

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512efk064-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber									
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA LQFP		Pin Type	Buffer Type	Description					
				Т	imer1 thr	ough Timer	9					
T1CK 48 73 A49 106					Ι	ST	Timer1 External Clock Input					
T2CK	PPS	PPS	PPS	PPS	I	ST	Timer2 External Clock Input					
T3CK	PPS	PPS	PPS	PPS	I	ST	Timer3 External Clock Input					
T4CK	PPS	PPS	PPS	PPS	I	ST	Timer4 External Clock Input					
T5CK	PPS	PPS	PPS	PPS	I	ST	Timer5 External Clock Input					
T6CK	PPS	PPS	PPS	PPS	I	ST	Timer6 External Clock Input					
T7CK	PPS	PPS	PPS	PPS	I	ST	Timer7 External Clock Input					
T8CK	PPS	PPS	PPS	PPS	I	ST	Timer8 External Clock Input					
T9CK	PPS	PPS	PPS	PPS	I	ST	Timer9 External Clock Input					
	•	•	•	Real-	Time Clo	ck and Cale	endar					
RTCC	46	71	A48	104	0	—	Real-Time Clock Alarm/Seconds Output					
Legend:	CMOS = C	MOS-compa	atible input	or output		Analog =	Analog input P = Power					

TABLE 1-7: TIMER1 THROUGH TIMER9 AND RTCC PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select

I = Input

3.7 M-Class Core Configuration

Register 3-1 through Register 3-4 show the default configuration of the M-Class core, which is included on the PIC32MZ EF family of devices.

ILCIOID IL	.it 5-1. 0		1100KAII				$, \mathbf{OLLCO}$	
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	r-1 U-0		U-0	U-0	U-0	U-0	U-0	R-0
31:24		—	—	_	—		—	ISP
00.40	R-0	R-0	R-1	R-0	U-0	R-1	R-0	R-0
23:16	DSP	UDI	SB	MDU	—	MM<	1:0>	BM
45.0	R-0	R-0	R-0	R-0	R-0	R-1	R-0	R-0
15:8	BE	AT<	1:0>		AR<2:0>		MT<	2:1>
7.0	R-1	U-0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-0
7:0	MT<0>		_	_	_		K0<2:0>	

REGISTER 3-1: CONFIG: CONFIGURATION REGISTER; CP0 REGISTER 16, SELECT 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 Reserved: This bit is hardwired to '1' to indicate the presence of the Config1 register. bit 30-25 Unimplemented: Read as '0' bit 24 ISP: Instruction Scratch Pad RAM bit 0 = Instruction Scratch Pad RAM is not implemented bit 23 DSP: Data Scratch Pad RAM is not implemented bit 24 UDI: User-defined bit 0 = CorExtend User-Defined Instructions are not implemented bit 21 SB: SimpleBE bit 1 = Only Simple Byte Enables are allowed on the internal bus interface bit 20 MDU: Multiply/Divide Unit bit 0 = Fast, high-performance MDU bit 19 Unimplemented: Read as '0' bit 18-17 MM-1:00: Warge Mode bits 10 = Merging is allowed bit 15 BE: Endian Mode bit 0 = Burst order is sequential bit 14-3 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9: VIT-2:0>: MMUU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 2- Ko2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 002 = Cacheable, non-coherent, write-back, write allocate 003 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 mapped to 010.		
bit 24 ISP: Instruction Scratch Pad RAM bit 0 = Instruction Scratch Pad RAM is not implemented bit 23 DSP: Data Scratch Pad RAM is not implemented bit 22 UDI: User-defined bit 0 = CorExtend User-Defined Instructions are not implemented bit 21 SB: SimpleBE bit 1 = Only Simple Byte Enables are allowed on the internal bus interface bit 20 MDU: Multiply/Divide Unit bit 0 = Fast, high-performance MDU bit 19 Unimplemented: Read as '0' bit 18-17 MM<1:0>: Merge Mode bits 10 = Merging is allowed bit 16 BM: Burst Mode bit 0 = Burst order is sequential bit 15 BE: Endian Mode bit 0 = Little-endian bit 14-13 AT<:0>: Architecture Type bits 001 = MIPS32 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 6-3 Unimplemented: Read as '0' bit 2-0 Ko<2:0>: Kseg0 Coherency Algorithm bits 01 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 011 = Cacheable, non-coherent, write-through, write allocate 010 = Cacheable, non-coherent, write	bit 31	Reserved: This bit is hardwired to '1' to indicate the presence of the Config1 register.
0 = Instruction Scratch Pad RAM is not implemented bit 23 DSP: Data Scratch Pad RAM bit 0 = Data Scratch Pad RAM is not implemented bit 22 UDI: User-defined bit 0 = CorExtend User-Defined Instructions are not implemented bit 21 SB: SimpleBE bit 1 = Only Simple Byte Enables are allowed on the internal bus interface bit 20 MDU: Multiply/Divide Unit bit 0 = Fast, high-performance MDU bit 19 Unimplemented: Read as '0' bit 18-17 MM<1:0>: Merging is allowed bit 16 BW: Burst Mode bit 0 = Burst order is sequential bit 16 BE: Endian Mode bit 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 001 = MIPS32 bit 14-13 AT<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 97 MT<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-thorugh, write allocate 012 = Cacheable, non-coherent, write-through, no write allocate 013 = Cacheable, non-coherent, write allocate 014 = Cacheable, non-coherent, write-through, no write allocate 015 = Cacheable, non-coherent, write-through, no write allocate </td <td>bit 30-25</td> <td>Unimplemented: Read as '0'</td>	bit 30-25	Unimplemented: Read as '0'
 0 = Data Scratch Pad RAM is not implemented bit 22 UDI: User-defined bit 0 = CorExtend User-Defined Instructions are not implemented bit 21 SB: SimpleBE bit	bit 24	
 0 = CorExtend User-Defined Instructions are not implemented bit 21 SB: SimpleBE bit 1 = Only Simple Byte Enables are allowed on the internal bus interface bit 20 MDU: Multiply/Divide Unit bit 0 = Fast, high-performance MDU bit 19 Unimplemented: Read as '0' bit 18-17 MM<1:0>: Merging is allowed bit 18-17 MM<1:0>: Merge Mode bits 10 = Merging is allowed bit 16 BM: Burst Mode bit 0 = Burst order is sequential 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 2-0 KO<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, no write allocate 010 = Cachea	bit 23	
1 = Only Simple Byte Enables are allowed on the internal bus interface bit 20 MDU: Multiply/Divide Unit bit 0 = Fast, high-performance MDU bit 19 Unimplemented: Read as '0' bit 18-17 MM<1:0>: Merge Mode bits 10 = Merging is allowed bit 18 BM: Burst Mode bit 0 = Burst order is sequential bit 15 BE: Endian Mode bit 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = MIPS32 Release 2 bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 0102 = Uncached 011 = Cacheable, non-coherent, write-through, write allocate 0102 = Cacheable, non-coherent, write-through, write allocate 0103 = Cacheable, non-coherent, write-through, no write allocate 0104 = Cacheable, non-coherent, write-through, no write allocate 0105 = Cacheable, non-coherent, write-through, no write allocate 0105 = Cacheable, non-coherent, write-through, no write allocate 0106 = Ca	bit 22	
 0 = Fast, high-performance MDU bit 19 Unimplemented: Read as '0' bit 18-17 MM<1:0>: Merge Mode bits 10 = Merging is allowed bit 16 BM: Burst Mode bit 0 = Burst order is sequential bit 15 BE: Endian Mode bit 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 6-3 Unimplemented: Read as '0' bit 2-0 KO<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-through, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 	bit 21	
bit 18-17 MM-1:0>: Merge Mode bits 10 = Merging is allowed bit 16 BM: Burst Mode bit 0 = Burst order is sequential bit 15 BE: Endian Mode bit 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = MIPS32 Release 2 bit 6-3 Unimplemented: Read as '0' bit 6-3 Unimplemented: Read as '0' bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 001 = Cacheable, non-coherent, write-through, no write allocate 000 = Cacheable, non-coherent, write-through, no write allocate 001 = Cacheable, non-coherent, write-through, no write allocate 001 = Cacheable, non-coherent, write-through, no write allocate 000 = Cacheable, non-coherent, write-through, no write allocate 001 = Cacheable, non-coherent, write-through, no write allocate 000 = Cacheable, non-coherent, write-through, no write allocate <t< td=""><td>bit 20</td><td></td></t<>	bit 20	
10 = Merging is allowed bit 16 BM: Burst Mode bit 0 = Burst order is sequential bit 15 BE: Endian Mode bit 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, no write allocate 000	bit 19	Unimplemented: Read as '0'
 0 = Burst order is sequential bit 15 BE: Endian Mode bit 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 6-3 Unimplemented: Read as '0' bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 	bit 18-17	0
 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 6-3 Unimplemented: Read as '0' bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 	bit 16	
 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 6-3 Unimplemented: Read as '0' bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 	bit 15	
 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 6-3 Unimplemented: Read as '0' bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 	bit 14-13	
 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 6-3 Unimplemented: Read as '0' bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 	bit 12-10	
bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111	bit 9-7	
 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 	bit 6-3	Unimplemented: Read as '0'
000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111	bit 2-0	011 = Cacheable, non-coherent, write-back, write allocate
		000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111

is

				X OLGOL										
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.24	1:24 R/P R/P		R/P	R/P	R/P	R/P	R/P	R/P						
31:24				CSEQ<	15:8>									
23:16	R/P R/P		R/P	R/P	R/P	R/P	R/P	R/P						
23:16	CSEQ<7:0>													
45.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P						
15:8	TSEQ<15:8>													
7.0	R/P R/F		R/P	R/P	R/P	R/P	R/P	R/P						
7:0	TSEQ<7:0>													

REGISTER 4-1: BFxSEQ3: BOOT FLASH 'x' SEQUENCE WORD 3 REGISTER ('x' = 1 AND 2)

Legend:		P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 CSEQ<15:0>: Boot Flash Complement Sequence Number bits

bit 15-0 **TSEQ<15:0>:** Boot Flash True Sequence Number bits

Note: The BFxSEQ0, BFxSEQ1, and BFxSEQ2 registers are used for Quad Word programming operation when programming the BFxSEQ3 registers, and do not contain any valid information.

ŝ											Bits								
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3028	USB	31:16									ATA<31:16>								00
020	FIFO2	15:0									ATA<15:0>								00
02C	USB FIFO3	31:16									ATA<31:16>								00
		15:0									ATA<15:0> ATA<31:16>								00
8030	USB FIFO4	31:16 15:0									ATA<31:16> ATA<15:0>								00
	USB	31:16									ATA<15.0> ATA<31:16>								_
3034	FIFO5	15:0		DATA<31:16> 0000 DATA<15:0> 0000															
	USB	31:16									ATA<31:16>								00
3038	FIFO6	15:0		DATA<15:0> 0000															
	USB	31:16		DATA<31:16> 0000															
03C	FIF07	15:0	DATA<15:0> 0000																
	USBOTO	31:16	_	_	_	RXDPB		RXFIFC)SZ<3:0>		_	_	_	TXDPB		TXFIFOSZ	<3:0>		0 (
8060	USBOTG	15:0										HOSTMODE	HOSTREQ	SESSIO	N 00				
064	USB	31:16	_	_	—						RXFIFOAD<12:0>								0(
3064 FIFOA 15:0 — — — TXFIFOAD<12:0>										00									
306C USB 31:16							—	—	00										
	HWVER	15:0	RC		VE	RMAJOR<4:	JOR<4:0> VERMINOR<9:0>											08	
3078	USB	31:16				VPLEN	l<7:0>						DN<3:0>			WTID<3			30
	INFO	15:0		DMACHAN	IS<3:0>			RAMBI	TS<3:0>	· · ·		RXENDPTS<3:0> TXENDPTS<3:0>							8C
307C	USB EOFRST	31:16	—	_	_	-		-	NRSTX	NRST				LSEOF<7:					00
		15:0				FSEOF	-<7:0> (HUBPRT<6							HSEOF<7:					77
3080	USB E0TXA	31:16 15:0			_			>	_	_	MULTTRAN				BADD<6:0> DDR<6:0>				00
		31:16		_	_		HUBPRT<6		_	_	— MULTTRAN				BADD<6:0>				00
3084	USB E0RXA	15:0			_	_			_	_		_	_	_		_	_	_	00
	USB	31:16	_			ТХ	HUBPRT<6	:0>			MULTTRAN			TXHU	BADD<6:0>				0.0
3088	E1TXA	15:0	_	_	_	_	_	_		_	_	- TXFADDR<6:0>							
	USB	31:16	_			RX	HUBPRT<6	6:0>			MULTTRAN								00
08C	E1RXA	15:0	15.0 — — — — — — — — — — RXFADDR<6:0>										0.0						
0000	USB	31:16	_		•	ТХ	HUBPRT<6	:0>			MULTTRAN			TXHU	BADD<6:0>				0.0
3090	E2TXA	15:0	_	_	_	_	—	—	_	—				TXFA	DDR<6:0>				0.0
3094	USB	31:16	—			RX	(HUBPRT<6	6:0>			MULTTRAN			RXHU	BADD<6:0>				00
JU 34	E2RXA	15:0	—		_	—	—	-	—	_	_				DDR<6:0>				00
3098	USB	31:16	_			ТХ	HUBPRT<6	:0>			MULTTRAN				BADD<6:0>				00
	E3TXA	15:0	_	_	_	_		_	_					TXFA	DDR<6:0>				00

TABLE 11-1: USB REGISTER MAP 1 (CONTINUED)

REGISTER 11-1: USBCSR0: USB CONTROL STATUS REGISTER 0 (CONTINUED)

- bit 10 **RESUME:** Resume from Suspend control bit
 - 1 = Generate Resume signaling when the device is in Suspend mode
 - 0 = Stop Resume signaling

In *Device mode*, the software should clear this bit after 10 ms (a maximum of 15 ms) to end Resume signaling. In *Host mode*, the software should clear this bit after 20 ms.

- bit 9 **SUSPMODE:** Suspend Mode status bit 1 = The USB module is in Suspend mode
 - 0 = The USB module is in Normal operations

This bit is read-only in Device mode. In Host mode, it can be set by software, and is cleared by hardware.

- bit 8 SUSPEN: Suspend Mode Enable bit
 - 1 = Suspend mode is enabled
 - 0 = Suspend mode is not enabled
- bit 7 Unimplemented: Read as '0'
- bit 6-0 **FUNC<6:0>:** Device Function Address bits

These bits are only available in *Device mode*. This field is written with the address received through a SET_ADDRESS command, which will then be used for decoding the function address in subsequent token packets.

Bit Range			Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	U-0	U-0	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R/W-1, HS
31:24	—	_	_	_	_	USBIF	USBRF	USBWKUP
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	_	_	_	—
	r-1	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	—	—	—	—	—		USB IDOVEN	USB IDVAL
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	PHYIDEN	VBUS MONEN	ASVAL MONEN	BSVAL MONEN	SEND MONEN	USBIE	USBRIE	USB WKUPEN

REGISTER 11-30: USBCRCON: USB CLOCK/RESET CONTROL REGISTER

l egend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bi

bit 31-27	Unimplemented: Read as '0'
bit 26	USBIF: USB General Interrupt Flag bit 1 = An event on the USB Bus has occurred 0 = No interrupt from USB module or interrupts have not been enabled
bit 25	 USBRF: USB Resume Flag bit 1 = Resume from Suspend state. Device wake-up activity can be started. 0 = No Resume activity detected during Suspend, or not in Suspend state
bit 24	USBWK: USB Activity Status bit 1 = Connect, disconnect, or other activity on USB detected since last cleared 0 = No activity detected on USB
	Note: This bit should be cleared just prior to entering sleep, but it should be cleared just prior to entering sleep.
bit 23-14	Unimplemented: Read as '0'
bit 15	Reserved: Read as '1'
bit 14-10	Unimplemented: Read as '0'
bit 9	USBIDOVEN: USB ID Override Enable bit 1 = Enable use of USBIDVAL bit 0 = Disable use of USBIDVAL and instead use the PHY value
bit 8	USBIDVAL: USB ID Value bit 1 = ID override value is 1 0 = ID override value is 0
bit 7	PHYIDEN: PHY ID Monitoring Enable bit 1 = Enable monitoring of the ID bit from the USB PHY 0 = Disable monitoring of the ID bit from the USB PHY
bit 6	VBUSMONEN: VBUS Monitoring for OTG Enable bit 1 = Enable monitoring for VBUS in VBUS Valid range (between 4.4V and 4.75V) 0 = Disable monitoring for VBUS in VBUS Valid range
bit 5	ASVALMONEN: A-Device VBUS Monitoring for OTG Enable bit 1 = Enable monitoring for VBUS in Session Valid range for A-device (between 0.8V a 0 = Disable monitoring for VBUS in Session Valid range for A-device

- checked that no activity
- bi
- bi
- bi
- bi
- bi
- bi
 - and 2.0V)
 - 0 = Disable monitoring for VBUS in Session Valid range for A-device
- BSVALMONEN: B-Device VBUS Monitoring for OTG Enable bit bit 4
 - 1 = Enable monitoring for VBUS in Session Valid range for B-device (between 0.8V and 4.0V)
 - 0 = Disable monitoring for VBUS in Session Valid range for B-device

15.1 Deadman Timer Control Registers

TABLE 15-1: DEADMAN TIMER REGISTER MAP

ess		â		_	_			_	_	_	Bits	_	_						
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0A00	DMTCON	31:16	—	—	—	—	_	—	_		—	—	—	_	—	—	—	—	0000
0400	DIMITCOIN	15:0	ON	_	—	_		—		_	_	_	_		—	—	_	_	x000
0410	DMTPRECLR	31:16	_	_	—	_		—	-	_	_	_	_		—	—	_	_	0000
UATU		15:0	5:0 STEP1<7:0>									_	_	0000					
0A20	DMTCLR	31:16	—	—	—	—	_	—	_	_	—	—	—	_	—	—	—	_	0000
0720	DIMITCLK	15:0	_	_	—	—	_	—	—	_	STEP2<7:0>							0000	
0A30	DMTSTAT	31:16	—	—	—	—	_	—	—	_	—	—	—	_	—	—	—	-	0000
07.00	DIMIGIAI	15:0	—	—	—	—	_	—	—	_	BAD1	BAD2	DMTEVENT	_	—	—	—	WINOPN	0000
0A40	DMTCNT	31:16								COLL	NTER<31:0	0~							0000
0740	DIVITORI	15:0								000		-0							0000
0A60	DMTPSCNT	31:16								PS	NT-31.0-								0000
0,00	Dimit Scivit	15:0		PSCNT<31:0>												00xx			
0A70	DMTPSINTV	31:16								PSI	NTV<31:0>								0000
		15:0								1 31	NT V \ 01.02	-							000x

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	—	—	—	-	_	—
22.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	-	—	-	_	—
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
15:8	ON	—	SIDL	IREN	RTSMD	_	UEN<	1:0> ⁽¹⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL	<1:0>	STSEL

REGISTER 22-1: UXMODE: UARTX MODE REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: UARTx Enable bit
 - 1 = UARTx is enabled. UARTx pins are controlled by UARTx as defined by UEN<1:0> and UTXEN control bits
 - UARTx is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx and LATx registers; UARTx power consumption is minimal
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue operation when device enters Idle mode
 - 0 = Continue operation in Idle mode
- bit 12 IREN: IrDA Encoder and Decoder Enable bit
 - 1 = IrDA is enabled
 - 0 = IrDA is disabled
- bit 11 RTSMD: Mode Selection for UxRTS Pin bit
 - $1 = \overline{\text{UxRTS}}$ pin is in Simplex mode
 - $0 = \overline{\text{UxRTS}}$ pin is in Flow Control mode
- bit 10 Unimplemented: Read as '0'

bit 9-8 UEN<1:0>: UARTx Enable bits⁽¹⁾

- 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
- 10 = UxTX, UxRX, $\overline{\text{UxCTS}}$ and $\overline{\text{UxRTS}}$ pins are enabled and used
- 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
- 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
- bit 7 WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
 - 1 = Wake-up is enabled
 - 0 = Wake-up is disabled
- bit 6 LPBACK: UARTx Loopback Mode Select bit
 - 1 = Loopback mode is enabled
 - 0 = Loopback mode is disabled
- Note 1: These bits are present for legacy compatibility, and are superseded by PPS functionality on these devices. For additional information, see Section 12.4 "Peripheral Pin Select (PPS)".

Figure 26-10 shows the Security Association control word structure.

The Crypto Engine fetches different structures for different flows and ensures that hardware fetches minimum words from SA required for processing. The structure is ready for hardware optimal data fetches.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31-24			VERIFY		NO_RX	OR_EN	ICVONLY	IRFLAG
23-16	LNC	LOADIV	FB	FLAGS	_	_		ALGO<6>
15-8		ALGO<5:0>			ENC			KEY SIZE<1>
7-0	KEY SIZE<0>	ML	ILTITASK<2:	0>		CRYPTOA	LGO<3:0>	
bit 31-30	Reserved:	Do not use						
bit 29	1 = NIST pr	ST Procedure ocedures are use NIST proc	to be used	Setting				
bit 28	Reserved:	Do not use						
bit 27	NO_RX: Receive DMA Control Setting 1 = Only calculate ICV for authentication calculations 0 = Normal processing							
bit 26	OR_EN: OR Register Bits Enable Setting 1 = OR the register bits with the internal value of the CSR register 0 = Normal processing							
bit 25	This affects 1 = Only thr	ncomplete Ch the SHA-1 al ee words of th ts from the H	gorithm only. ne HMAC res	It has no eff sult are availa		ES algorithm		
bit 24	This bit is se 1 = Save the	nmediate Res et when the in e immediate r save the imme	nmediate res result for has	ult for hashir	ng is request	ed.		
bit 23	1 = Load a i	New Keys Se new set of key oad new keys	ys for encryp	tion and auth	nentication			
bit 22		oad IV Setting e IV from this next IV		ociation				
bit 21	FB: First Block Setting This bit indicates that this is the first block of data to feed the IV value. 1 = Indicates this is the first block of data 0 = Indicates this is not the first block of data							
bit 20	1 = Security	coming/Outgo Association Association	is associated	with an outg				
	Reserved:	Do not uso						

FIGURE 26-10: FORMAT OF SA_CTRL

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
01-04	U-0							
31:24	—	_	_	—	—	_	_	_
00:40	U-0							
23:16	—	—	_	—	—	—	_	—
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	_	_	CSS44	CSS43	CSS42 ⁽²⁾	CSS41 ⁽²⁾	CSS40 ⁽²⁾
7.0	R/W-0							
7:0	CSS39 ⁽²⁾	CSS38 ⁽²⁾	CSS37 ⁽²⁾	CSS36 ⁽²⁾	CSS35 ⁽²⁾	CSS34 ⁽¹⁾	CSS33 ⁽¹⁾	CSS32 ⁽¹⁾

REGISTER 28-11: ADCCSS2: ADC COMMON SCAN SELECT REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-0 **CSS44:CSS32:** Analog Common Scan Select bits Analog inputs 44 to 32 are always Class 3, as there are only 32 triggers available. 1 = Select AN*x* for input scan 0 = Skip AN*x* for input scan

Note 1: This bit is not available on 64-pin devices.

2: This bit is not available on 64-pin and 100-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	_	_	_	TRGSRC11<4:0>				
22:46	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	_				TI	RGSRC10<4:	0>	
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	_	_	_	TRGSRC9<4:0>				
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0					Т	RGSRC8<4:0)>	

REGISTER 28-19: ADCTRG3: ADC TRIGGER SOURCE 3 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

- bit 28-24 TRGSRC11<4:0>: Trigger Source for Conversion of Analog Input AN11 Select bits
 - 11111 = Reserved . . 01101 = Reserved 01100 = Comparator 2 (COUT) 01011 = Comparator 1 (COUT) 01010 = OCMP5 01001 = OCMP3 01000 = OCMP1 00111 = TMR5 match 00100 = TMR3 match 00101 = TMR1 match 00100 = INTO External interrupt 00011 = STRIG 00010 = Global level software trigger (GLSWTRG) 00001 = Global software edge Trigger (GSWTRG) 00000 = No Trigger

For STRIG, in addition to setting the trigger, it also requires programming of the STRGSRC<4:0> bits (ADCCON1<20:16>) to select the trigger source, and requires the appropriate CSS bits to be set in the ADCCSS*x* registers.

- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TRGSRC10<4:0>:** Trigger Source for Conversion of Analog Input AN10 Select bits See bits 28-24 for bit value definitions.
- bit 15-13 Unimplemented: Read as '0'
- bit 12-8 **TRGSRC9<4:0>:** Trigger Source for Conversion of Analog Input AN9 Select bits See bits 28-24 for bit value definitions.
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **TRGSRC8<4:0>:** Trigger Source for Conversion of Analog Input AN8 Select bits See bits 28-24 for bit value definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	FLTEN7	MSEL	7<1:0>		F	SEL7<4:0>		
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	FLTEN6	MSEL	6<1:0>		F	SEL6<4:0>		
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	FLTEN5	MSEL	5<1:0>		F	SEL5<4:0>		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	FLTEN4	MSEL	4<1:0>		F	SEL4<4:0>		

REGISTER 29-11: CIFLTCON1: CAN FILTER CONTROL REGISTER 1

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN7: Filter 7 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL7<1:0>: Filter 7 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 28-24	FSEL7<4:0>: FIFO Selection bits
511 20 21	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN6: Filter 6 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 22-21	
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 20-16	FSEL6<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	—	_		—	—	_	—
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	_	—	_		I	FSIZE<4:0> ⁽¹⁾)	
15:8	U-0	S/HC-0	S/HC-0	R/W-0	U-0	U-0	U-0	U-0
10.0	_	FRESET	UINC	DONLY ⁽¹⁾	—	—	_	—
7:0	R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	TXEN	TXABAT ⁽²⁾	TXLARB ⁽³⁾	TXERR ⁽³⁾	TXREQ	RTREN	TXPR	<1:0>

REGISTER 29-20: CiFIFOCONn: CAN FIFO CONTROL REGISTER 'n' ('n' = 0-31)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-21 Unimplemented: Read as '0'

- bit 20-16 FSIZE<4:0>: FIFO Size bits⁽¹⁾
 - 11111 = FIFO is 32 messages deep
 - •

 - •

00010 = FIFO is 3 messages deep 00001 = FIFO is 2 messages deep 00000 = FIFO is 1 message deep

bit 15 Unimplemented: Read as '0'

bit 14 FRESET: FIFO Reset bits

1 = FIFO will be reset when bit is set, cleared by hardware when FIFO is reset. After setting, the user application should poll whether this bit is clear before taking any action
 0 = No effect

bit 13 **UINC:** Increment Head/Tail bit

 $\frac{TXEN = 1:}{VEN} (FIFO \text{ configured as a Transmit FIFO})$ When this bit is set, the FIFO head will increment by a single message $\frac{TXEN = 0:}{VEN} (FIFO \text{ configured as a Receive FIFO})$ When this bit is set, the FIFO tail will increment by a single message

bit 12 DONLY: Store Message Data Only bit⁽¹⁾

<u>TXEN = 1:</u> (FIFO configured as a Transmit FIFO) This bit is not used and has no effect.

<u>TXEN = 0:</u> (FIFO configured as a Receive FIFO)

- 1 =Only data bytes will be stored in the FIFO
- 0 = Full message is stored, including identifier
- bit 11-8 Unimplemented: Read as '0'
- bit 7 **TXEN:** TX/RX Buffer Selection bit
 - 1 = FIFO is a Transmit FIFO
 - 0 = FIFO is a Receive FIFO
- **Note 1:** These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits (CiCON<23:21>) = 100).
 - 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
 - 3: This bit is reset on any read of this register or when the FIFO is reset.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	—	_	—	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	_	—	_	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				ALGNERRC	NT<15:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ALGNERRCNT<7:0>							

REGISTER 30-22: ETHALGNERR: ETHERNET CONTROLLER ALIGNMENT ERRORS STATISTICS REGISTER

Legend:

Legena.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-0 ALGNERRCNT<15:0>: Alignment Error Count bits

Increment count for frames with alignment errors. Note that an alignment error is a frame that has an FCS error and the frame length in bits is not an integral multiple of 8 bits (a.k.a., dribble nibble)

Note 1: This register is only used for RX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should be only done for debug/test purposes.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	_		_				_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_	_	_		_	_	_
15.0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R-0
15:8	ON	COE	CPOL ⁽¹⁾	-	_		—	COUT
7.0	R/W-1	R/W-1	U-0	R/W-0	U-0	U-0	R/W-1	R/W-1
7:0	EVPOL	_<1:0>	_	CREF			CCH	<1:0>

REGISTER 31-1: CMxCON: COMPARATOR CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: Comparator ON bit
 - 1 = Module is enabled. Setting this bit does not affect the other bits in this register
 - 0 = Module is disabled and does not consume current. Clearing this bit does not affect the other bits in this register
- bit 14 **COE:** Comparator Output Enable bit
 - 1 = Comparator output is driven on the output CxOUT pin
 - 0 = Comparator output is not driven on the output CxOUT pin
- bit 13 **CPOL:** Comparator Output Inversion bit⁽¹⁾
 - 1 = Output is inverted
 - 0 = Output is not inverted
- bit 12-9 Unimplemented: Read as '0'
- bit 8 **COUT:** Comparator Output bit
 - 1 =Output of the Comparator is a '1'
 - 0 = Output of the Comparator is a '0'
- bit 7-6 EVPOL<1:0>: Interrupt Event Polarity Select bits
 - 11 = Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output
 - 10 = Comparator interrupt is generated on a high-to-low transition of the comparator output
 - 01 = Comparator interrupt is generated on a low-to-high transition of the comparator output
 - 00 = Comparator interrupt generation is disabled
- bit 5 Unimplemented: Read as '0'

bit 4 CREF: Comparator Positive Input Configure bit

- 1 = Comparator non-inverting input is connected to the internal CVREF
- 0 = Comparator non-inverting input is connected to the CXINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Negative Input Select bits for Comparator
 - 11 = Comparator inverting input is connected to the IVREF
 - 10 = Comparator inverting input is connected to the CxIND pin
 - 01 = Comparator inverting input is connected to the CxINC pin
 - 00 = Comparator inverting input is connected to the CxINB pin
- **Note 1:** Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>.

33.3.1 CONTROLLING CONFIGURATION CHANGES

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32MZ EF devices include two features to prevent alterations to enabled or disabled peripherals:

- Control register lock sequence
- Configuration bit select lock

33.3.1.1 Control Register Lock

Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the PMDLOCK Configuration bit (CFGCON<12>). Setting PMDLOCK prevents writes to the control registers; clearing PMDLOCK allows writes.

To set or clear PMDLOCK, an unlock sequence must be executed. Refer to **Section 42. "Oscillators with Enhanced PLL"** (DS60001250) in the *"PIC32 Family Reference Manual"* for details.

33.3.1.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The PMDL1WAY Configuration bit (DEVCFG3<28>) blocks the PMDLOCK bit from being cleared after it has been set once. If PMDLOCK remains set, the register unlock procedure does not execute, and the PPS control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P	
31:24	FDMTEN		C	MTCNT<4:0:	>	FWDTWINSZ<1:0>			
00.40	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P	
23:16	FWDTEN	WINDIS	WDTSPGM	WDTPS<4:0>					
45.0	R/P	R/P	r-1	r-1	r-1	R/P	R/P	R/P	
15:8	FCKSM	/<1:0>	—	_	—	OSCIOFNC	POSCM	OD<1:0>	
7.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P	
7:0	IESO	FSOSCEN	D	MTINTV<2:0> F			NOSC<2:0>		

REGISTER 34-4: DEVCFG1/ADEVCFG1: DEVICE CONFIGURATION WORD 1

Legend:	r = Reserved bit	P = Programmable bit		
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31 FDMTEN: Deadman Timer enable bit

1 = Deadman Timer is enabled and *cannot* be disabled by software

0 = Deadman Timer is disabled and *can* be enabled by software

bit 30-26 DMTCNT<4:0>: Deadman Timer Count Select bits

11111 = Reserved . 11000 = Reserved 10111 = 2^{31} (2147483648) 10110 = 2^{30} (1073741824) 10101 = 2^{29} (536870912) 10100 = 2^{28} (268435456) . . 00001 = 2^9 (512) 00000 = 2^8 (256)

bit 25-24 FWDTWINSZ<1:0>: Watchdog Timer Window Size bits

- 11 = Window size is 25%
- 10 = Window size is 37.5%
- 01 = Window size is 50%
- 00 = Window size is 75%

bit 23 FWDTEN: Watchdog Timer Enable bit

- 1 = Watchdog Timer is enabled and cannot be disabled by software
- 0 = Watchdog Timer is not enabled; it can be enabled in software

bit 22 WINDIS: Watchdog Timer Window Enable bit

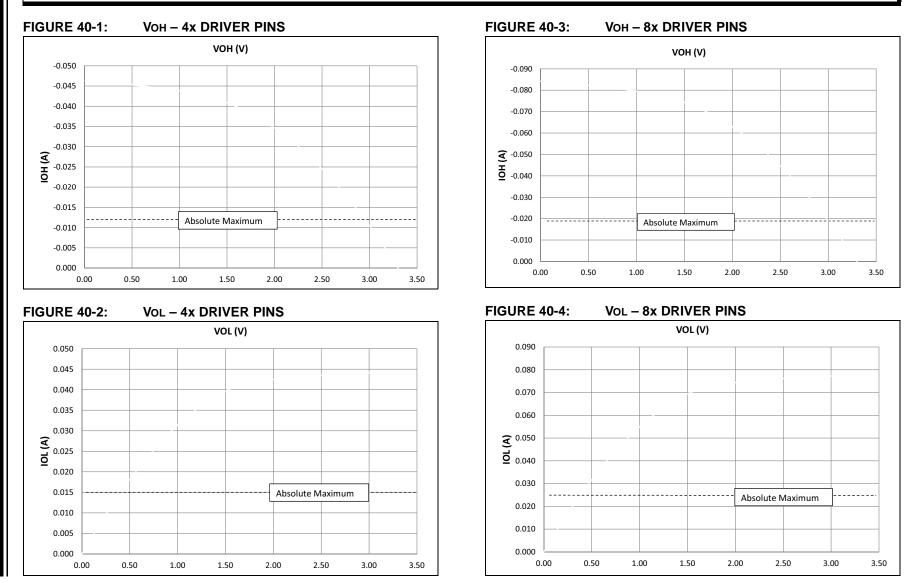
- 1 = Watchdog Timer is in non-Window mode
- 0 = Watchdog Timer is in Window mode
- bit 21 WDTSPGM: Watchdog Timer Stop During Flash Programming bit
 - 1 = Watchdog Timer stops during Flash programming
 - 0 = Watchdog Timer runs during Flash programming (for read/execute while programming Flash applications)

AC CHA	RACTER	ISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param. No.	Symbol	Charact	eristics	Min. ⁽¹⁾	Max.	Units	Conditions	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode (Note 2)		300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns	—	
		Setup Time	400 kHz mode	100		ns		
			1 MHz mode (Note 2)	100		ns		
IM26	THD:DAT	Data Input	100 kHz mode	0		μs	—	
		Hold Time	400 kHz mode	0	0.9	μs	1	
			1 MHz mode (Note 2)	0	0.3	μs		
IM30	TSU:STA	Start Condition	100 kHz mode	TPBCLK2 * (BRG + 2)		μs	Only relevant for	
		Setup Time	400 kHz mode	TPBCLK2 * (BRG + 2)		μs	Repeated Start	
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)		μs	condition	
IM31	THD:STA	Start Condition	100 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	After this period, the	
		Hold Time	400 kHz mode	TPBCLK2 * (BRG + 2)		μs	first clock pulse is	
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)		μs	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	TPBCLK2 * (BRG + 2)		μs	—	
		Setup Time	400 kHz mode	TPBCLK2 * (BRG + 2)	_	μs		
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)		μs		
IM34	THD:STO	Stop Condition	100 kHz mode	TPBCLK2 * (BRG + 2)		ns	—	
		Hold Time	400 kHz mode	TPBCLK2 * (BRG + 2)		ns		
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)	_	ns		
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	_	
		from Clock	400 kHz mode	—	1000	ns	—	
			1 MHz mode (Note 2)	—	350	ns	—	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time	
			400 kHz mode	1.3	—	μs	the bus must be free	
			1 MHz mode (Note 2)	0.5		μs	before a new transmission can start	
IM50	Св	Bus Capacitive L	oading	—	_	pF	See parameter DO58	
IM51	TPGD	Pulse Gobbler De	elay	52	312	ns	See Note 3	

TABLE 37-35: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)

Note 1: BRG is the value of the I²C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).


3: The typical value for this parameter is 104 ns.

40.0 AC AND DC CHARACTERISTICS GRAPHS

Note: The graphs provided are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

PIC32MZ Embedded

Connectivity with Floating Point Unit (EF) Family

Section Name	Update Description
27.0 "Random Number Generator (RNG)"	The TRNGMODE bit was added to the RNGCON register (see Register 27-2).
28.0 "12-bit High-Speed	The S&H Block Diagram was updated (see Figure 28-2).
Successive Approximation Register (SAR) Analog-to-Digital	The registers, ADCTRG4 through ADCTRG8, were removed.
Converter (ADC)"	The bit value definitions for the ADCSEL<1:0> and CONCLKDIV<5:0> bits in the ADCCON3 register were updated (see Register 28-3).
	The bit names in the ADC Status registers (Register 28-12 and Register 28-13) were updated to match the names in the SFR summary table.
	The ADCTRGSNS register was updated (see Register 28-26).
	The POR values were changed in the ADC System Configuration registers (see Register 28-34 and Register 28-35).
34.0 "Special Features"	The FDBGWP bit was removed from the DEVCFG0/ADEVCFG0 registers (see Register 34-3).
37.0 "Electrical Characteristics"	V-Temp (-40°C \leq TA \leq +105°C) information was removed from all tables.
	The operating conditions voltage range was updated in the Absolute Maximum Ratings and in all tables to: 2.1V to 3.6V.
	Notes on Maximum value operating conditions were added to the Operating, Idle, and Power-Down Current tables (see Table 37-6, Table 37-7, and Table 37-8, respectively).
	The conditions for System Timing Requirement parameters OS55a and OS55b were updated (see Table 37-18).
	The Internal FRC Accuracy specifications were updated (see Table 37-20).
	The Internal LPRC Accuracy specifications were updated (see Table 37-21).
	The ADC Module Specifications were updated (see Table 37-38).
	The Analog-to-Digital Conversion Timing Requirements were updated (see Table 37-39).
Appendix B: "Migrating from PIC32MZ EC to PIC32MZ EF"	This appendix was added, which provides an overview of considerations for migrating from PIC32MZ EC devices to the PIC32MZ EF family of devices.

TABLE C-1: MAJOR SECTION UPDATES (CONTINUED)