

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512eff144-i-pl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5: **PIN NAMES FOR 144-PIN DEVICES (CONTINUED)**

144-PIN LQFP AND TQFP (TOP VIEW)

PIC32MZ0512EF(E/F/K)144 PIC32MZ1024EF(G/H/M)144 PIC32MZ1024EF(E/F/K)144 PIC32MZ2048EF(G/H/M)144

144

			1
Pin Number	Full Pin Name	Pin Number	Full Pin Name
73	VBUS	109	RPD1/SCK1/RD1
74	VUSB3V3	110	EBID14/RPD2/PMD14/RD2
75	Vss	111	EBID15/RPD3/PMD15/RD3
76	D-	112	EBID12/RPD12/PMD12/RD12
77	D+	113	EBID13/PMD13/RD13
78	RPF3/USBID/RF3	114	ETXERR/RJ0
79	SDA3/RPF2/RF2	115	EMDIO/RJ1
80	SCL3/RPF8/RF8	116	EBIRDY3/RJ2
81	ERXD0/RH8	117	EBIA22/RJ3
82	ERXD3/RH9	118	SQICS0/RPD4/RD4
83	ECOL/RH10	119	SQICS1/RPD5/RD5
84	EBIRDY2/RH11	120	ETXEN/RPD6/RD6
85	SCL2/RA2	121	ETXCLK/RPD7/RD7
86	EBIRDY1/SDA2/RA3	122	Vdd
87	EBIA14/PMCS1/PMA14/RA4	123	Vss
88	Vdd	124	EBID11/RPF0/PMD11/RF0
89	Vss	125	EBID10/RPF1/PMD10/RF1
90	EBIA9/RPF4/SDA5/PMA9/RF4	126	EBIA21/RK7
91	EBIA8/RPF5/SCL5/PMA8/RF5	127	EBID9/RPG1/PMD9/RG1
92	EBIA18/RK4	128	EBID8/RPG0/PMD8/RG0
93	EBIA19/RK5	129	TRCLK/SQICLK/RA6
94	EBIA20/RK6	130	TRD3/SQID3/RA7
95	RPA14/SCL1/RA14	131	EBICS0/RJ4
96	RPA15/SDA1/RA15	132	EBICS1/RJ5
97	EBIA15/RPD9/PMCS2/PMA15/RD9	133	EBICS2/RJ6
98	RPD10/SCK4/RD10	134	EBICS3/RJ7
99	EMDC/RPD11/RD11	135	EBID0/PMD0/RE0
100	ECRS/RH12	136	Vss
101	ERXDV/ECRSDV/RH13	137	Vdd
102	RH14	138	EBID1/PMD1/RE1
103	EBIA23/RH15	139	TRD2/SQID2/RG14
104	RPD0/RTCC/INT0/RD0	140	TRD1/SQID1/RG12
105	SOSCI/RPC13/RC13	141	TRD0/SQID0/RG13
106	SOSCO/RPC14/T1CK/RC14	142	EBID2/PMD2/RE2
107	Vdd	143	EBID3/RPE3/PMD3/RE3
108	Vss	144	EBID4/AN18/PMD4/RE4

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.4 "Peripheral Pin Select (PPS)" for restrictions.

2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See Section 12.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

TABLE 4-6: SYSTEM BUS TARGETS AND ASSOCIATED PROTECTION REGISTERS

				SBTxREC	SBTxRD	y Register	SBTxWRy Register					
Target Number	Target Description ⁽⁵⁾	Name	Region Base (BASE<21:0>) (see Note 2)	Physical Start Address	Region Size (SIZE<4:0>) (see Note 3)	Region Size	Priority (PRI)	Priority Level	Name	Read Permission (GROUP3, GROUP2, GROUP1, GROUP0)	Name	Write Permissior (GROUP3, GROUP2, GROUP1, GROUP0)
<u>^</u>	System Bus	SBT0REG0	R	0x1F8F0000	R	64 KB	—	0	SBT0RD0	R/W ⁽¹⁾	SBT0WR0	R/W ⁽¹⁾
0		SBT0REG1	R	0x1F8F8000	R	32 KB	—	3	SBT0RD1	R/W ⁽¹⁾	SBT0WR1	R/W ⁽¹⁾
	Flash Memory ⁽⁶⁾ :	SBT1REG0	R	0x1D000000	R ⁽⁴⁾	R ⁽⁴⁾	—	0	SBT1RD0	R/W ⁽¹⁾	SBT1WR0	0, 0, 0, 0
	Program Flash Boot Flash	SBT1REG2	R	0x1F8E0000	R	4 KB	1	2	SBT1RD2	R/W ⁽¹⁾	SBT1WR2	R/W ⁽¹⁾
	Prefetch Module	SBT1REG3	R/W	R/W	R/W	R/W	1	2	SBT1RD3	R/W ⁽¹⁾	SBT1WR3	0, 0, 0, 0
4		SBT1REG4	R/W	R/W	R/W	R/W	1	2	SBT1RD4	R/W ⁽¹⁾	SBT1WR4	0, 0, 0, 0
1		SBT1REG5	R/W	R/W	R/W	R/W	1	2	SBT1RD5	R/W ⁽¹⁾	SBT1WR5	0, 0, 0, 0
		SBT1REG6	R/W	R/W	R/W	R/W	1	2	SBT1RD6	R/W ⁽¹⁾	SBT1WR6	0, 0, 0, 0
		SBT1REG7	R/W	R/W	R/W	R/W	0	1	SBT1RD7	R/W ⁽¹⁾	SBT1WR7	0, 0, 0, 0
		SBT1REG8	R/W	R/W	R/W	R/W	0	1	SBT1RD8	R/W ⁽¹⁾	SBT1WR8	0, 0, 0, 0
	RAM Bank 1 Memory	SBT2REG0	R	0x00000000	R ⁽⁴⁾	R ⁽⁴⁾	_	0	SBT2RD0	R/W ⁽¹⁾	SBT2WR0	R/W ⁽¹⁾
2		SBT2REG1	R/W	R/W	R/W	R/W	—	3	SBT2RD1	R/W ⁽¹⁾	SBT2WR1	R/W ⁽¹⁾
		SBT2REG2	R/W	R/W	R/W	R/W	0	1	SBT2RD2	R/W ⁽¹⁾	SBT2WR2	R/W ⁽¹⁾
	RAM Bank 2 Memory	SBT3REG0	R ⁽⁴⁾	R ⁽⁴⁾	R ⁽⁴⁾	R ⁽⁴⁾	—	0	SBT3RD0	R/W ⁽¹⁾	SBT3WR0	R/W ⁽¹⁾
3		SBT3REG1	R/W	R/W	R/W	R/W	—	3	SBT3RD1	R/W ⁽¹⁾	SBT3WR1	R/W ⁽¹⁾
		SBT3REG2	R/W	R/W	R/W	R/W	0	1	SBT3RD2	R/W ⁽¹⁾	SBT3WR2	R/W ⁽¹⁾
4	External Memory via EBI and EBI Module ⁽⁶⁾	SBT4REG0	R	0x20000000	R	64 MB	—	0	SBT4RD0	R/W ⁽¹⁾	SBT4WR0	R/W ⁽¹⁾
4	Module	SBT4REG2	R	0x1F8E1000	R	4 KB	0	1	SBT4RD2	R/W ⁽¹⁾	SBT4WR2	R/W ⁽¹⁾
	Peripheral Set 1: System Control	SBT5REG0	R	0x1F800000	R	128 KB	_	0	SBT5RD0	R/W ⁽¹⁾	SBT5WR0	R/W ⁽¹⁾
	Flash Control	SBT5REG1	R/W	R/W	R/W	R/W	—	3	SBT5RD1	R/W ⁽¹⁾	SBT5WR1	R/W ⁽¹⁾
5	DMT/WDT RTCC CVR PPS Input PPS Output Interrupts DMA	SBT5REG2	R/W	R/W	R/W	R/W	0	1	SBT5RD2	R/W ⁽¹⁾	SBT5WR2	R/W ⁽¹⁾

Note 1: Reset values for these bits are '0', '1', '1', '1', respectively.

2: The BASE<21:0> bits must be set to the corresponding Physical Address and right shifted by 10 bits. For Read-only bits, this value is set by hardware on Reset.

3: The SIZE<4:0> bits must be set to the corresponding Region Size, based on the following formula: Region Size = 2^(SIZE-1) x 1024 bytes. For read-only bits, this value is set by hardware on Reset.

4: Refer to the Device Memory Maps (Figure 4-1 through Figure 4-4) for specific device memory sizes and start addresses.

5: See Table 4-1for information on specific target memory size and start addresses.

6: The SBTxREG1 SFRs are reserved, and therefore, are not listed in this table for this target.

7.1 CPU Exceptions

CPU coprocessor 0 contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including boundary cases in data, external events or program errors. Table 7-1 lists the exception types in order of priority.

TABLE 7-1: MIPS32[®] M-CLASS MICROPROCESSOR CORE EXCEPTION TYPES

Exception Type (In Order of Priority)	Description	Branches to Bits Set		Debug Bits Set	EXCCODE	XC32 Function Name
		Highest Priority				
Reset	Assertion MCLR or a Power-on Reset (POR).	0xBFC0_0000	BEV, ERL	—	_	_on_reset
Soft Reset	Assertion of a software Reset.	0xBFC0_0000	BEV, SR, ERL	—	—	_on_reset
DSS	EJTAG debug single step.	0xBFC0_0480	—	DSS	_	—
DINT	EJTAG debug interrupt. Caused by the assertion of the external EJ_DINT input or by setting the EjtagBrk bit in the ECR register.	0xBFC0_0480	—	DINT	—	_
NMI	Assertion of NMI signal.	0xBFC0_0000	BEV, NMI, ERL	—	—	_nmi_handler
Machine Check	TLB write that conflicts with an existing entry.	EBASE+0x180	MCHECK, EXL	—	0x18	_general_exception_handler
Interrupt	Assertion of unmasked hardware or software inter- rupt signal.	See Table 7-2.	IPL<2:0>		0x00	See Table 7-2.
Deferred Watch	Deferred watch (unmasked by K DM=>!(K DM) transition).	EBASE+0x180	WP, EXL		0x17	_general_exception_handler
DIB	EJTAG debug hardware instruction break matched.	0xBFC0_0480	—	DIB	_	
WATCH	A reference to an address that is in one of the Watch registers (fetch).	EBASE+0x180	EXL	—	0x17	_general_exception_handler
AdEL	Fetch address alignment error. Fetch reference to protected address.	EBASE+0x180	EXL	—	0x04	_general_exception_handler
TLBL	Fetch TLB miss or fetch TLB hit to page with $V = 0$.	EBASE if Status.EXL = 0	_	—	0x02	—
		EBASE+0x180 if Status.EXL == 1	—		0x02	_general_exception_handler
TLBL Execute Inhibit	An instruction fetch matched a valid TLB entry that had the XI bit set.	EBASE+0x180	EXL	—	0x14	_general_exception_handler
IBE	Instruction fetch bus error.	EBASE+0x180	EXL	—	0x06	_general_exception_handler

REGISTER 7-2: PRISS: PRIORITY SHADOW SELECT REGISTER (CONTINUED) bit 15-12 PRI3SS<3:0>: Interrupt with Priority Level 3 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 3 uses Shadow Set 0) 0111 = Interrupt with a priority level of 3 uses Shadow Set 7 0110 = Interrupt with a priority level of 3 uses Shadow Set 6 0001 = Interrupt with a priority level of 3 uses Shadow Set 1 0000 = Interrupt with a priority level of 3 uses Shadow Set 0 bit 11-8 **PRI2SS<3:0>:** Interrupt with Priority Level 2 Shadow Set bits⁽¹⁾ 1xxx = Reserved (by default, an interrupt with a priority level of 2 uses Shadow Set 0) 0111 = Interrupt with a priority level of 2 uses Shadow Set 7 0110 = Interrupt with a priority level of 2 uses Shadow Set 6 0001 = Interrupt with a priority level of 2 uses Shadow Set 1 0000 = Interrupt with a priority level of 2 uses Shadow Set 0 PRI1SS<3:0>: Interrupt with Priority Level 1 Shadow Set bits⁽¹⁾ bit 7-4 1xxx = Reserved (by default, an interrupt with a priority level of 1 uses Shadow Set 0) 0111 = Interrupt with a priority level of 1 uses Shadow Set 7 0110 = Interrupt with a priority level of 1 uses Shadow Set 6 0001 = Interrupt with a priority level of 1 uses Shadow Set 1 0000 = Interrupt with a priority level of 1 uses Shadow Set 0 bit 3-1 Unimplemented: Read as '0' bit 0 SS0: Single Vector Shadow Register Set bit 1 = Single vector is presented with a shadow set 0 = Single vector is not presented with a shadow set

Note 1: These bits are ignored if the MVEC bit (INTCON<12>) = 0.

8.0 OSCILLATOR CONFIGURATION

Note:	This data sheet summarizes the
	features of the PIC32MZ EF family of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to Section 42. "Oscillators
	with Enhanced PLL" (DS60001250) in
	the "PIC32 Family Reference Manual",
	which is available from the Microchip
	web site (www.microchip.com/PIC32).

The PIC32MZ EF oscillator system has the following modules and features:

- A total of five external and internal oscillator options as clock sources
- On-Chip PLL with user-selectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-Chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown with dedicated Back-up FRC (BFRC)
- Dedicated On-Chip PLL for USB peripheral
- Flexible reference clock output
- Multiple clock branches for peripherals for better performance flexibility
- · Clock switch/slew control with output divider

A block diagram of the oscillator system is shown in Figure 8-1. The clock distribution is provided in Table 8-1.

Note: Devices that support 252 MHz operation should be configured for SYSCLK <= 200 MHz operation. Adjust the dividers of the PBCLKs, and then increase the SYSCLK to the desired speed.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	RDWR	_	_	_	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_			—		—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	_	—	_	—	—
7.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
7:0						[DMACH<2:0>	>

REGISTER 10-2: DMASTAT: DMA STATUS REGISTER

Legend:

0			
R = Readable bit	Readable bit W = Writable bit		ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 RDWR: Read/Write Status bit

1 = Last DMA bus access when an error was detected was a read 0 = Last DMA bus access when an error was detected was a write

bit 30-3 Unimplemented: Read as '0'

bit 2-0 **DMACH<2:0>:** DMA Channel bits These bits contain the value of the most recent active DMA channel when an error was detected.

REGISTER 10-3: DMAADDR: DMA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04-04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
31:24				DMAADDR	<31:24>							
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
23:16	DMAADDR<23:16>											
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
15:8				DMAADDI	R<15:8>							
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0		DMAADDR<7:0>										

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMAADDR<31:0>: DMA Module Address bits

These bits contain the address of the most recent DMA access when an error was detected.

TABLE 12-12: PORTE REGISTER MAP FOR 64-PIN DEVICES ONLY

ess										I	Bits								
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0400	ANSELE	31:16	_						—	—	—	—		-	—	_	—	—	0000
0.00	/	15:0	_	-	—	_	—	_	—	—	ANSE7	ANSE6	ANSE5	ANSE4	—	_	—	-	00F0
0410	TRISE	31:16	—	_	_	_	—	_	—	—	—	_	_	_	—	—	_	-	0000
0110	HUGE	15:0	—	—	—	_	—	_	—	—	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	00FF
0420	PORTE	31:16	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000
0420	TORTE	15:0	—	—	—	-	—	—	—	—	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
0430	LATE	31:16	—	-	—	-	—	—	—	—	—	—	_	-	—	-	—	—	0000
0430	LAIL	15:0	Ι		-		-	—	—	_	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx
0440	ODCE	31:16		—	—	—	—	_	_	_	_	_	—	—	—	—	_	—	0000
0440	ODCE	15:0	Ι	_	—	_	—	_	_	_	ODCE7	ODCE6	ODCE5	ODCE4	ODCE3	ODCE2	ODCE1	ODCE0	0000
0450		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0450	CNPUE	15:0	_		_		_	_	—	_	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPUE3	CNPUE2	CNPUE1	CNPUE0	0000
0.400		31:16	_	_	_	_	_	_	_	—	_	_	_	-	—	-	—	_	0000
0460	CNPDE	15:0	_	_	_	_	—	_	—	—	CNPDE7	CNPDE6	CNPDE5	CNPDE4	CNPDE3	CNPDE2	CNPDE1	CNPDE0	0000
		31:16	_	_	_	_	—	_	—	—	—	—	_	_	—	_	—	—	0000
0470	CNCONE	15:0	ON	1		-	EDGE DETECT	_	_		_	_	-	-	_	-	_	_	0000
0.400		31:16	_		_		_	_	—	_	—	_		-	_		_	_	0000
0480	CNENE	15:0	_	_	_	_	_	_	_	_	CNENE7	CNENE6	CNENE5	CNENE4	CNENE3	CNENE2	CNENE1	CNENE0	0000
		31:16	_	_	_	_	—	_	—	—	—	—	_	_	—	_	—	—	0000
0490	CNSTATE	15:0	_		_	_	_	_	_	_	CN STATE7	CN STATE6	CN STATE5	CN STATE4	CN STATE3	CN STATE2	CN STATE1	CN STATE0	0000
0440		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
04A0	CNNEE	15:0	_	_	_	_	_	_	_	_	CNNEE7	CNNEE6	CNNEE5	CNNEE4	CNNEE3	CNNEE2	CNNEE1	CNNEE0	0000
0.450		31:16	_	_	_	_	_	_	_	—	_	—	—	—	—	-	—	—	0000
04B0	CNFE	15:0	_	_	_	_	_	_	_	_	CNFE7	CNFE6	CNFE5	CNFE4	CNFE3	CNFE2	CNFE1	CNFE0	0000
0.400		31:16	_	_	_	_	_	_	_	—	_		-	-	—	-	—	_	0000
04C0	SRCON0E	15:0	_	_	_	_	_	_	_	_	_	_	_	_	SR0E3	SR0E2	SR0E1	SR0E0	0000
		31:16	_	_	_	_		_	_		_	_	_	_		_		—	0000
04D0	SRCON1E	15:0	_	_	_	_	_	_	_	_	_	_	_	_	SR1E3	SR1E2	SR1E1	SR1E0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

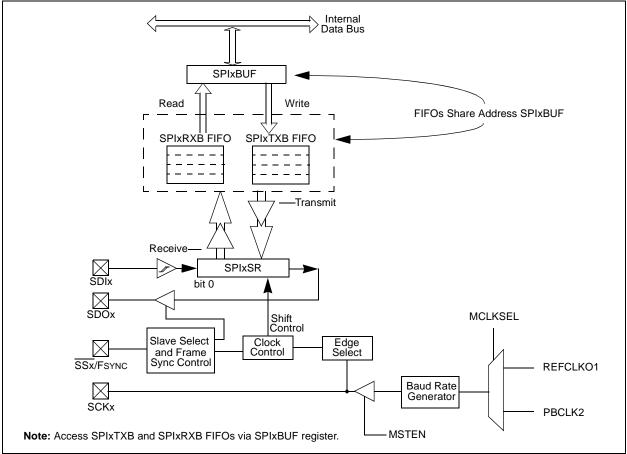
The timer source for each Output Compare module depends on the setting of the OCACLK bit in the CFG-CON register. The available configurations are shown in Table 18-1.

TABLE 18-1:	TIMER SOURCE
	CONFIGURATIONS

Output Compare Module	Timerx	Timery						
OCACLK (CFGCON<16>) = 0								
OC1	Timer2	Timer3						
•	•	•						
•	•	•						
• OC9	• Timer2	• Timer3						
OCACLK (CFGC	OCACLK (CFGCON<16>) = 1							
OC1	Timer4	Timer5						
OC2	Timer4	Timer5						
OC3	Timer4	Timer5						
OC4	Timer2	Timer3						
OC5	Timer2	Timer3						
OC6	Timer2	Timer3						
OC7	Timer6	Timer7						
OC8	Timer6	Timer7						
OC9	Timer6	Timer7						

19.0 SERIAL PERIPHERAL INTERFACE (SPI) AND INTER-IC SOUND (I²S)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/ PIC32).


The SPI/I²S module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices, as well as digital audio devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters, and so on.

The SPI/I²S module is compatible with Motorola[®] SPI and SIOP interfaces.

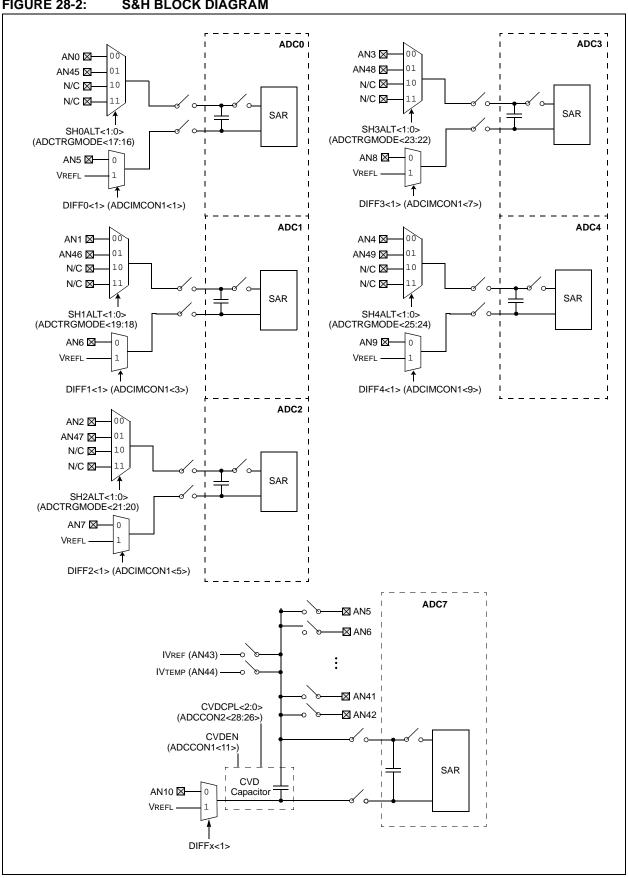
The following are key features of the SPI module:

- Master and Slave modes support
- · Four different clock formats
- Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
 FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width
- Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- · Operation during Sleep and Idle modes
- Audio Codec Support:
 - I²S protocol
 - Left-justified
 - Right-justified
 - PCM

FIGURE 19-1: SPI/I²S MODULE BLOCK DIAGRAM

SQI Control Registers 20.1

TABLE 20-1: SERIAL QUADRATURE INTERFACE (SQI) REGISTER MAP


ess										В	its								s
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000	SQI1	31:16	_	—		—	_	—	—	—	DUN	IMYBYTES<	:2:0>	AD	DRBYTES<2	2:0>	READOPC	CODE<7:6>	0000
2000	XCON1	15:0		READOPCODE<5:0> TYPEDATA<1:0> TYPEDUMMY<1:0> TYPEMODE<1:0> TYPEADDR<1:0> TYPECMD<1:0> 00					0000										
2004	SQI1	31:16	_	—	—	—	_	—	—	—	—	—	_	—	—	—	_	—	0000
	XCON2	15:0	-	_	_	_	DEVSE	L<1:0>	MODEBY	TES<1:0>				MODECO	DDE<7:0>				0000
2008	SQI1CFG	31:16	—	_	_	—	_	_	CSEN	l<1:0>	SQIEN	—	DATAE		CON FIFORST	RXFIFO RST	TXFIFO RST	RESET	0000
		15:0	—	—	—	BURSTEN	_	HOLD	WP	—	—	—	LSBF	CPOL	CPHA		MODE<2:0>	•	0000
200C	SQI1CON	31:16	—	—	—	-	—	—	—	SCHECK	—	DASSERT	DEVSE	L<1:0>	LANEMC	DE<1:0>	CMDIN	IT<1:0>	0000
		15:0								TXRXCOL	JNT<15:0>								0000
2010	SQI1	31:16	—	—	—	-	—	—	—	—	_	_	_	_	_		LKDIV<10:8		0000
	CLKCON	15:0				CLKDI	V<7:0>				—	—	—	_	_	—	STABLE	EN	0000
2014	SQI1	31:16	—	—		-	—	—	—	—	_	_	—	—	—	—	—	—	0000
	CMDTHR	15:0	_		<u> </u>						0000								
2018	SQI1	31:16	_	—	_	-		—	_	—	—	_	_	—	—	—	-	_	0000
	INTTHR	15:0								0000									
201C	SQI1	31:16	_	_	_	_	_	-	-	-	-	-	—	-	-	-	— —	— —	0000
2010	INTEN	15:0	_	_	_	_	DMAEIE	PKT COMPIE	BD DONEIE	CON THRIE	CON EMPTYIE	CON FULLIE	RX THRIE	RX FULLIE	RX EMPTYIE	TX THRIE	TX FULLIE	TX EMPTYIE	0000
0000	SQI1	31:16	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000
2020	INTSTAT	15:0	—	—	—	-	DMAEIF	PKT COMPIF	BD DONEIF	CON THRIF	CON EMPTYIF	CON FULLIF	RX THRIF	RX FULLIF	RX EMPTYIF	TX THRIF	TX FULLIF	TX EMPTYIF	0000
2024	SQI1	31:16								TXDATA									0000
	TXDATA	15:0								TXDAT									0000
2028	SQI1	31:16								RXDATA									0000
	RXDATA	15:0		i	i			i		RXDAT	A<15:0>								0000
202C	SQI1 STAT1	31:16	_	_	_		_	_	_	_					REE<7:0>				0000
	-	15:0	_	_	_		_	_	_	_					CNT<7:0>		0,4507		0000
2030	SQI1 STAT2	31:16	_	—	_		—				—		-			_		AT<1:0>	0000
	-	15:0 31:16	_	—		_	_		ONAVAIL<4:			SDID3	SDID2	SDID1	SDID0	_	RXUN	TXOV	00x0
2034	SQI1 BDCON	31:16 15:0	_		_	_	_			_	_		_			— START	POLLEN		0000
		31:16	_	_	_	_	_	_	_		 DDR<31:16>	_	_	—	_	SIARI	POLLEN	DIVIAEN	0000
2038	SQI1BD CURADD	15:0									DDR<31:16>								0000
		31:16									R<31:16>								0000
2040	SQI1BD BASEADD	15:0																	
		15.0		BDADDR<15:0> 0000															

27.1 RNG Control Registers

TABLE 27-2: RANDOM NUMBER GENERATOR (RNG) REGISTER MAP

ess										Bits	;								
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	RNGVER	31:16		ID<15:0> xxxx							xxxx								
0000	KINGVEIK	15:0				VERS	ION<7:0>							REVISI	ON<7:0>				xxxx
6004	RNGCON	31:16	—	—	—	—	—	_			—	—	—	—	—	—	—	—	0000
0004	Rivecon	15:0	—	—	—	LOAD	TRNGMODE	CONT	PRNGEN	TRNGEN				PLE	N<7:0>				0064
6008	RNGPOLY1	31:16		POLY<31:0>															
0000	KNOI OEI I	15:0		0000															
600C	RNGPOLY2	31:16		POLY<31:0>						FFFF									
0000		15:0								TOLICO	11.02								0000
6010	RNGNUMGEN1	31:16								RNG<3	1.0>								FFFF
0010	RIGHUNGEN	15:0								NNO<0	1.02								FFFF
6014	RNGNUMGEN2	31:16								RNG<3	1.0>								FFFF
0014	RINGINOWIGEINZ	15:0								KNG<3	1.0>								FFFF
6018	RNGSEED1	31:16								SEED<3	21.0								0000
0010	RINGSEEDT	15:0								SEED<3	51.0>								0000
6010	RNGSEED2	31:16									1.0.								0000
601C	RINGSEED2	15:0								SEED<3	>1.0>								0000
6020	DNCONT	31:16	_	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	0000
6020	RNGCNT	15:0	_	_	_	_		_	_	_	_				RCNT<6:0	>	•		0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

FIGURE 28-2: S&H BLOCK DIAGRAM

	-							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—		-			—		_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_	_	_	_	—	_	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	_	_	_	_	—	_	_
7.0	U-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0
7:0	B2BIPKTGP<6:0>							

REGISTER 30-25: EMAC1IPGT: ETHERNET CONTROLLER MAC BACK-TO-BACK INTERPACKET GAP REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-7 Unimplemented: Read as '0'

bit 6-0 B2BIPKTGP<6:0>: Back-to-Back Interpacket Gap bits

This is a programmable field representing the nibble time offset of the minimum possible period between the end of any transmitted packet, to the beginning of the next. In Full-Duplex mode, the register value should be the desired period in nibble times minus 3. In Half-Duplex mode, the register value should be the desired period in nibble times minus 6. In Full-Duplex the recommended setting is 0x15 (21d), which represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 10 Mbps). In Half-Duplex mode, the recommended setting is 0x12 (18d), which also represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in 100 Mbps) (in 100 Mbps) or 9.6 μ s (in 100 Mbps) (in

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

36.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

36.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

36.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

36.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

TABLE 37-33: SPIx MODULE SLAVE MODE (CKE = 1) TIM	MING REQUIREMENTS (CONTINUED)
---	-------------------------------

AC CHA	RACTERIS	TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature -40°C} \leq TA \leq +85°C \mbox{ for Industrial} \\ \mbox{-40°C} \leq TA \leq +125°C \mbox{ for Extended} \end{array}$						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	88	_		ns	—		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 4)	2.5	_	12	ns	_		
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	10	_		ns	_		
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	12.5	ns			

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 20 ns.

4: Assumes 30 pF load on all SPIx pins.

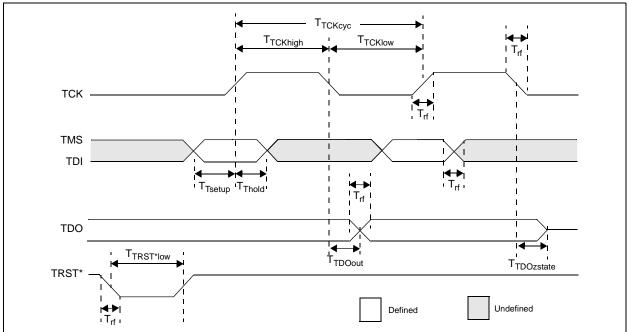

	I TPBCLK2 I TPBCLK2	TPBCLK2	TPBCLK2	TPBCLK2	TPBCLK2	TPBCLK2	TPBCLK2
PBCLK2		 _//	ا ہ	 //		/	
PMA <x:0></x:0>	<u> </u>	↓↓ 	Address				
		⊢ PM2 + PM3	·				
PMD <x:0></x:0>		Address<7:0>	>¥	/ \	Data	/	
			י ל	✓ PM	112	< PM13-►	
PMRD_		↓		I			
PMWR _		 	ا ا	· /	<u>←</u> PM11-►		. I
	I I	← PM1 →	ļ	I	I		
PMALL/PMALH	<u> </u>	<u> </u>					
PMCSx	I I/	<u>}</u> }					
			•	•			·

FIGURE 37-23: PARALLEL MASTER PORT WRITE TIMING DIAGRAM

TABLE 37-44: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions		
PM11	Twr	PMWR Pulse Width		1 TPBCLK2	—	—	—		
PM12	TDVSU	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)		2 TPBCLK2	—	—	_		
PM13	Tdvhold	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)		1 TPBCLK2	—	_	—		

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 37-30: EJTAG TIMING CHARACTERISTICS

TABLE 37-49: EJTAG TIMING REQUIREMENTS

АС СНА	RACTERISTI	CS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param. No.	Symbol	Description ⁽¹⁾	Min.	Max.	Units	Conditions		
EJ1	Ттсксүс	TCK Cycle Time	25		ns	—		
EJ2	Ттскнідн	TCK High Time	10		ns	—		
EJ3	TTCKLOW	TCK Low Time	10		ns	—		
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5	—	ns	_		
EJ5	TTHOLD	TAP Signals Hold Time After Rising TCK	3	—	ns	_		
EJ6	TTDOOUT	TDO Output Delay Time from Falling TCK	—	5	ns	—		
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	—	5	ns	_		
EJ8	TTRSTLOW	TRST Low Time	25		ns	—		
EJ9	Trf	TAP Signals Rise/Fall Time, All Input and Output	—	—	ns	_		

Note 1: These parameters are characterized, but not tested in manufacturing.

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature
Flash Pro	gramming
	The op codes for programming the Flash memory have been changed to accommodate the new quad-word programming and dual-panel features. The row size has changed to 2 KB (512 IW) from 128 IW. The page size has changed to 16 KB (4K IW) from 4 KB (1K IW). Note that the NVMOP register is now protected, and requires the WREN bit be set to enable modification.
NVMOP<3:0> (NVMCON<3:0>)	NVMOP<3:0> (NVMCON<3:0>)
1111 = Reserved	1111 = Reserved
0111 = Reserved	1000 = Reserved
0110 = No operation	0111 = Program erase operation
0101 = Program Flash (PFM) erase operation	0110 = Upper program Flash memory erase operation
0100 = Page erase operation	0101 = Lower program Flash memory erase operation
0011 = Row program operation	0100 = Page erase operation
0010 = No operation	0011 = Row program operation
0001 = Word program operation	0010 = Quad Word (128-bit) program operation
0000 = No operation	0001 = Word program operation
	0000 = No operation
PIC32MX devices feature a single NVMDATA register for word programming.	On PIC32MZ EF devices, to support quad word programming, the NVMDATA register has been expanded to four words.
NVMDATA	NVMDATA x , where 'x' = 0 through 3
Flash Endurance	e and Retention
PIC32MX devices support Flash endurance and retention of up to 20K E/W cycles and 20 years.	On PIC32MZ EF devices, ECC must be enabled to support the same endurance and retention as PIC32MX devices.
Configura	tion Words
On PIC32MX devices, Configuration Words can be programmed with Word or Row program operation.	On PIC32MZ EF devices, all Configuration Words must be programmed with Quad Word or Row Program operations.
Configuration We	ords Reserved Bit
On PIC32MX devices, the DEVCFG0<15> bit is Reserved and must be programmed to '0'.	On PIC32MZ EF devices, this bit is DEVSIGN0<31> .

TABLE A-9: FLASH PROGRAMMING DIFFERENCES (CONTINUED)

B.10 Serial Quad Interface (SQI)

On PIC32MZ EF devices, the SQI module has been updated with the following features:

- FIFOs can be reset through the CONFIFORST (SQI1CFG<19>), RXFIFORST (SQI1CFG<18>), and TXFIFORST (SQI1CFG<17>) bits in Register 20-3
- A new Flash Status check is available, which will allow the SQI to automatically query the status of the external device during write/erase operations without software intervention. See the SCHECK bit (SQI1CON<24>) and the SQI1MEMSTAT register (Register 20-4 and Register 20-24, respectively).
- The SQI clock divider bits have been expanded, and can use an undivided clock. See the CLKDIV<10:0> bits (SQI1CLKCON<18:8>) in Register 20-5.
- A new DMA Bus Error Interrupt is available through the DMAEIE (SQI1INTEN<11>), DMAEIF (SQI1INTSTAT<11>), and DMAEISE (SQI1INTSIGEN<11>) bits in Register 20-8, Register 20-9, and Register 20-22, respectively
- The SQI1STAT2 register (see Register 20-13) has two new fields:
 - CMDSTAT<1:0> (SQI1STAT2<17:16>) indicates the current command status
 - CONAVAIL<4:0> (SQI1STAT<11:8>) indicates how many spaces are available in the Control FIFO.
- The TAP Controller within the SQI can be configured for various timing requirements via the SQI1TAPCON register (Register 20-23)
- Two new XIP mode registers (SQI1XCON3 and SQI1XCON4) have been added for additional command sequencing (see Register 20-25 and Register 20-26, respectively)

Refer to 20.0 "Serial Quad Interface (SQI)" and Section 46. "Serial Quad Interface (SQI)" (DS60001128) for more information.

B.11 PMP

On PIC32MZ EF devices, the PMP features the ability to buffer reads and writes in both directions, and can read and write from different addresses. Refer to **23.0 "Parallel Master Port (PMP)"** and **Section 43. "Parallel Master Port"** (DS60001346) for information.

APPENDIX C: **REVISION HISTORY**

Revision A (January 2015)

This is the initial released version of the document.

Revision B (July 2015)

The document status was updated from Advance Information to Preliminary.

The revision includes the following major changes, which are referenced by their respective chapter in Table C-1.

In addition, minor updates to text and formatting were incorporated throughout the document.

TABLE C-1: MAJOR SECTIO	N UPDATES
Section Name	Update Description
32-bit MCUs (up to 2 MB Live- Update Flash and 512 KB SRAM) with FPU, Audio and Graphics Interfaces, HS USB, Ethernet, and Advanced Analog	The Operating Conditions were updated to: 2.1V to 3.6V.
4.0 "Memory Organization"	Legal information on the System Bus was added (see 4.2 " System Bus Arbitration ").
5.0 "Flash Program Memory"	The BOOTSWAP bit in the NVMCON register was changed to: BFSWAP (see Register 5-1).
6.0 "Resets"	The NVMLTA bit was removed from the RCON register (see Register 6-1).
	The GNMI bit was added to the RNMICON register (see Register 6-3).
7.0 "CPU Exceptions and	The ADC FIFO Data Ready Interrupt, IRQ 45, was added (see Table 7-2).
Interrupt Controller"	ADC FIFO bits were added, and Note 7 regarding devices without a Crypto module was added to the Interrupt Register Map (see Table 7-3).
	The NMIKEY<7:0> bits were added to the INTCON register (see Register 7-1).
8.0 "Oscillator Configuration"	The SPLLRDY bit was removed and the SPLLDIVRDY bit was added to the CLKSTAT register (see Register 8-8
11.0 "Hi-Speed USB with On-The- Go (OTG)"	The VBUSIE and VBUSIF bits were changed to: VBUSERRIE and VBUSERRIF, respectively in the USBCSR2 register (see Register 11-3).
15.0 "Deadman Timer (DMT)"	The POR values were updated for the PSCNT<4:0> bits in the Post Status Configure DMT Count Status register (see Register 15-6).
	The POR values were updated for the PSINTV<2:0> bits in the Post Status Configure DMT Interval Status register (see Register 15-7).
16.0 "Watchdog Timer (WDT)"	The WDTCON register was updated (see Register 16-1).
23.0 "Parallel Master Port (PMP)"	The PMDOUT, PMDIN, and PMRDIN registers were added (see Register 23-4, Register 23-4, and Register 23-10).
	The PMADDR, PMWADDR, and PMRADDR registers were updated (see Register 23-3, Register 23-8, and Register 23-9).
	The PMRDATA register was removed.
24.0 "External Bus Interface (EBI)"	Reset values for the EBIMSK2, EBIMSK3, EBISMT0-EBISMT2, and EBIFTRPD registers were updated in the EBI Register Map (see Table 24-2).
	POR value changes were implemented to the EBI Static Memory Timing Register (see Register 24-3).

MA IOD SECTION LIDDATES