

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512eff144-e-pl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The System Bus arbitration scheme implements a nonprogrammable, Least Recently Serviced (LRS) priority, which provides Quality Of Service (QOS) for most initiators. However, some initiators can use Fixed High Priority (HIGH) arbitration to guarantee their access to data.

The arbitration scheme for the available initiators is shown in Table 4-5.

ID	QOS
1	LRS ⁽¹⁾
2	HIGH ^(1,2)
3	LRS ⁽¹⁾
4	HIGH ^(1,2)
5	LRS ⁽¹⁾
6	HIGH ^(1,2)
7	LRS
8	LRS
9	LRS
10	LRS
11	LRS
12	LRS
13	HIGH ⁽²⁾
14	LRS
	1 2 3 4 5 6 7 8 9 10 11 11 12 13

TABLE 4-5:INITIATOR ID AND QOS

- Note 1: When accessing SRAM, the DMAPRI bit (CFGCON<25>) and the CPUPRI bit (CFGCON<24>) provide arbitration control for the DMA and CPU (when servicing an interrupt (i.e., EXL = 1)), respectively, by selecting the use of LRS or HIGH When using HIGH, the DMA and CPU get arbitration preference over all initiators using LRS.
 - 2: Using HIGH arbitration can have serious negative effects on other initiators. Therefore, it is recommended to not enable this type of arbitration for an initiator that uses significant system bandwidth. HIGH arbitration is intended to be used for low bandwidth applications that require low latency, such as LCC graphics applications.

4.3 Permission Access and System Bus Registers

The System Bus on PIC32MZ EF family of microcontrollers provides access control capabilities for the transaction initiators on the System Bus.

The System Bus divides the entire memory space into fourteen target regions and permits access to each target by initiators via permission groups. Four Permission Groups (0 through 3) can be assigned to each initiator. Each permission group is independent of the others and can have exclusive or shared access to a region.

Using the CFGPG register (see Register 34-10 in **Section 34.0 "Special Features"**), Boot firmware can assign a permission group to each initiator, which can make requests on the System Bus.

The available targets and their regions, as well as the associated control registers to assign protection, are described and listed in Table 4-6.

Register 4-2 through Register 4-10 are used for setting and controlling access permission groups and regions.

To change these registers, they must be unlocked in hardware. The register lock is controlled by the PGLOCK Configuration bit (CFGCON<11>). Setting PGLOCK prevents writes to the control registers; clearing PGLOCK allows writes.

To set or clear the PGLOCK bit, an unlock sequence must be executed. Refer to **Section 42. "Oscillators with Enhanced PLL"** in the *"PIC32 Family Reference Manual"* for details.

TABLE 7-3: **INTERRUPT REGISTER MAP (CONTINUED)**

ress f)	b -	Ð								Bi	ts								Ś
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Recete
	055000	31:16	_	_	—	_	_	_	—	_		_	_	_	—	_	VOFF<	17:16>	00
0548	OFF002	15:0								VOFF<15:1>								—	000
0540	OFF003	31:16	_	_	_	_	_	_	_	—	_	_	_	_	_	_	VOFF<	17:16>	000
J54C	0FF003	15:0								VOFF<15:1>								_	000
0550	OFF004	31:16	_	_	—	—		-	_	_		_		_	_	_	VOFF<	17:16>	000
0550	011004	15:0								VOFF<15:1>								—	000
0554	OFF005	31:16	_	-	—	—	-	-	—	—	_	—	-	-	—	-	VOFF<	17:16>	000
0554	011005	15:0							-	VOFF<15:1>					-			—	00
0558	OFF006	31:16		_	—	—	—	—	—	—	_	—	—	_	—	_	VOFF<	17:16>	000
0550	011000	15:0								VOFF<15:1>								—	000
155C	OFF007	31:16		_	—	—	—	—	—	—	_	—	—	_	—	_	VOFF<	17:16>	00
	011007	15:0								VOFF<15:1>								_	00
0560	OFF008	31:16	_	-	—	—	-	-	—	—	_	—	-	-	—	-	VOFF<	17:16>	00
0500	011000	15:0							-	VOFF<15:1>					-			—	000
0564	OFF009	31:16		_	—	—	—	—	—	—	_	—	—	_	—	_	VOFF<	17:16>	00
0004	011005	15:0							-	VOFF<15:1>					-			—	00
0568	OFF010	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	00
0000	011010	15:0							-	VOFF<15:1>					-				000
156C	OFF011	31:16		_	—	—	—	—	—	—	_	—	—	_	—	_	VOFF<	17:16>	000
0000	onioni	15:0								VOFF<15:1>									000
0570	OFF012	31:16	—	—	—	—	—	—		—	—	—	_	—	—	—	VOFF<	17:16>	00
0010	011012	15:0								VOFF<15:1>									000
0574	OFF013	31:16	—	—	—	—	—	—	—	—		—	—	—	—	—	VOFF<	17:16>	00
0374	011013	15:0								VOFF<15:1>									000
0578	OFF014	31:16	—	—	—	—	_	_	_	—		—	—	—		—	VOFF<	17:16>	000
0070	011014	15:0								VOFF<15:1>									000
0570	OFF015	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	000
	0.7010	15:0								VOFF<15:1>									000
0580	OFF016	31:16	_	_	—	—	—	—	—	—	—	—	—	_	—	—	VOFF<	17:16>	000
0000	011010	15:0								VOFF<15:1>								_	000

© 2015-2016 Microchip Technology Inc.

Note 1: All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV **Registers**" for more information. This bit or register is not available on 64-pin devices.

This bit or register is not available on devices without a CAN module. 3:

4: This bit or register is not available on 100-pin devices.

- Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices. 5:
- Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices. 6:

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:

^{2:}

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ress)		e								Bi	ts								s
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	OFF047	31:16	_	_	—	_	_	—	—	_	_		—	_	—	_	VOFF<	:17:16>	0000
USFC	OFF047	15:0								VOFF<15:1>									0000
0600	OFF048	31:16	_	_	—	—	_	_	_	—	_	—	-	—	—	_	VOFF<	:17:16>	0000
0000	011040	15:0						-	-	VOFF<15:1>			-	-					0000
0604	OFF049	31:16	—	_	—	—	—	—	—	—	_	—	-	—	—	—	VOFF<	:17:16>	0000
0004	011043	15:0								VOFF<15:1>								_	0000
0608	OFF050	31:16	—	_	—	—	—	—	—	—		—	—		—	_	VOFF<	:17:16>	0000
0000	011030	15:0								VOFF<15:1>								—	0000
0600	OFF051	31:16	—	—	—	—	—			—	—	—	-	—	—	—	VOFF<	:17:16>	0000
0000	011001	15:0								VOFF<15:1>									0000
0610	OFF052	31:16	—	—	—	—	—			—	—	—	-	—	—	—	VOFF<	:17:16>	0000
0010	011032	15:0						-	-	VOFF<15:1>			-	-				_	0000
0614	OFF053	31:16	—	—	—	—	_	—	—	_	—	_	—	_	—	_	VOFF<	:17:16>	0000
0014	011033	15:0						-	-	VOFF<15:1>			-	-				—	0000
0618	OFF054	31:16	—	_	—	—	—	—	—	—	_	—	-	—	—	—	VOFF<	:17:16>	0000
0010	011004	15:0								VOFF<15:1>								_	0000
0610	OFF055	31:16	—	_	—	—	—	—	—	—	_	—	-	—	—	—	VOFF<	:17:16>	0000
0010	OFF035	15:0								VOFF<15:1>								_	0000
0620	OFF056	31:16	_	_	—	—	_	_	_	—	_	—	-	—	—	_	VOFF<	:17:16>	0000
0020	OFF030	15:0								VOFF<15:1>								_	0000
0624	OFF057	31:16	_	_	—	—	_	—	_	_	_	—	—	—	_	_	VOFF<	:17:16>	0000
0024	011037	15:0								VOFF<15:1>								_	0000
0628	OFF058	31:16	—	_	—	_		—	—	—	_	—	-	—	—		VOFF<	:17:16>	0000
0020	OFF036	15:0			•		-	-	-	VOFF<15:1>		-	-	-	•	-	-	_	0000
0620	OFF059	31:16	—	_	—	—	-	—	-	-	_	—	-	—	—	—	VOFF<	:17:16>	0000
0020	01 F039	15:0								VOFF<15:1>								_	0000
0630	OFF060	31:16	_		_	_	_	_	_	_			_	_		_	VOFF<	:17:16>	0000
0630		15:0								VOFF<15:1>								_	0000
0624		31:16	_	—	—	—	_	—	—	_	_	_	—	_	_	_	VOFF<	:17:16>	0000
0634	OFF061	15:0								VOFF<15:1>								_	0000

DS60001320D-page 134

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Note 1: **Registers**" for more information. This bit or register is not available on 64-pin devices.

2:

3: This bit or register is not available on devices without a CAN module.

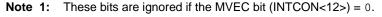
4: This bit or register is not available on 100-pin devices.

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

7: This bit or register is not available on devices without a Crypto module.

This bit or register is not available on 124-pin devices. 8:


Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24		PRI7SS	<3:0> ⁽¹⁾			PRI6SS	<3:0> ⁽¹⁾	
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16		PRI5SS	<3:0> ⁽¹⁾			PRI4SS	<3:0> ⁽¹⁾	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8		PRI3S	S<3:0>			PRI2SS	<3:0> ⁽¹⁾	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
7:0		PRI1SS	<3:0> ⁽¹⁾	•			_	SS0

REGISTER 7-2: PRISS: PRIORITY SHADOW SELECT REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 **PRI7SS<3:0>:** Interrupt with Priority Level 7 Shadow Set bits⁽¹⁾

1xxx = Reserved (by default, an interrupt with a priority level of 7 uses Shadow Set 0) 0111 = Interrupt with a priority level of 7 uses Shadow Set 7 0110 = Interrupt with a priority level of 7 uses Shadow Set 6 0001 = Interrupt with a priority level of 7 uses Shadow Set 1 0000 = Interrupt with a priority level of 7 uses Shadow Set 0 bit 27-24 **PRI6SS<3:0>:** Interrupt with Priority Level 6 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 6 uses Shadow Set 0) 0111 = Interrupt with a priority level of 6 uses Shadow Set 7 0110 = Interrupt with a priority level of 6 uses Shadow Set 6 0001 = Interrupt with a priority level of 6 uses Shadow Set 1 0000 = Interrupt with a priority level of 6 uses Shadow Set 0 bit 23-20 PRI5SS<3:0>: Interrupt with Priority Level 5 Shadow Set bits⁽¹⁾ $1 \times 1 \times 1 =$ Reserved (by default, an interrupt with a priority level of 5 uses Shadow Set 0) 0111 = Interrupt with a priority level of 5 uses Shadow Set 7 0110 = Interrupt with a priority level of 5 uses Shadow Set 6 0001 = Interrupt with a priority level of 5 uses Shadow Set 1 0000 = Interrupt with a priority level of 5 uses Shadow Set 0 bit 19-16 PRI4SS<3:0>: Interrupt with Priority Level 4 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 4 uses Shadow Set 0) 0111 = Interrupt with a priority level of 4 uses Shadow Set 7 0110 = Interrupt with a priority level of 4 uses Shadow Set 6 0001 = Interrupt with a priority level of 4 uses Shadow Set 1 0000 = Interrupt with a priority level of 4 uses Shadow Set 0

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	—	—	—		IP3<2:0>	IS3<	IS3<1:0>		
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	_	—	_		IP2<2:0>	IS2<	IS2<1:0>		
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.0	_	—	_		IP1<2:0>		IS1<	:1:0>	
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0	_	—	_		IP0<2:0>		IS0<	:1:0>	

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-26	IP3<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 25-24	IS3<1:0>: Interrupt Subpriority bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1
	00 = Interrupt subpriority is 0
bit 23-21	
bit 20-18	IP2<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 17-16	IS2<1:0>: Interrupt Subpriority bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1 00 = Interrupt subpriority is 0
hit 15-13	Unimplemented: Read as '0'
5115-15	ommplemented. Read as 0
Note:	This register represents a generic defi

Note: This register represents a generic definition of the IPCx register. Refer to Table 7-2 for the exact bit definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	-	—	_	-	—	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	_		—			—
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0
15:8	ON	—	_	SUSPEND	DMABUSY	_	_	_
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0		_		_	_			_

REGISTER 10-1: DMACON: DMA CONTROLLER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** DMA On bit
 - 1 = DMA module is enabled
 - 0 = DMA module is disabled
- bit 14-13 Unimplemented: Read as '0'
- bit 12 SUSPEND: DMA Suspend bit
 - 1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus
 - 0 = DMA operates normally
- bit 11 DMABUSY: DMA Module Busy bit
 - 1 = DMA module is active and is transferring data
 - 0 = DMA module is disabled and not actively transferring data
- bit 10-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—			—	—	_		—			
00.40	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
23:16	CHAIRQ<7:0> ⁽¹⁾										
45.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
15:8				CHSIRQ<	<7:0> ⁽¹⁾						
7.0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0			
7:0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	_	_			

REGISTER 10-8: DCHxECON: DMA CHANNEL x EVENT CONTROL REGISTER

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

and set CHAIF flag

bit 31-24 Unimplemented: Read as '0'

bit 23-16	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will abort any transfers in progress
	•
	•
	•

00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag 00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag

bit 15-8 CHSIRQ<7:0>: Channel Transfer Start IRQ bits⁽¹⁾

11111111 = Interrupt 255 will initiate a DMA transfer

• 00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer

bit 7 CFORCE: DMA Forced Transfer bit

1 = A DMA transfer is forced to begin when this bit is written to a '1'

0 = This bit always reads '0'

bit 6 CABORT: DMA Abort Transfer bit

- 1 = A DMA transfer is aborted when this bit is written to a '1'
- 0 = This bit always reads '0'

bit 5 **PATEN:** Channel Pattern Match Abort Enable bit

- 1 = Abort transfer and clear CHEN on pattern match
- 0 = Pattern match is disabled
- bit 4 SIRQEN: Channel Start IRQ Enable bit
 - 1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs
 - 0 = Interrupt number CHSIRQ is ignored and does not start a transfer
- bit 3 AIRQEN: Channel Abort IRQ Enable bit
 - 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs
 - 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
- bit 2-0 Unimplemented: Read as '0'
- Note 1: See Table 7-2: "Interrupt IRQ, Vector, and Bit Location" for the list of available interrupt IRQ sources.

REGISTER 11-29: USBLPMR2: USB LINK POWER MANAGEMENT CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0 U-0		U-0	U-0	U-0	U-0
31.24	—	_		_		_	—	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_		_		_	—	_
45.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—			LF	PMFADDR<6:	0>		
7:0	U-0	U-0	R-0	R-0, HS	R-0, HS	R-0, HS	R-0, HS	R-0, HS
7.0	_		LPMERRIF	LPMRESIF	LPMNCIF	LPMACKIF	LPMNYIF	LPMSTIF

Legend:	HS = Hardware Set		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

bit 14-8 LPMFADDR<6:0>: LPM Payload Function Address bits These bits contain the address of the LPM payload function.

bit 7-6 Unimplemented: Read as '0'

bit 5 LPMERRIF: LPM Error Interrupt Flag bit (Device mode)

1 = An LPM transaction was received that had a LINKSTATE field that is not supported. The response will be a STALL.

0 =No error condition

bit 4 LPMRESIF: LPM Resume Interrupt Flag bit

- 1 = The USB module has resumed (for any reason)
- 0 = No Resume condition
- bit 3 LPMNCIF: LPM NC Interrupt Flag bit

When in Device mode:

- 1 = The USB module received a LPM transaction and responded with a NYET due to data pending in the RX FIFOs.
- 0 = No NC interrupt condition

When in Host mode:

- 1 = A LPM transaction is transmitted and the device responded with an ACK
- 0 = No NC interrupt condition

bit 2 LPMACKIF: LPM ACK Interrupt Flag bit

When in Device mode:

- 1 = A LPM transaction was received and the USB Module responded with an ACK
- 0 = No ACK interrupt condition

When in Host mode:

1 = The LPM transaction is transmitted and the device responds with an ACK

0 = No ACK interrupt condition

bit 1 LPMNYIF: LPM NYET Interrupt Flag bit

When in Device mode:

1 = A LPM transaction is received and the USB Module responded with a NYET

0 = No NYET interrupt flag

When in Host mode:

- 1 = A LPM transaction is transmitted and the device responded with an NYET
- 0 = No NYET interrupt flag

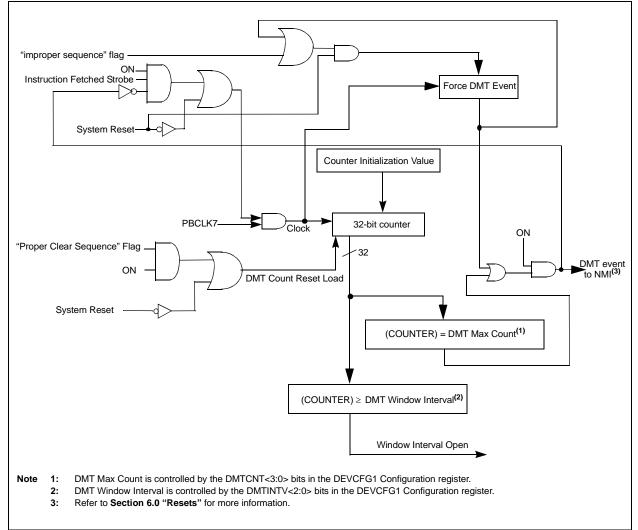
TABLE 12-12: PORTE REGISTER MAP FOR 64-PIN DEVICES ONLY

ess										I	Bits								
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0400	ANSELE	31:16	_						—	—	—	—			—	_	—	—	0000
0.00	/	15:0	_	-	—	_	—	_	—	—	ANSE7	ANSE6	ANSE5	ANSE4	—	_	—	—	00F0
0410	TRISE	31:16	—	_	_	_	—	_	—	—	—	_	_	_	—	—	_	—	0000
0110	HUGE	15:0	—	—	—	_	—	_	—	—	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	00FF
0420	PORTE	31:16	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000
0420	TORTE	15:0	—	—	—	-	—	—	—	—	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
0430	LATE	31:16	—	-	—	-	—	—	—	—	—	—	_	-	—	-	—	—	0000
0430	LAIL	15:0	Ι		-		-	—	—	—	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx
0440	ODCE	31:16		—	—	—	—	_	_	_	_	_	—	—	—	—	_	—	0000
0440	ODCE	15:0	Ι	_	—	_	—	_	_	_	ODCE7	ODCE6	ODCE5	ODCE4	ODCE3	ODCE2	ODCE1	ODCE0	0000
0450		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0450	CNPUE	15:0	_		_		_	_	_	_	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPUE3	CNPUE2	CNPUE1	CNPUE0	0000
0.400		31:16	_	_	_	_	_	_	_	—	_	_	_	-	—	-	—	_	0000
0460	CNPDE	15:0	_	_	_	_	—	_	—	—	CNPDE7	CNPDE6	CNPDE5	CNPDE4	CNPDE3	CNPDE2	CNPDE1	CNPDE0	0000
		31:16	_	_	_	_	—	_	—	—	—	—	_	_	—	_	—	—	0000
0470	CNCONE	15:0	ON	1	-	-	EDGE DETECT	_	_		_	_	-	-	_	-	_	_	0000
0.400		31:16	_		_		_	_	_	_	—	_		-	_		_	_	0000
0480	CNENE	15:0	_	_	_	_	_	_	_	_	CNENE7	CNENE6	CNENE5	CNENE4	CNENE3	CNENE2	CNENE1	CNENE0	0000
		31:16	_	_	_	_	—	_	_	—	—	—	_	_	—	_	—	—	0000
0490	CNSTATE	15:0	_		_	_	_	_	_	_	CN STATE7	CN STATE6	CN STATE5	CN STATE4	CN STATE3	CN STATE2	CN STATE1	CN STATE0	0000
0440		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
04A0	CNNEE	15:0	_	_	_	_	_	_	_	_	CNNEE7	CNNEE6	CNNEE5	CNNEE4	CNNEE3	CNNEE2	CNNEE1	CNNEE0	0000
0.450		31:16	_	_	_	_	_	_	_	—	_	—	—	—	—		—	—	0000
04B0	CNFE	15:0	_	_	_	_	_	_	_	_	CNFE7	CNFE6	CNFE5	CNFE4	CNFE3	CNFE2	CNFE1	CNFE0	0000
0.400		31:16	_	_	_	_	_	_	_	—	_		-	-	—		—	_	0000
04C0	SRCON0E	15:0	_	_	_	_	_	_	_	_	_	_	_	_	SR0E3	SR0E2	SR0E1	SR0E0	0000
		31:16	_	_	_	_		_	_		_	_	_	_		_		—	0000
04D0	SRCON1E	15:0	_	_	_	_	_	_	_	_	_	_	_	_	SR1E3	SR1E2	SR1E1	SR1E0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

15.0 DEADMAN TIMER (DMT)


Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The primary function of the Deadman Timer (DMT) is to reset the processor in the event of a software malfunction. The DMT is a free-running instruction fetch timer, which is clocked whenever an instruction fetch occurs until a count match occurs. Instructions are not fetched when the processor is in Sleep mode. The DMT consists of a 32-bit counter with a time-out count match value as specified by the DMTCNT<3:0> bits in the DEVCFG1 Configuration register.

A Deadman Timer is typically used in mission critical and safety critical applications, where any single failure of the software functionality and sequencing must be detected.

Figure 15-1 shows a block diagram of the Deadman Timer module.

FIGURE 15-1: DEADMAN TIMER BLOCK DIAGRAM

REGISTER 20-1: SQI1XCON1: SQI XIP CONTROL REGISTER 1 (CONTINUED)

bit 5-4 TYPEMODE<1:0>: SQI Type Mode Enable bits

- The boot controller will send the mode in Single Lane, Dual Lane, or Quad Lane.
 - 11 = Reserved
 - 10 = Quad Lane mode is enabled
 - 01 = Dual Lane mode is enabled
 - 00 = Single Lane mode is enabled
- bit 3-2 TYPEADDR<1:0>: SQI Type Address Enable bits

The boot controller will send the address in Single Lane, Dual Lane, or Quad Lane.

- 11 = Reserved
- 10 = Quad Lane mode address is enabled
- 01 = Dual Lane mode address is enabled
- 00 = Single Lane mode address is enabled

bit 1-0 TYPECMD<1:0>: SQI Type Command Enable bits

The boot controller will send the command in Single Lane, Dual Lane, or Quad Lane.

- 11 = Reserved
- 10 =Quad Lane mode command is enabled
- 01 = Dual Lane mode command is enabled
- 00 = Single Lane mode command is enabled

Bit 1/23/15/7 U-0 U-0 U-0	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3 U-0	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
_	_	U-0	U-0	U-0	U-0	U-0	11-0
— U-0	-	_				°	0-0
U-0	11.0			—	—	—	—
	U-0	U-0	U-0 U-0 U-0		U-0	U-0	U-0
—	_	—	—	_	—	—	—
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—		—	—	DMAEISE	PKT DONEISE	BD DONEISE	CON THRISE
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CON MPTYISE	CON FULLISE	RX THRISE	RX FULLISE	RX EMPTYISE	TX THRISE	TX FULLISE	TX EMPTYISE
Ν	R/W-0 CON	R/W-0R/W-0CONCON	— — — R/W-0 R/W-0 R/W-0 CON CON RX	- - - R/W-0 R/W-0 R/W-0 R/W-0 CON CON RX RX	DMAEISER/W-0R/W-0R/W-0R/W-0CONCONRXRXRX	DMAEISEPKT DONEISER/W-0R/W-0R/W-0R/W-0R/W-0R/W-0CONCONRXRXRXRX	DMAEISEPKT DONEISEBD DONEISER/W-0R/W-0R/W-0R/W-0R/W-0R/W-0CONCONRXRXRXTXTX

REGISTER 20-22: SQI1INTSIGEN: SQI INTERRUPT SIGNAL ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bi	d bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-12 Unimplemented: Read as '0'

bit 11	DMAEISE: DMA Bus Error Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 10	PKTDONEISE: Receive Error Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 9	BDDONEISE: Transmit Error Interrupt Signal Enable bit
	 Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 8	CONTHRISE: Control Buffer Threshold Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 7	CONEMPTYISE: Control Buffer Empty Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
1.11.0	0 = Interrupt signal is disabled
bit 6	CONFULLISE: Control Buffer Full Interrupt Signal Enable bit
	 1 = Interrupt signal is enabled 0 = Interrupt signal is disabled
hit E	
bit 5	RXTHRISE: Receive Buffer Threshold Interrupt Signal Enable bit 1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 4	RXFULLISE: Receive Buffer Full Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 3	RXEMPTYISE: Receive Buffer Empty Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 2	TXTHRISE: Transmit Buffer Threshold Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 1	TXFULLISE: Transmit Buffer Full Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled
bit 0	TXEMPTYISE: Transmit Buffer Empty Interrupt Signal Enable bit
	1 = Interrupt signal is enabled
	0 = Interrupt signal is disabled

23.1 PMP Control Registers

TABLE 23-1: PARALLEL MASTER PORT REGISTER MAP

ess		ő								В	its								\$
Virtual Address (BF82_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E000	PMCON	31:16		—	—		—	—	—		RDSTART		—		_		DUALBUF	_	0000
LUUU	FINCON	15:0	ON	—	SIDL	ADRMU	JX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF	<1:0>	ALP	CS2P	CS1P		WRSP	RDSP	0000
E010	PMMODE	31:16	_	—	—	_	—	—		_		—	—	—	—	_	—	_	0000
2010	_	15:0	BUSY	IRQM	<1:0>	INCM	<1:0>	MODE16	MODE	<1:0>	WAITE	3<1:0>		WAITN	/<3:0>		WAITE	<1:0>	0000
		31:16	_	—	—	—		—	—	—	—	—	—	—	—	—	—	_	0000
E020	PMADDR	15:0	CS2									0000							
			ADDR15	ADDR14				-											0000
E030	PMDOUT	31:16	_	—	—	—	_	—	—	—		—	_	—	—	—	—	_	0000
		15:0									0000								
E040	PMDIN	31:16 15:0	—	—	_	_		_	_		-	—	_	—	—	_	—	_	0000
		31:16								DATAI	l<15:0>								0000
E050	PMAEN	15:0	-	_	—	_	_	—	_			_	—	—	—		—	_	
											<15:0>								0000
E060	PMSTAT	31:16 15:0	IBF	— IBOV	_	_	IB3F	IB2F	IB1F	IB0F				_	OB3E	— OB2E	— OB1E		0000
		31:16		<u>іво</u> у			івэг —											<u></u>	008F
E070	PMWADDR	51.10	WCS2	WCS1					_		_						_		0000
2070		15:0										0000							
		31:16				_		_	_	_		<13:0>	_	_	_	_	_	_	0000
E090	PMRADDR	51.10	RCS2	RCS1													_		0000
E080	FINIKADDR	15:0		RADDR14							RADDF								0000
		31:16	31:16			_	_					<13:0>		_		_		_	0000
E090	PMRDIN																		
		15:0	15:0	5:0 RDATAIN<15:0> 0000															

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

24.0 EXTERNAL BUS INTERFACE (EBI)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 47. "External Bus Interface (EBI)" (DS60001245) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The External Bus Interface (EBI) module provides a high-speed, convenient way to interface external parallel memory devices to the PIC32MZ EF family device.

With the EBI module, it is possible to connect asynchronous SRAM and NOR Flash devices, as well as non-memory devices such as camera sensors and LCDs.

The features of the EBI module depend on the pin count of the PIC32MZ EF device, as shown in Table 24-1.

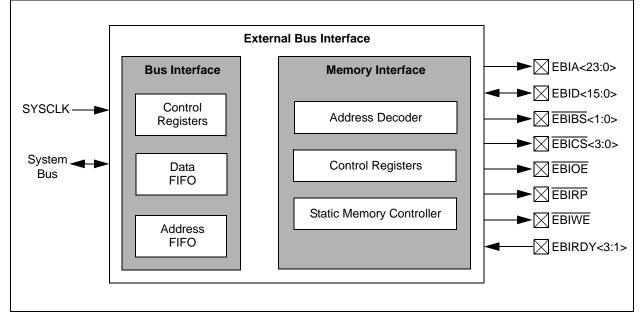

Note: The EBI module is not available on 64-pin devices.

TABLE 24-1: EBI MODULE FEATURES

Feature	Num	Number of Device Pins						
	100	124	144					
Async SRAM	Y	Y	Y					
Async NOR Flash	Y	Y	Y					
Available address lines	20	20	24					
8-bit data bus support	Y	Y	Y					
16-bit data bus support	Y	Y	Y					
Available Chip Selects	1	1	4					
Timing mode sets	3	3	3					
8-bit R/W from 16-bit bus	N	Ν	Y					
Non-memory device	Y	Y	Y					
LCD	Y	Y	Y					

Note: Once the EBI module is configured, external devices will be memory mapped and can be access from KSEG2 memory space (see Figure 4-1 through Figure 4-4 in Section 4.0 "Memory Organization" for more information). The MMU must be enabled and the TLB must be set up to access this memory (refer to Section 50. "CPU for Devices with MIPS32[®] microAptiv[™] and M-Class Cores" (DS60001192) of the *"PIC32 Family Reference Manual"* for more information).

FIGURE 24-1: EBI SYSTEM BLOCK DIAGRAM

32.1 Comparator Voltage Reference Control Registers

TABLE 32-1: COMPARATOR VOLTAGE REFERENCE REGISTER MAP

ess		æ		Bits											s				
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0500	CVRCON	31:16	_	—	—	—	—	-	—	—	—	—	—	—	—	—	—	_	0000
UEUU	CVRCON	15:0	ON	—	_	_	—	—	_	_	—	CVROE	CVRR	CVRSS		CVR<	3:0>		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The register in this table has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

AC CHA	RACTERISTI	CS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param. No.	Symbol	Characteristic ^(1,3)	Min.	Тур. ⁽²⁾	Conditions					
SQ10	FCLK	Serial Clock Frequency (1/TsQI)	—	66	_	MHz	DMA mode Read, SPI mode 0			
				33	_	MHz	DMA mode Read, SPI mode 3			
				100	_	MHz	PIO mode Write			
SQ11	Тѕскн	Serial Clock High Time	5		_	ns	—			
SQ12	TSCKL	Serial Clock Low Time	5		_	ns	_			
SQ13	TSCKR	Serial Clock Rise Time	_		_	ns	See parameter DO31			
SQ14	TSCKF	Serial Clock Fall Time		_	_	ns	See parameter DO32			
SQ15	TCSS (TCES)	CS Active Setup Time	5			ns	_			
SQ16	Тсѕн (Тсен)	CS Active Hold Time	5		_	ns	_			
SQ17	Тснѕ	CS Not Active Setup Time	3			ns				
SQ18	Тснн	CS Not Active Hold Time	3	_	_	ns	_			
SQ22	TDIS	Data In Setup Time	6	—	_	ns	—			
SQ23	Тон	Data In Hold Time	3	—	_	ns	—			
SQ24	Трон	Data Out Hold	0	_	_	ns	—			
SQ25	TDOV	Data Out Valid	—	_	6	ns	—			

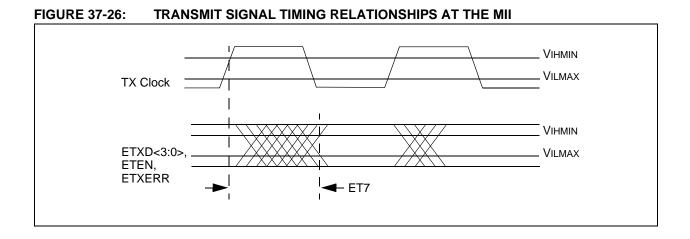
TABLE 37-34: SQI TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

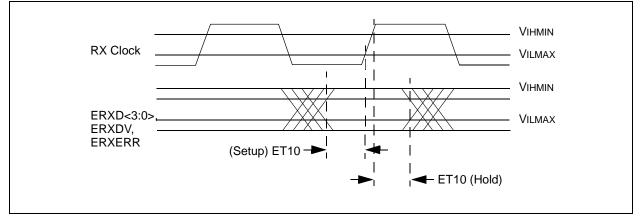
2: Data in the Typical column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: Assumes 10 pF load on all SQIx pins

TABLE 37-38:	ADC MODULE SPECIFICATIONS
---------------------	---------------------------


		STICS	(unless oth	erwise stat			
AC CHARACTERISTICS		Operating temperature $-40^{\circ}C \le TA$					
					-40°C ≤ IA ≤	≦+125° I	°C for Extended
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Conditions
Device	Supply						
AD01	AVdd	Module VDD Supply	Greater of VDD – 0.3 or 2.1	_	Lesser of VDD + 0.3 or 3.6	V	_
AD02	AVss	Module Vss Supply	Vss	_	Vss + 0.3	V	—
Referen	ce Inputs						
AD05	Vrefh	Reference Voltage High	VREFL + 1.8	—	AVdd	V	(Note 1)
AD06	Vrefl	Reference Voltage Low	AVss	_	VREFH – 1.8	V	(Note 1)
AD07	Vref	Absolute Reference Voltage (VREFH – VREFL)	1.8	—	AVdd	V	(Note 2)
AD08	IREF	Current Drain	—	102	_	μA	Per ADCx ('x' = 0-4, 7)
Analog	Input				•		
AD12	VINH-VINL	Full-Scale Input Span	VREFL		Vrefh	V	—
AD13	Vinl	Absolute Vın∟ Input Voltage	AVss	_	VREFL	V	_
AD14	Vinh	Absolute Vілн Input Voltage	AVss	—	Vrefh	V	_
ADC Ac	curacy – N	Measurements with Exte	rnal VREF+/V	REF-			•
AD20c	Nr	Resolution	6	—	12	bits	Selectable 6, 8, 10, 12 Resolution Ranges
AD21c	INL	Integral Nonlinearity	—	±3	_	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V
AD22c	DNL	Differential Nonlinearity	—	±1	—	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V
AD23c	Gerr	Gain Error	—	±8	—	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V
AD24c	EOFF	Offset Error	—	±2	—	LSb	VINL = AVSS = 0V, AVDD = 3.3V
Dynami	c Perform	ance	. 1				•
AD31b	SINAD	Signal to Noise and Distortion	—	67	_	dB	Single-ended (Notes 2,3)
AD34b	ENOB	Effective Number of bits		10.5	—	bits	(Notes 2,3)

Note 1: These parameters are not characterized or tested in manufacturing.


2: These parameters are characterized, but not tested in manufacturing.

3: Characterized with a 1 kHz sine wave.

4: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.

A.4 Resets

The PIC32MZ EF family of devices has updated the resets modules to incorporate the new handling of NMI resets from the WDT, DMT, and the FSCM. In addition, some bits have been moved, as summarized in Table A-5.

TABLE A-5: RESET DIFFERENCES

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature			
Power Reset				
	The VREGS bit, which controls whether the internal regulator is enabled in Sleep mode, has been moved from RCON in PIC32MX5XX/6XX/7XX devices to a new PWRCON register in PIC32MZ EF devices.			
VREGS (RCON<8>)	VREGS (PWRCON<0>)			
 1 = Regulator is enabled and is on during Sleep mode 0 = Regulator is disabled and is off during Sleep mode 	1 = Voltage regulator will remain active during Sleep0 = Voltage regulator will go to Stand-by mode during Sleep			
Watchdog Timer Reset				
On PIC32MX devices, a WDT expiration immediately triggers a device reset.	On PIC32MZ EF devices, the WDT expiration now causes a NMI. The WDTO bit in RNMICON indicates that the WDT caused the NMI. A new timer, NMICNT, runs when the WDT NMI is triggered, and if it expires, the device is reset.			
WDT expiration immediately causes a device reset.	WDT expiration causes a NMI, which can then trigger the device reset. WDTO (RNMICON<24>) 1 = WDT time-out has occurred and caused a NMI 0 = WDT time-out has not occurred			
	NMICNT<7:0> (RNMICON<7:0>)			

A.5 USB

The PIC32MZ EF family of devices has a new Hi-Speed USB module, which requires the updated USB stack from Microchip. In addition, the USB PLL was also updated. See **A.1** "Oscillator and PLL Configuration" for more information and Table A-6 for a list of additional differences.

TABLE A-6: USB DIFFERENCES

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature			
Debug Mode				
On PIC32MX devices, when stopping on a breakpoint during debugging, the USB module can be configured to stop or continue execution from the Freeze Peripherals dialog in MPLAB X IDE.				
VBUSON Pin				
PIC32MX devices feature a VBUSON pin for controlling the external transceiver power supply.	On PIC32MZ EF devices, the VBUSON pin is not available. A port pin can be used to achieve the same functionality.			

B.4

System Bus

two key differences listed in Table B-3.

The system bus on PIC32MZ EF devices is similar to

the system bus on PIC32MZ EC devices. There are

B.3 CPU

The CPU in PIC32MZ EC devices is the microAptiv[™] MPU architecture. The CPU in the PIC32MZ EF devices is the Series 5 Warrior M-Class M5150 MPU architecture. Most PIC32MZ EF M-Class core features are identical to the microAptiv[™] core in PIC32MZ EC devices. The main differences are that in PIC32MZ EF devices, a floating-point unit (FPU) is included for improved math performance, and PC Sampling for performance measurement.

TABLE B-3: SYSTEM BUS DIFFERENCES

PIC32MZ EC Feature	PIC32MZ EF Feature			
Permission Groups during NMI				
On PIC32MZ EC devices, the permission group in which the CPU is part of is lost during NMI handling, and must be manually restored.	On PIC32MZ EF devices, the prior permission group is preserved, and is restored when the CPU returns from the NMI handler.			
DMA Access				
The DMA can access the peripheral registers on Peripheral Bus 1.	On PIC32MZ EF devices, the DMA no longer has access to registers on Peripheral Bus 1. Refer to Table 4-4 for details on which peripherals are now excluded.			

B.5 Flash Controller

The Flash controller on PIC32MZ EF devices adds the ability both to control boot Flash aliasing, and for locking the current swap settings. Table B-4 lists theses differences.

TABLE B-4:FLASH CONTROLLER DIFFERENCES

PIC32MZ EC Feature	PIC32MZ EF Feature				
Boot Flash Aliasing					
On PIC32MZ EC devices, Boot Flash aliasing is done through the DEVSEQ0 register, but no further changes are possible without rebooting the processor.	On PIC32MZ EF devices, the initial Boot Flash aliasing is determined by the DEVSEQ3 register, but the BFSWAP bit (NVMCON<6>) reflects the state of the aliasing, and can be modified to change it during run-time.				
	 BFSWAP (NVMCON<6>) 1 = Boot Flash Bank 2 is mapped to the lower boot alias, and Boot Flash bank 1 is mapped to the upper boot alias 0 = Boot Flash Bank 1 is mapped to the lower boot alias, and Boot Flash Bank 2 is mapped to the upper boot alias 				
PFM and BFM	Swap Locking				
On PIC32MZ EC devices, the swapping of PFM is always available.	On PIC32MZ EF devices, a new control, SWAPLOCK<1:0> (NVMCON2<7:6>) allows the locking of PFSWAP and BFSWAP bits, and can restrict any further changes.				
	 SWAPLOCK<1:0> (NVMCON2<7:6>) 11 = PFSWAP and BFSWAP are not writable and SWAPLOCK is not writable 10 = PFSWAP and BFSWAP are not writable and SWAPLOCK is writable 01 = PFSWAP and BFSWAP are not writable and SWAPLOCK is writable 00 = PFSWAP and BFSWAP are writable and SWAPLOCK is writable 				