		BD_UPDADDR<23:16>										
	15:8				BD_UPDADD	R<15:8>							
	7:0				BD_UPDADD)R<7:0>							
BD_MSG_LEN	31:24				MSG_LENGTH	1<31:24>							
	23:16				MSG_LENGTH	H<23:16>							
	15:8				MSG_LENGT	H<15:8>							
	7:0	MSG_LENGTH<7:0>											
BD_ENC_OFF	31:24				ENCR_OFFSE	T<31:24>							
	23:16				ENCR_OFFSE	T<23:16>							
	15:8				ENCR_OFFSE	T<15:8>							
	7:0				ENCR_OFFS	ET<7:0>							

TABLE 26-3: CRYPTO ENGINE BUFFER DESCRIPTORS

Note 1: The buffer descriptor must be allocated in memory on a 64-bit boundary.

FIGURE 26-4: FORMAT OF BD_SRCADDR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31-24		BD_SCRADDR<31:24>									
23-16		BD_SCRADDR<23:16>									
15-8		BD_SCRADDR<15:8>									
7-0				BD_SCRA	DDR<7:0>						

bit 31-0 BD_SCRADDR: Buffer Source Address

The source address of the buffer that needs to be passed through the PE-CRDMA for encryption or authentication. This address must be on a 32-bit boundary.

FIGURE 26-5: FORMAT OF BD_DSTADDR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31-24	BD_DSTADDR<31:24>									
23-16	BD_DSTADDR<23:16>									
15-8		BD_DSTADDR<15:8>								
7-0				BD_DSTAI	DDR<7:0>					

bit 31-0 BD_DSTADDR: Buffer Destination Address

The destination address of the buffer that needs to be passed through the PE-CRDMA for encryption or authentication. This address must be on a 32-bit boundary.

FIGURE 26-6: FORMAT OF BD_NXTADDR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31-24	BD_NXTADDR<31:24>									
23-16	BD_NXTADDR<23:16>									
15-8	BD_NXTADDR<15:8>									
7-0		BD_NXTADDR<7:0>								
15-8 7-0				BD_NXTAL	DR<15:8> DDR<7:0>					

bit 31-0 **BD_NXTADDR:** Next BD Pointer Address Has Next Buffer Descriptor The next buffer can be a next segment of the previous buffer or a new packet.

Figure 26-10: Format of SA_CTRL (Continued)

bit 16-10	ALGO<6:0>: Type of 1xxxxxx = HMAC 1 x1xxxxx = SHA-256 xx1xxxx = SHA1 xxx1xxx = MD5 xxxx1xx = AES xxxx1xx = TDES xxxx1x = DES	Algorithm to Use
bit 9	ENC: Type of Encrypt 1 = Encryption 0 = Decryption	tion Setting
bit 8-7	KEYSIZE<1:0>: Size 11 = Reserved; do no 10 = 256 bits 01 = 192 bits 00 = 128 bits ⁽¹⁾	of Keys in SA_AUTHKEYx or SA_ENCKEYx t use
bit 6-4	MULTITASK<2:0>: H 111 = Parallel pass (c 101 = Pipe pass (enc 011 = Reserved 010 = Reserved 001 = Reserved 000 = Encryption or a	ow to Combine Parallel Operations in the Crypto Engine decrypt and authenticate incoming data in parallel) rypt the incoming data, and then perform authentication on the encrypted data) uthentication or decryption (no pass)
bit 3-0	CRYPTOALGO<3:0> 1111 = Reserved 1110 = AES_GCM 1101 = RCTR 1100 = RCBC_MAC 1011 = ROFB 1010 = RCFB 1001 = RCBC 1000 = RECB 0111 = TOFB 0110 = TCFB 0101 = TCFB 0101 = TCBC 0100 = TECB 0011 = OFB 0010 = CFB 0001 = CBC 0000 = ECB	: Mode of operation for the Crypto Algorithm (for AES processing) (for Triple-DES processing) (for Triple-DES processing) (for Triple-DES processing) (for Triple-DES processing) (for DES processing)
Note 1:	This setting does not only the number of bi	alter the size of SA_AUTHKEYx or SA_ENCKEYx in the Security Association, ts of SA_AUTHKEYx and SA_ENCKEYx that are used.

ADCIMCON3: ADC INPUT MODE CONTROL REGISTER 3 (CONTINUED) **REGISTER 28-7:** bit 16 SIGN40: AN40 Signed Data Mode bit⁽²⁾ 1 = AN40 is using Signed Data mode 0 = AN40 is using Unsigned Data mode DIFF39: AN39 Mode bit⁽²⁾ bit 15 1 = AN39 is using Differential mode 0 = AN39 is using Single-ended mode bit 14 SIGN39: AN39 Signed Data Mode bit⁽²⁾ 1 = AN39 is using Signed Data mode 0 = AN39 is using Unsigned Data mode bit 13 DIFF38: AN38 Mode bit⁽²⁾ 1 = AN38 is using Differential mode 0 = AN38 is using Single-ended mode SIGN38: AN38 Signed Data Mode bit⁽²⁾ bit 12 1 = AN38 is using Signed Data mode 0 = AN38 is using Unsigned Data mode DIFF37: AN37 Mode bit⁽²⁾ bit 11 1 = AN37 is using Differential mode 0 = AN37 is using Single-ended mode bit 10 SIGN37: AN37 Signed Data Mode bit⁽²⁾ 1 = AN37 is using Signed Data mode 0 = AN37 is using Unsigned Data mode DIFF36: AN36 Mode bit⁽²⁾ bit 9 1 = AN36 is using Differential mode 0 = AN36 is using Single-ended mode SIGN36: AN36 Signed Data Mode bit⁽²⁾ bit 8 1 = AN36 is using Signed Data mode 0 = AN36 is using Unsigned Data mode bit 7 DIFF35: AN35 Mode bit⁽²⁾ 1 = AN35 is using Differential mode 0 = AN35 is using Single-ended mode SIGN35: AN35 Signed Data Mode bit⁽²⁾ bit 6 1 = AN35 is using Signed Data mode 0 = AN35 is using Unsigned Data mode DIFF34: AN34 Mode bit⁽¹⁾ bit 5 1 = AN34 is using Differential mode 0 = AN34 is using Single-ended mode SIGN34: AN34 Signed Data Mode bit⁽¹⁾ bit 4 1 = AN34 is using Signed Data mode 0 = AN34 is using Unsigned Data mode DIFF33: AN33 Mode bit⁽¹⁾ bit 3 1 = AN33 is using Differential mode 0 = AN33 is using Single-ended mode SIGN33: AN33 Signed Data Mode bit⁽¹⁾ bit 2 1 = AN33 is using Signed Data mode 0 = AN33 is using Unsigned Data mode

Note 1: This bit is not available on 64-pin devices.

2: This bit is not available on 64-pin and 100-pin devices.

REGIST	ER 29-21: CiFIFOINTn: CAN FIFO INTERRUPT REGISTER 'n' ('n' = 0-31) (CONTINUED)
bit 9	TXHALFIF: FIFO Transmit FIFO Half Empty Interrupt Flag bit ⁽¹⁾ $\underline{TXEN = 1}$: (FIFO configured as a Transmit Buffer) $1 = FIFO$ is \leq half full 0 = FIFO is $>$ half full
	<u>TXEN = 0:</u> (FIFO configured as a Receive Buffer) Unused, reads '0'
bit 8	TXEMPTYIF: Transmit FIFO Empty Interrupt Flag bit ⁽¹⁾ TXEN = 1:(FIFO configured as a Transmit Buffer)1 = FIFO is empty0 = FIFO is not empty, at least 1 message queued to be transmitted
	<u>TXEN = 0:</u> (FIFO configured as a Receive Buffer) Unused, reads '0'
bit 7-4	Unimplemented: Read as '0'
bit 3	RXOVFLIF: Receive FIFO Overflow Interrupt Flag bit <u>TXEN = 1:</u> (FIFO configured as a Transmit Buffer) Unused, reads '0'
	<u>TXEN = 0:</u> (FIFO configured as a Receive Buffer) 1 = Overflow event has occurred 0 = No overflow event occurred
bit 2	RXFULLIF: Receive FIFO Full Interrupt Flag bit ⁽¹⁾ <u>TXEN = 1:</u> (FIFO configured as a Transmit Buffer) Unused, reads '0'
	<u>TXEN = 0:</u> (FIFO configured as a Receive Buffer) 1 = FIFO is full 0 = FIFO is not full
bit 1	RXHALFIF: Receive FIFO Half Full Interrupt Flag bit ⁽¹⁾ <u>TXEN = 1:</u> (FIFO configured as a Transmit Buffer) Unused, reads '0'
	<u>TXEN = 0:</u> (FIFO configured as a Receive Buffer) $1 = FIFO$ is \geq half full 0 = FIFO is < half full
bit 0	RXNEMPTYIF: Receive Buffer Not Empty Interrupt Flag bit ⁽¹⁾ <u>TXEN = 1:</u> (FIFO configured as a Transmit Buffer) Unused, reads '0'
	<u>TXEN = 0:</u> (FIFO configured as a Receive Buffer) 1 = FIFO is not empty, has at least 1 message 0 = FIFO is empty

Note 1: This bit is read-only and reflects the status of the FIFO.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	PTV<15:8>									
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	PTV<7:0>									
15.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0		
10.0	ON	—	SIDL	_	_	_	TXRTS	RXEN ⁽¹⁾		
7:0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0		
	AUTOFC		_	MANFC	_			BUFCDEC		

REGISTER 30-1: ETHCON1: ETHERNET CONTROLLER CONTROL REGISTER 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

	PAUSE Timer Value used for Flow Control. This register should only be written when RXEN (ETHCON1<8>) is not set.
	These bits are only used for Flow Control operations.
bit 15	ON: Ethernet ON bit
	1 = Ethernet module is enabled0 = Ethernet module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Ethernet Stop in Idle Mode bit
	 1 = Ethernet module transfers are paused during Idle mode 0 = Ethernet module transfers continue during Idle mode
bit 12-10	Unimplemented: Read as '0'
bit 9	TXRTS: Transmit Request to Send bit
	 1 = Activate the TX logic and send the packet(s) defined in the TX EDT 0 = Stop transmit (when cleared by software) or transmit done (when cleared by hardware)
	After the bit is written with a '1', it will clear to a '0' whenever the transmit logic has finished transmitting the requested packets in the Ethernet Descriptor Table (EDT). If a '0' is written by the CPU, the transmit logic finishes the current packet's transmission and then stops any further.
	This bit only affects TX operations.
bit 8	RXEN: Receive Enable bit ⁽¹⁾
	1 Frankla DV largin manufactor and received and started in the DV hyther as controlled by the filter

- 1 = Enable RX logic, packets are received and stored in the RX buffer as controlled by the filter configuration
- $\ensuremath{\scriptscriptstyle 0}$ = Disable RX logic, no packets are received in the RX buffer

This bit only affects RX operations.

PTV<15:0>: PAUSE Timer Value bits

bit 31-16

Note 1: It is not recommended to clear the RXEN bit and then make changes to any RX related field/register. The Ethernet Controller must be reinitialized (ON cleared to '0'), and then the RX changes applied.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	ALGNERRCNT<15:8>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				ALGNERRO	CNT<7:0>			

REGISTER 30-22: ETHALGNERR: ETHERNET CONTROLLER ALIGNMENT ERRORS STATISTICS REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 ALGNERRCNT<15:0>: Alignment Error Count bits

Increment count for frames with alignment errors. Note that an alignment error is a frame that has an FCS error and the frame length in bits is not an integral multiple of 8 bits (a.k.a., dribble nibble)

Note 1: This register is only used for RX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should be only done for debug/test purposes.

33.3.1 CONTROLLING CONFIGURATION CHANGES

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32MZ EF devices include two features to prevent alterations to enabled or disabled peripherals:

- Control register lock sequence
- Configuration bit select lock

33.3.1.1 Control Register Lock

Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the PMDLOCK Configuration bit (CFGCON<12>). Setting PMDLOCK prevents writes to the control registers; clearing PMDLOCK allows writes.

To set or clear PMDLOCK, an unlock sequence must be executed. Refer to **Section 42. "Oscillators with Enhanced PLL"** (DS60001250) in the *"PIC32 Family Reference Manual"* for details.

33.3.1.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The PMDL1WAY Configuration bit (DEVCFG3<28>) blocks the PMDLOCK bit from being cleared after it has been set once. If PMDLOCK remains set, the register unlock procedure does not execute, and the PPS control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset.

36.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
 - MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
- MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit[™] 3
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

36.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- · Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window

Project-Based Workspaces:

- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

DC CHARACTERISTICS		$\label{eq:standard operating Conditions: 2.1V to 3.6V (unless otherwise stated) \\ Operating temperature -40°C \leq TA \leq +85°C \mbox{ for Industrial} \\ -40°C \leq TA \leq +125°C \mbox{ for Extended} \\ \end{tabular}$					
Param.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions ⁽¹⁾
		Output Low Voltage I/O Pins 4x Sink Driver Pins - RA3, RA9, RA10, RA14, RA15 RB0-RB2, RB4, RB6, RB7, RB11, RB13 RC12-RC15 RD0, RD6-RD7, RD11, RD14 RE8, RE9 RF2, RF3, RF8 RG15 RH0, RH1, RH4-RH6, RH8-RH13 RJ0-RJ2, RJ8, RJ9, RJ11		_	0.4	V	Iol ≤ 10 mA, Vdd = 3.3V
DO10	Vol	Output Low Voltage I/O Pins: 8x Sink Driver Pins - RA0-RA2, RA4, RA5 RB3, RB5, RB8-RB10, RB12, RB14, RB15 RC1-RC4 RD1-RD5, RD9, RD10, RD12, RD13, RD15 RE4-RE7 RF0, RF4, RF5, RF12, RF13 RG0, RG1, RG6-RG9 RH2, RH3, RH7, RH14, RH15 RJ3-RJ7, RJ10, RJ12-RJ15 RK0-RK7		_	0.4	V	Iol ≤ 15 mA, Vdd = 3.3V
		Output Low Voltage I/O Pins: 12x Sink Driver Pins - RA6, RA7 RE0-RE3 RF1 RG12-RG14	_	_	0.4	V	Iol \leq 20 mA, Vdd = 3.3V

	TABLE 37-11:	DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS
--	--------------	--

Note 1: Parameters are characterized, but not tested.

FIGURE 37-10: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

FIGURE 37-20: **CANX MODULE I/O TIMING CHARACTERISTICS**

TABLE 37-37: CANX MODULE I/O TIMING REQUIREMENTS

AC CHAR	ACTERISTI	CS	Standar (unless Operatin	rd Operat otherwis g tempera	ting Cone se stated ature -4	ditions: 2) 40°C ≤ TA 40°C ≤ TA	 ∴1V to 3.6V ≤ +85°C for Industrial ≤ +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
CA10	TioF	Port Output Fall Time		—	_	ns	See parameter DO32
CA11	TioR	Port Output Rise Time	_	—		ns	See parameter DO31
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter	700			ns	_

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

B.4

System Bus

two key differences listed in Table B-3.

The system bus on PIC32MZ EF devices is similar to

the system bus on PIC32MZ EC devices. There are

B.3 CPU

The CPU in PIC32MZ EC devices is the microAptiv[™] MPU architecture. The CPU in the PIC32MZ EF devices is the Series 5 Warrior M-Class M5150 MPU architecture. Most PIC32MZ EF M-Class core features are identical to the microAptiv[™] core in PIC32MZ EC devices. The main differences are that in PIC32MZ EF devices, a floating-point unit (FPU) is included for improved math performance, and PC Sampling for performance measurement.

TABLE B-3: SYSTEM BUS DIFFERENCES

PIC32MZ EC Feature	PIC32MZ EF Feature
Permission Gro	oups during NMI
On PIC32MZ EC devices, the permission group in which the CPU is part of is lost during NMI handling, and must be manually restored.	On PIC32MZ EF devices, the prior permission group is preserved, and is restored when the CPU returns from the NMI handler.
DMA A	Access
The DMA can access the peripheral registers on Peripheral Bus 1.	On PIC32MZ EF devices, the DMA no longer has access to registers on Peripheral Bus 1. Refer to Table 4-4 for details on which peripherals are now excluded.

B.5 Flash Controller

The Flash controller on PIC32MZ EF devices adds the ability both to control boot Flash aliasing, and for locking the current swap settings. Table B-4 lists theses differences.

TABLE B-4:FLASH CONTROLLER DIFFERENCES

PIC32MZ EC Feature	PIC32MZ EF Feature
Boot Flas	h Aliasing
On PIC32MZ EC devices, Boot Flash aliasing is done through the DEVSEQ0 register, but no further changes are possible without rebooting the processor.	On PIC32MZ EF devices, the initial Boot Flash aliasing is determined by the DEVSEQ3 register, but the BFSWAP bit (NVMCON<6>) reflects the state of the aliasing, and can be modified to change it during run-time.
	 BFSWAP (NVMCON<6>) 1 = Boot Flash Bank 2 is mapped to the lower boot alias, and Boot Flash bank 1 is mapped to the upper boot alias 0 = Boot Flash Bank 1 is mapped to the lower boot alias, and Boot Flash Bank 2 is mapped to the upper boot alias
PFM and BFM	Swap Locking
On PIC32MZ EC devices, the swapping of PFM is always available.	On PIC32MZ EF devices, a new control, SWAPLOCK<1:0> (NVMCON2<7:6>) allows the locking of PFSWAP and BFSWAP bits, and can restrict any further changes.
	 SWAPLOCK<1:0> (NVMCON2<7:6>) 11 = PFSWAP and BFSWAP are not writable and SWAPLOCK is not writable 10 = PFSWAP and BFSWAP are not writable and SWAPLOCK is writable 01 = PFSWAP and BFSWAP are not writable and SWAPLOCK is writable 00 = PFSWAP and BFSWAP are writable and SWAPLOCK is writable