

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Ξ·ΧΕΙ

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	512KB (512K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512efk064-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	—	—	—	—	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
23.10		—	—	—	—	—	VOFF<	:17:16>	
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
10.0	VOFF<15:8>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	
				VOFF<7:1>	•			—	

REGISTER 7-8: OFFx: INTERRUPT VECTOR ADDRESS OFFSET REGISTER (x = 0-190)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 17-1 VOFF<17:1>: Interrupt Vector 'x' Address Offset bits

bit 0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y	
31.24	—	—	—	—		PLLODIV<2:0>			
00.40	U-0	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y	
23.10	—	PLLMULT<6:0>							
15.0	U-0	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y	
15.0	—					PLLIDIV<2:0>			
7:0	R/W-y	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y	
	PLLICLK				_	PLLRANGE<2:0>			

REGISTER 8-3: SPLLCON: SYSTEM PLL CONTROL REGISTER

Legend:	y = Value set from Configuration bits on POR			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-27 Unimplemented: Read as '0'

bit 26-24 PLLODIV<2:0>: System PLL Output Clock Divider bits

111 = Reserved 110 = Reserved 101 = PLL Divide by 32 100 = PLL Divide by 16 011 = PLL Divide by 8 010 = PLL Divide by 4 001 = PLL Divide by 2 000 = Reserved

The default setting is specified by the FPLLODIV<2:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in **Section 34.0** "**Special Features**" for information.

bit 23 Unimplemented: Read as '0'

bit 22-16 PLLMULT<6:0>: System PLL Multiplier bits

- 1111111 = Multiply by 128 1111110 = Multiply by 127 1111101 = Multiply by 126 1111100 = Multiply by 125
- •

0000000 = Multiply by 1

The default setting is specified by the FPLLMULT<6:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in **Section 34.0** "**Special Features**" for information.

bit 15-11 Unimplemented: Read as '0'

Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "*PIC32 Family Reference Manual*" for details.
 Writes to this register are not allowed if the SPLL is selected as a clock source (COSC<2:0> = 001).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	—	—	—	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	—	—	—	—	—	—	—	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8				CHSSIZ	<15:8>				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0	CHSSIZ<7:0>								

REGISTER 10-12: DCHxSSIZ: DMA CHANNEL x SOURCE SIZE REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSSIZ<15:0>: Channel Source Size bits

1111111111111111 = 65,535 byte source size

REGISTER 10-13: DCHxDSIZ: DMA CHANNEL x DESTINATION SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	—	—	—	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	—	—	—	—	—	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	5:8 CHDSIZ<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0	CHDSIZ<7:0>								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16	Unimplemented: Read as '0)'
-----------	---------------------------	----

bit 15-0 **CHDSIZ<15:0>:** Channel Destination Size bits

111111111111111 = 65,535 byte destination size $\ensuremath{\cdot}$

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	-	—	—	—	—	—	—	—	
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	—	—	—	—	—	—	—	
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
10.0	CHSPTR<15:8>								
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
7:0	CHSPTR<7:0>								

REGISTER 10-14: DCHxSPTR: DMA CHANNEL x SOURCE POINTER REGISTER

Legend:

Logonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSPTR<15:0>: Channel Source Pointer bits

111111111111111 = Points to byte 65,535 of the source

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24		—	—		—		—	—				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16		—	—		—	—	—	—				
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
10.0	CHDPTR<15:8>											
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0		CHDPTR<7:0>										

REGISTER 10-15: DCHxDPTR: DMA CHANNEL x DESTINATION POINTER REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHDPTR<15:0>: Channel Destination Pointer bits

1111111111111111 = Points to byte 65,535 of the destination

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31.24	—	—	—	RXFIFOAD<12:8>								
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	RXFIFOAD<7:0>											
15.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15.0	—	—	—		Tک	(FIFOAD<12:	8>					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	TXFIFOAD<7:0>											

REGISTER 11-14: USBFIFOA: USB FIFO ADDRESS REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-16 **RXFIFOAD<12:0>:** Receive Endpoint FIFO Address bits

Start address of the endpoint FIFO in units of 8 bytes as follows:

111111111111 = 0xFFF8

- •
- •

bit 15-13 Unimplemented: Read as '0'

bit 12-0 TXFIFOAD<12:0>: Transmit Endpoint FIFO Address bits

Start address of the endpoint FIFO in units of 8 bytes as follows:

1111111111111 = 0xFFF8

•

•

•

TABLE 12-6: PORTC REGISTER MAP FOR 100-PIN, 124-PIN, AND 144-PIN DEVICES ONLY

ess										Bits									
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0200		31:16	_	—	_	—		—	—	-	-	—	—			—	—		0000
0200	ANSELC	15:0		_	—	_	_	_	_			_	_	ANSC4	ANSC3	ANSC2	ANSC1		001E
0210	TRISC	31:16	_	-	_	_	_	—	—			—	_	_	_	—	—		0000
0210	11100	15:0	TRISC15	TRISC14	TRISC13	TRISC12	—	—	—	_	_		—	TRISC4	TRISC3	TRISC2	TRISC1	_	F01E
0220	PORTC	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	0000
0220	1 Oltro	15:0	RC15	RC14	RC13	RC12	—	—	—	—	—	—	—	RC4	RC3	RC2	RC1	—	xxxx
0230	LATC	31:16	_	—	—	—	_	—	—	_	_	—	—	—	—	—	—	-	0000
0200	2/110	15:0	LATC15	LATC14	LATC13	LATC12	—	—	—	—	—	—	—	LATC4	LATC3	LATC2	LATC1	—	xxxx
0240	ODCC	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0210	0000	15:0	ODCC15	ODCC14	ODCC13	ODCC12	—	—	—	—	—	—	—	ODCC4	ODCC3	ODCC2	ODCC1	—	0000
0250	CNPUC	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—		0000
0200		15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	—	—	—	_	—		—	CNPUC4	CNPUC3	CNPUC2	CNPUC1		0000
0260	CNPDC	31:16	_	—	—	—	—	—	—	_	—		—	—	—	—	—		0000
0200		15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	—	—	—	_	—		—	CNPDC4	CNPDC3	CNPDC2	CNPDC1		0000
		31:16	_	—	—	—	—	—	—	_	—		—	—	—	—	—		0000
0270	CNCONC	15:0	ON	—	-	-	EDGE DETECT	—	—	—	—	-	—	—	—	—	—	—	0000
0000		31:16	_	—		_	—			_	-	—		—		_	_	-	0000
0280	CNENC	15:0	CNENC15	CNENC14	CNENC13	CNENC12								CNENC4	CNENC3	CNENC2	CNENC1		0000
0000	CNICTATO	31:16	—	—	—	—	—	—		_	_	_	_	—		_	_	_	0000
0290	CINSTATC	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12	_			_	_	_		CNSTATC4	CNSTATC3	CNSTATC2	CNSTATC1	_	0000
0040		31:16	_	—		_	_			_	-	—		—		_	—	-	0000
02A0	CININEC	15:0	CNNEC15	CNNEC14	CNNEC13	CNNEC12	—			_	_	—	_	CNNEC4	CNNEC3	CNNEC2	CNNEC1	_	0000
00.00		31:16	—	-	—	—	_	—	—	—	—	—	—	—	—	—	—	—	0000
0280	CINFC	15:0	CNFC15	CNFC14	CNFC13	CNFC12	_			_	_	—		CNFC4	CNFC3	CNFC2	CNFC1	_	0000

x = Unknown value on Reset; --- = Unimplemented, read as '0'; Reset values are shown in hexadecimal. Legend:

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information. Note 1:

TABLE 12-14: PORTF REGISTER MAP FOR 64-PIN DEVICES ONLY

ess		6								Bi	ts								
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0510	TDICE	31:16	_		—	—	—	—	—	—	-		—	—	—	—	_	—	0000
0510	IRIOF	15:0	-	—			-					_	TRISF5	TRISF4	TRISF3	-	TRISF1	TRISF0	003B
0520	PORTE	31:16	—	—	—	—	—	_	—	—	_	—		—	—	—	—		0000
0020	1 OKII	15:0	—	—	—	—	—	—	—	—	_	—	RF5	RF4	RF3	—	RF1	RF0	xxxx
0530	LATF	31:16	_	_								—		—	—		—		0000
		15:0	—	—	—	—	—	_	—	—	—	—	LATF5	LATF4	LATF3	—	LATF1	LATF0	XXXX
0540	ODCF	31:16	_	_	—	—	_	_	—	—	_	—	_	—	_	—	—	—	0000
		15:0	_	_	_	_	_			_	_	-	ODCF5	ODCF4	ODCF3	_	ODCF1	ODCF0	0000
0550	CNPUF	31:16	_				_					_							0000
		15:0	_	_	_	_	_	_	_	_	_	_	CNPUF5	CNPUF4	CNPUF3	_	CNPUF1	CNPUFU	0000
0560	CNPDF	31:16	_		_	_	_			_	_	_				_			0000
		15.0	_										CINFDF5	CINFDF4	CINFDF3		CNEDEL	CINFDFU	0000
0570	CNCONF	15:0	ON	_	_	_	EDGE			_		_		_	_	_	_	_	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0580	CNENF	15:0	_	_	_	_	_	_	_	_	_		CNENF5	CNENF4	CNENF3	_	CNENF1	CNENF0	0000
		31:16	_	_	_	_	_	_	-	—	_	_	_	—	—	—	_	_	0000
0590	CNSTATF	15:0	_	_	_	_	_	_	_	_	_	_	CN STATF5	CN STATF4	CN STATF3	_	CN STATF1	CN STATF0	0000
05 4 0		31:16	-	_	—	_	_	_	—	—	—	_	—	—	_	_	_	—	0000
05A0	CININEF	15:0	_	_	-	-	-			-		_	CNNEF5	CNNEF4	CNNEF3		CNNEF1	CNNEF0	0000
05B0	CNEE	31:16	—	_		_	—	_	_	_	_	—	—	_	—	—	—	—	0000
0000	ONT	15:0	—	—	—	—	—	—	—	—	_	—	CNFF5	CNFF4	CNFF3	—	CNFF1	CNFF0	0000
05C0	SRCON0F	31:16	_	_	—	—	—	_	_	—	_	—	_	—	_	_	—	_	0000
		15:0	—	_		—	—	_	_		_	—	-		—	—	SR0F1	SR0F0	0000
05D0	SRCON1F	31:16	—	_		_	—	_	_	_	_	—	-	_	_		—		0000
		15:0	_	—	—	—	_	_	—	_	_	—	—		_	_	SR1F1	SR2F0	0000

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

TABLE 12-17: PORTH REGISTER MAP FOR 124-PIN DEVICES ONLY

ess		0		Bits															
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0700	ANSELH	31:16	—		—	—		—	—	—	_	—	-		—	-	—	—	0000
0100	, alocent	15:0	_	_	—	_	_	_	—	_	_	ANSH6	ANSH5	ANSH4	_	_	ANSH1	ANSH0	0073
0710	TRISH	31:16	_			—		—	—	—	_	—	—	—			—		0000
	-	15:0	_	_	TRISH13	TRISH12	_	TRISH10	TRISH9	TRISH8	—	TRISH6	TRISH5	TRISH4	—	_	TRISH1	TRISH0	3773
0720	PORTH	31:16	_	_	—	—	—	—	—	—	_	—			—	—	—		0000
		15:0	_		RH13	RH12		RH10	RH9	RH8	_	RH6	RH5	RH4	_	_	RH1	RH0	XXXX
0730	LATH	31:16	_		-	—		-	—	-		-	-	-			-	-	0000
		15:0			LATH13	LATH12		LATH10	LATH9	LATH8	—	LATH6	LATH5	LATH4	—		LAIH1	LATHO	XXXX
0740	ODCH	31:16					_				_				_	_			0000
		15:0			ODCHI3	ODCHIZ		ODCHIU	ODCH9			UDCH6	ODCH5				ODCHI	ODCHU	0000
0750	CNPUH	15.0																	0000
		31.16																	0000
0760	CNPDH	15.0																	0000
		31.16			_	—		_	_	_		_	_				_		0000
0770	CNCONH	15:0	ON	_	_	_	EDGE	_	_	_	_	_	_	_	_	_	_		0000
		31:16	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0780	CNENH	15:0	_	_	CNENH13	CNENH12	_	CNENH10	CNENH9	CNENH8	_	CNENH6	CNENH5	CNENH4	_	_	CNENH1	CNENH0	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	0000
0790	CNSTATH	15:0	_	_	CN STATH13	CN STATH12	_	CN STATH10	CN STATH9	CN STATH8	_	CN STATH6	CN STATH5	CN STATH4	_	_	CN STATH1	CN STATH0	0000
0740		31:16	_	_	_	—	_	—	_	_	_	_	_	_	_	_	—	—	0000
07A0	CININEH	15:0	—	_	CNNEH13	CNNEH12	—	CNNEH10	CNNEH9	CNNEH8	—	CNNEH6	CNNEH5	CNNEH4	—	—	CNNEH1	CNNEH0	0000
0780		31:16	_	_	_	_	_	_	_	_	_	_	_			_	_	—	0000
01 00	UNER	15:0	_	_	CNFH13	CNFH12	_	CNFH10	CNFH9	CNFH8	_	CNFH6	CNFH5	CNFH4		_	CNFH1	CNFH0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	-	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	-	—	—
45.0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
15:8	ON	—	—	—	EDGEDETECT	-	—	—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_						

REGISTER 12-3: CNCONX: CHANGE NOTICE CONTROL FOR PORTX REGISTER (X = A - K)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 **ON:** Change Notice (CN) Control ON bit

1 = CN is enabled

0 = CN is disabled

bit 14-12 Unimplemented: Read as '0'

- bit 11 EDGEDETECT: Change Notification Style bit
 - 1 = Edge Style. Detect edge transitions (CNFx used for CN Event).
 - 0 = Mismatch Style. Detect change from last PORTx read (CNSTATx used for CN Event).
- bit 10-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	U-0	U-0	U-0	U-0 U-0		U-0	U-0	U-0				
31:24	—	—	—	—	—	—	—	—				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16	—	—	—	—	—	—	—	—				
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	—	—	—		T	XINTTHR<4:0)>					
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	_	_	_	RXINTTHR<4:0>								

REGISTER 20-7: SQI1INTTHR: SQI INTERRUPT THRESHOLD REGISTER

Legend:

- 5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-8 **TXINTTHR<4:0>:** Transmit Interrupt Threshold bits A transmit interrupt is set when the transmit FIFO has more space than the set number of bytes. For 16-bit mode, the value should be a multiple of 2.

bit 7-5 Unimplemented: Read as '0'

bit 4-0 RXINTTHR<4:0>: Receive Interrupt Threshold bits

A receive interrupt is set when the receive FIFO count is larger than or equal to the set number of bytes. For 16-bit mode, the value should be multiple of 2.

REGISTER 20-9: SQI1INTSTAT: SQI INTERRUPT STATUS REGISTER (CONTINUED)

- bit 2 TXTHRIF: Transmit Buffer Threshold Interrupt Flag bit

 Transmit buffer has more than TXINTTHR words of space available
 Transmit buffer has less than TXINTTHR words of space available

 bit 1 TXFULLIF: Transmit Buffer Full Interrupt Flag bit

 The transmit buffer is full
 The transmit buffer is not full

 bit 0 TXEMPTYIF: Transmit Buffer Empty Interrupt Flag bit

 The transmit buffer is empty
 - 0 = The transmit buffer has content
- **Note 1:** In Boot/XIP mode, the POR value of the receive buffer threshold is zero. Therefore, this bit will be set to a '1', immediately after a POR until a read request on the System Bus is received.

Note: The bits in the register are cleared by writing a '1' to the corresponding bit position.

21.0 INTER-INTEGRATED CIRCUIT (I²C)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116) "PIC32 Family Reference the in Manual", which is available from the Microchip web site (www.microchip.com/ PIC32).

The I²C module provides complete hardware support for both Slave and Multi-Master modes of the I²C serial communication standard.

Each I²C module has a 2-pin interface:

- SCLx pin is clock
- SDAx pin is data

Each I²C module offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and arbitrates accordingly
- Provides support for address bit masking
- SMBus support

Figure 21-1 illustrates the I²C module block diagram.

REGISTE	ER 28-1: ADCCON1: ADC CONTROL REGISTER 1 (CONTINUED)
bit 20-16	STRGSRC<4:0>: Scan Trigger Source Select bits 11111 = Reserved
	•
	•
	•
	01101 = Reserved
	01100 = Comparator 2 (COUT)
	01011 = COMPS
	01001 = OCMP3
	01000 = OCMP1
	00111 = TMR5 match
	00110 = TMR3 match
	00101 = TMR1 match
	0.011 - Reserved
	00010 = Global level software trigger (GLSWTRG)
	00001 = Global software edge trigger (GSWTRG)
	00000 = No Trigger
bit 15	ON: ADC Module Enable bit
	1 = ADC module is enabled
	0 = ADC module is disabled
	Note: The ON bit should be set only after the ADC module has been configured.
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit
	I = Discontinue module operation when device enters rate mode 0 = Continue module operation in Idle mode
bit 12	AICPMPEN: Analog Input Charge Pump Enable bit
511 12	1 = Analog input charge pump is enabled (default)
	0 = Analog input charge pump is disabled
bit 11	CVDEN: Capacitive Voltage Division Enable bit
	1 = CVD operation is enabled
	0 = CVD operation is disabled
bit 10	FSSCLKEN: Fast Synchronous System Clock to ADC Control Clock bit
	\perp = Fast synchronous system clock to ADC control clock is enabled
hit Q	ESPRCI KEN: East Synchronous Perinheral Clock to ADC Control Clock bit
DIL 9	1 = Fast synchronous peripheral clock to ADC control clock is enabled
	0 = Fast synchronous peripheral clock to ADC control clock is disabled
bit 8-7	Unimplemented: Read as '0'
bit 6-4	IRQVS<2:0>: Interrupt Vector Shift bits
	To determine interrupt vector address, this bit specifies the amount of left shift done to the ARDYx status bits in the ADCDSTAT1 and ADCDSTAT2 registers, prior to adding with the ADCBASE register.
	Interrupt Vector Address = Read Value of ADCBASE and Read Value of ADCBASE = Value written to
	ADCBASE + x << IRQVS<2:0>, where 'x' is the smallest active input ID from the ADCDSTAT1 or
	ADCDSTAT2 registers (which has highest priority).
	111 = Shift x left 7 bit position
	110 = Shift x left 6 bit position
	101 = Shift x left 4 bit position
	011 = Shift x left 3 bit position
	010 = Shift x left 2 bit position
	001 = Shift x left 1 bit position
	000 = Shift x left 0 bit position

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	—	—	—			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	BUFCNT<7:0> ⁽¹⁾										
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
10.0	—	—	—	_	—	—	_	—			
7:0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
	ETHBUSY ⁽⁵⁾	TXBUSY ^(2,6)	RXBUSY ^(3,6)	—	—	—	—	—			

REGISTER 30-15: ETHSTAT: ETHERNET CONTROLLER STATUS REGISTER

W = Writable bit

'1' = Bit is set

Legend:

R = Readable bit

-n = Value at POR

bit 31-24 Unimplemented: Read as '0'

bit 23-16 **BUFCNT<7:0>:** Packet Buffer Count bits⁽¹⁾

Number of packet buffers received in memory. Once a packet has been successfully received, this register is incremented by hardware based on the number of descriptors used by the packet. Software decrements the counter (by writing to the BUFCDEC bit (ETHCON1<0>) for each descriptor used) after a packet has been read out of the buffer. The register does not roll over (0xFF to 0x00) when hardware tries to increment the register and the register is already at 0xFF. Conversely, the register does not roll under (0x00 to 0xFF) when software tries to decrement the register and the register is already at 0xO00. When software attempts to decrement the same time that the hardware attempts to increment the counter, the counter value will remain unchanged.

U = Unimplemented bit, read as '0'

x = Bit is unknown

'0' = Bit is cleared

When this register value reaches 0xFF, the RX logic will halt (only if automatic Flow Control is enabled) awaiting software to write the BUFCDEC bit in order to decrement the register below 0xFF.

If automatic Flow Control is disabled, the RXDMA will continue processing and the BUFCNT will saturate at a value of 0xFF.

When this register is non-zero, the PKTPEND status bit will be set and an interrupt may be generated, depending on the value of the ETHIEN bit <PKTPENDIE> register.

When the ETHRXST register is written, the BUFCNT counter is automatically cleared to 0x00.

- **Note:** BUFCNT will not be cleared when ON is set to '0'. This enables software to continue to utilize and decrement this count.
- bit 15-8 **Unimplemented:** Read as '0'
- bit 7 ETHBUSY: Ethernet Module busy bit⁽⁵⁾
 - 1 = Ethernet logic has been turned on (ON (ETHCON1<15>) = 1) or is completing a transaction 0 = Ethernet logic is idle

This bit indicates that the module has been turned on or is completing a transaction after being turned off.

- Note 1: This bit is only used for RX operations.
 - 2: This bit is only affected by TX operations.
 - 3: This bit is only affected by RX operations.
 - 4: This bit is affected by TX and RX operations.
 - 5: This bit will be set when the ON bit (ETHCON1<15>) = 1.
 - 6: This bit will be *cleared* when the ON bit (ETHCON1<15>) = 0.

NOTES:

TABLE 33-2: PERIPHERAL MODULE DISABLE REGISTER SUMMARY

ess		Bit Range		Bits															
Virtual Addı (BF80_#	Register Name ⁽¹⁾		31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0040	DMD1	31:16	_		_		—	-	_			—	_				—	_	0000
0040 P	FIVIDT	15:0	_	_	—	CVRMD	—	_	—	_	_	—	—	_	_	_	—	ADCMD	0000
0050	DMD2	31:16	_		_		_		_			—	_				_		0000
0050	PIVIDZ	15:0	_	—	-	_	-	_	—	—	—	—	-	—	_	_	CMP2MD	CMP1MD	0000
0060	DMD2	31:16	_	_	-	_	_	_	_	OC9MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
0060	PIVIDS	15:0	_	_	-	_	_	_	_	IC9MD	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	0000
0070		31:16	_		_		-		_		_	—	_	_	-				0000
0070	PIVID4	15:0		-	—	-	—	-	_	T9MD	T8MD	T7MD	T6MD	T5MD	T4MD	T3MD	T2MD	T1MD	0000
0080	DMDE	31:16		-	CAN2MD	CAN1MD	—	-	_	USBMD		_		I2C5MD	I2C4MD	I2C3MD	I2C2MD	I2C1MD	0000
0080	PIVIDS	15:0	_	—	SPI6MD	SPI5MD	SPI4MD	SPI3MD	SPI2MD	SPI1MD	—	—	U6MD	U5MD	U4MD	U3MD	U2MD	U1MD	0000
0090	DMDG	31:16	_	_	-	ETHMD	_	_	_	_	SQI1MD	_		_	_	_	EBIMD	PMPMD	0000
	PIVIDO	15:0	_	_	-	_	REFO4MD	REFO3MD	REFO2MD	REFO1MD	_	_		_	_	_	_	RTCCMD	0000
0040	DMDZ	31:16	_		_	_	_	_	_	_	_	CRYPTMD	_	RNGMD	_	_	_	_	0000
00A0	PIVID/	15:0	_	_	_	_	_	_	_			_	_	DMAMD		_	_	_	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

37.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MZ EF device AC characteristics and timing parameters.

FIGURE 37-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 37-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions			
DO56	CL	All I/O pins (except pins used as CxOUT)	—	_	50	pF	EC mode for OSC2			
DO58	Св	SCLx, SDAx	—	—	400	pF	In I ² C mode			
DO59 Csqi All SQI pins				—	10	pF	_			

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 37-10: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

	DAOTED			Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated)						
	RACIER	151105		$\begin{array}{ll} Operating \ temperature & -40^{\circ}C \leq TA \leq +85^{\circ}C \ for \ Industrial \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \ for \ Extended \end{array}$						
Param. No.	Symbol	Charact	eristics	Min. ⁽¹⁾		Units	Conditions			
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be			
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF			
			1 MHz mode (Note 2)		300	ns				
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	—			
		Setup Time	400 kHz mode	100	—	ns	-			
			1 MHz mode (Note 2)	100		ns				
IM26	THD:DAT	Data Input	100 kHz mode	0	—	μs				
		Hold Time	400 kHz mode	0	0.9	μs				
			1 MHz mode (Note 2)	0	0.3	μs				
IM30	TSU:STA	Start Condition	100 kHz mode	TPBCLK2 * (BRG + 2)		μs	Only relevant for			
		Setup Time	400 kHz mode	TPBCLK2 * (BRG + 2)		μs	Repeated Start			
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)		μs	condition			
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	TPBCLK2 * (BRG + 2)		μs	After this period, the			
			400 kHz mode	TPBCLK2 * (BRG + 2)		μs	first clock pulse is			
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)		μs	generated			
IM33	Tsu:sto	Stop Condition Setup Time	100 kHz mode	TPBCLK2 * (BRG + 2)		μs	—			
			400 kHz mode	TPBCLK2 * (BRG + 2)		μs				
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)	—	μs				
IM34	THD:STO	Stop Condition	100 kHz mode	TPBCLK2 * (BRG + 2)	—	ns	—			
		Hold Time	400 kHz mode	TPBCLK2 * (BRG + 2)		ns				
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)		ns				
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	—			
		from Clock	400 kHz mode	—	1000	ns	—			
			1 MHz mode (Note 2)	—	350	ns	_			
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time			
			400 kHz mode	1.3		μs	the bus must be free			
			1 MHz mode (Note 2)	0.5		μs	before a new transmission can start			
IM50	Св	Bus Capacitive L	oading	—	—	pF	See parameter DO58			
IM51	Tpgd	Pulse Gobbler De	elay	52	312	ns	See Note 3			

TABLE 37-35: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)

Note 1: BRG is the value of the I²C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: The typical value for this parameter is 104 ns.

АС СНА	RACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$								
Param. No.	Characteristic	Min.	Typical	Max.	Units	Conditions				
MIIM Tin	ning Requirements									
ET1	MDC Duty Cycle	40	—	60	%	—				
ET2	MDC Period	400	_	_	ns	—				
ET3	MDIO Output Setup and Hold	10	_	10	ns	See Figure 37-24				
ET4	MDIO Input Setup and Hold	0	_	300	ns	See Figure 37-25				
MII Timing Requirements										
ET5	TX Clock Frequency	—	25		MHz	—				
ET6	TX Clock Duty Cycle	35		65	%	—				
ET7	ETXDx, ETEN, ETXERR Output Delay	0		25	ns	See Figure 37-26				
ET8	RX Clock Frequency	—	25		MHz	—				
ET9	RX Clock Duty Cycle	35		65	%	_				
ET10	ERXDx, ERXDV, ERXERR Setup and Hold	10		30	ns	See Figure 37-27				
RMII Tin	RMII Timing Requirements									
ET11	Reference Clock Frequency	_	50		MHz	—				
ET12	Reference Clock Duty Cycle	35	—	65	%	_				
ET13	ETXDx, ETEN, Setup and Hold	2	—	4	ns	—				
ET14	ERXDx, ERXDV, ERXERR Setup and Hold	2		4	ns	_				

TABLE 37-46: ETHERNET MODULE SPECIFICATIONS

FIGURE 37-24: MDIO SOURCED BY THE PIC32 DEVICE

FIGURE 37-25: MDIO SOURCED BY THE PHY

