

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	46
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512efk064-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
				Inte	er-Integr	ated Circui	it 1
SCL1	44	66	B37	95	I/O	ST	I2C1 Synchronous Serial Clock Input/Output
SDA1	43	67	A45	96	I/O	ST	I2C1 Synchronous Serial Data Input/Output
Inter-Integrated Circuit 2							
SCL2	—	59	A41	85	I/O	ST	I2C2 Synchronous Serial Clock Input/Output
SDA2	—	60	B34	86	I/O	ST	I2C2 Synchronous Serial Data Input/Output
				Inte	er-Integr	ated Circui	it 3
SCL3	51	58	A39	80	I/O	ST	I2C3 Synchronous Serial Clock Input/Output
SDA3	50	57	B31	79	I/O	ST	I2C3 Synchronous Serial Data Input/Output
				Inte	er-Integr	ated Circui	it 4
SCL4	6	12	B7	16	I/O	ST	I2C4 Synchronous Serial Clock Input/Output
SDA4	5	11	A8	15	I/O	ST	I2C4 Synchronous Serial Data Input/Output
				Inte	er-Integr	ated Circui	it 5
SCL5	42	65	A44	91	I/O	ST	I2C5 Synchronous Serial Clock Input/Output
SDA5	41	64	B36	90	I/O	ST	I2C5 Synchronous Serial Data Input/Output
Legend:	nd: CMOS = CMOS-compatible input or output Analog = Analog input P = Power						

TABLE 1-10: I2C1 THROUGH I2C5 PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output

I = Input

PPS = Peripheral Pin Select

COMPARATOR 1, COMPARATOR 2 AND CVREF PINOUT I/O DESCRIPTIONS TABLE 1-11:

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
				Comp	arator Vo	oltage Refe	rence
CVREF+	16	29	A20	40	I	Analog	Comparator Voltage Reference (High) Input
CVREF-	15	28	B15	39	I	Analog	Comparator Voltage Reference (Low) Input
CVREFOUT	23	34	B19	49	0	Analog	Comparator Voltage Reference Output
					Comp	arator 1	
C1INA	11	20	B11	25	I	Analog	Comparator 1 Positive Input
C1INB	12	21	A13	26	I	Analog	Comparator 1 Selectable Negative Input
C1INC	5	11	A8	15	I	Analog	
C1IND	4	10	B6	14	I	Analog	1
C10UT	PPS	PPS	PPS	PPS	0	_	Comparator 1 Output
			•	•	Comp	arator 2	•
C2INA	13	22	A14	31	I	Analog	Comparator 2 Positive Input
C2INB	14	23	A16	34	I	Analog	Comparator 2 Selectable Negative Input
C2INC	10	16	B9	21	I	Analog	1
C2IND	6	12	B7	16	I	Analog]
C2OUT	PPS	PPS	PPS	PPS	0	—	Comparator 2 Output
Legend:	CMOS = C	MOS-comp	atible input	or output	•	Analog =	Analog input P = Power
	ST = Schmitt Trigger input with CMOS levels O = Output I = Input						

TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

3.4 EJTAG Debug Support

The processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the processor core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification specify which registers are selected and how they are used.

3.5 MIPS DSP ASE Extension

The MIPS DSP Application-Specific Extension Revision 2 is an extension to the MIPS32 architecture. This extension comprises new integer instructions and states that include new HI/LO accumulator register pairs and a DSP control register. This extension is crucial in a wide range of DSP, multimedia, and DSPlike algorithms covering Audio and Video processing applications. The extension supports native fractional format data type operations, register Single Instruction Multiple Data (SIMD) operations, such as add, subtract, multiply, and shift. In addition, the extension includes the following features that are essential in making DSP algorithms computationally efficient:

- · Support for multiplication of complex operands
- · Variable bit insertion and extraction
- Implementation and use of virtual circular buffers
- Arithmetic saturation and overflow handling support
- Zero cycle overhead saturation and rounding operations

3.6 microMIPS ISA

The processor core supports the microMIPS ISA, which contains all MIPS32 ISA instructions (except for branch-likely instructions) in a new 32-bit encoding scheme, with some of the commonly used instructions also available in 16-bit encoded format. This ISA improves code density through the additional 16-bit instructions while maintaining a performance similar to MIPS32 mode. In microMIPS mode, 16-bit or 32-bit instructions will be fetched and recoded to legacy MIPS32 instruction opcodes in the pipeline's I stage, so that the processor core can have the same microAptiv UP microarchitecture. Because the microMIPS instruction stream can be intermixed with 16-bit halfword or 32-bit word size instructions on halfword or word boundaries, additional logic is in place to address the misalignment word issues, thus minimizing performance loss.

REGISTER 3-10: FCSR: FLOATING POINT CONTROL AND STATUS REGISTER; CP1 REGISTER 31

- bit 16 V: Invalid Operation bit
- bit 15 Z: Divide-by-Zero bit
- bit 14 **O:** Overflow bit
- bit 13 U: Underflow bit
- bit 12 I: Inexact bit
- bit 11-7 ENABLES<4:0>: FPU Exception Enable bits

These bits control whether or not a trap is taken when an IEEE exception condition occurs for any of the five conditions. The trap occurs when both an enable bit and its corresponding cause bit are set either during an FPU arithmetic operation or by moving a value to the FCSR or one of its alternative representations.

- bit 11 V: Invalid Operation bit
- bit 10 Z: Divide-by-Zero bit
- bit 9 Overflow bit
- bit 8 U: Underflow bit
- bit 7 I: Inexact bit
- bit 6-2 **FLAGS<4:0>:** FPU Flags bits These bits show any exception conditions that have occurred for completed instructions since the flag was last reset by software.
- bit 6 V: Invalid Operation bit
- bit 5 **Z:** Divide-by-Zero bit
- bit 4 **O:** Overflow bit
- bit 3 U: Underflow bit
- bit 2 I: Inexact bit
- bit 1-0 **RM<1:0>:** Rounding Mode control bits
 - 11 = Round towards Minus Infinity (– ∞)
 - 10 = Round towards Plus Infinity (+ ∞)
 - 01 = Round toward Zero (0)
 - 00 = Round to Nearest

FIGURE 4-2: MEMORY MAP FOR DEVICES WITH 1024 KB OF PROGRAM MEMORY AND 256 KB OF RAM^(1,2)

7.0 CPU EXCEPTIONS AND INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Interrupt Controller" (DS60001108) and Section 50. "CPU MIPS32[®] for Devices with microAptiv[™] and M-Class Cores" (DS60001192) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

PIC32MZ EF devices generate interrupt requests in response to interrupt events from peripheral modules. The Interrupt Controller module exists outside of the CPU and prioritizes the interrupt events before presenting them to the CPU.

The CPU handles interrupt events as part of the exception handling mechanism, which is described in **Section 7.1 "CPU Exceptions"**.

The Interrupt Controller module includes the following features:

- Up to 213 interrupt sources and vectors with dedicated programmable offsets, eliminating the need for redirection
- · Single and multi-vector mode operations
- · Five external interrupts with edge polarity control
- Interrupt proximity timer
- Seven user-selectable priority levels for each vector
- Four user-selectable subpriority levels within each priority
- Seven shadow register sets that can be used for any priority level, eliminating software context switch and reducing interrupt latency
- Software can generate any interrupt

Figure 7-1 shows the block diagram for the Interrupt Controller and CPU exceptions.

FIGURE 7-1: CPU EXCEPTIONS AND INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM

REGISTER 10-7: DCHxCON: DMA CHANNEL x CONTROL REGISTER (CONTINUED)

- bit 4 **CHAEN:** Channel Automatic Enable bit
 - 1 = Channel is continuously enabled, and not automatically disabled after a block transfer is complete 0 = Channel is disabled on block transfer complete

bit 3 Unimplemented: Read as '0'

- bit 2 **CHEDET:** Channel Event Detected bit
 - 1 = An event has been detected
 - 0 = No events have been detected
- bit 1-0 CHPRI<1:0>: Channel Priority bits
 - 11 = Channel has priority 3 (highest)
 - 10 = Channel has priority 2
 - 01 = Channel has priority 1
 - 00 = Channel has priority 0
- Note 1: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).
 - 2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

TABLE 11-1: USB REGISTER MAP 1 (CONTINUED)

ss											Bits										
Virtual Addres (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets		
	USB	31:16	-			RX	HUBPRT<6	:0>			MULTTRAN			RXHU	BADD<6:0>				0000		
3090	E3RXA	15:0	—	—	_	_	—	_	—	_	_			RXFA	DDR<6:0>				0000		
2040	US	31:16	—			TX	HUBPRT<6:	0>	•		MULTTRAN			TXHU	BADD<6:0>				0000		
30AU	BE4TXA	15:0	—	—	—	—	—	—	—	—	—			TXFA	DDR<6:0>				0000		
3044	USB	31:16	_			RX	HUBPRT<6	:0>			MULTTRAN			RXHU	BADD<6:0>				0000		
3074	E4RXA	15:0	_	—	_		-		_	-	_			RXFA	DDR<6:0>				0000		
2048	USB	31:16	—			TX	HUBPRT<6:	0>			MULTTRAN			TXHU	BADD<6:0>				0000		
30A0	E5TXA	15:0	—	_	—		—		—	—	—			TXFA	DDR<6:0>				0000		
2040	USB	31:16	_			RX	HUBPRT<6	:0>			MULTTRAN			RXHU	BADD<6:0>				0000		
JUAC	E5RXA	15:0	—	—	—	-	—	-	-	-	_			RXFA	DDR<6:0>				0000		
30B0	USB	31:16				TX	HUBPRT<6:	0>			MULTTRAN			TXHU	BADD<6:0>				0000		
5000	E6TXA	15:0	—		—	_	-	_	—	—	—			TXFA	DDR<6:0>				0000		
30B4	USB	31:16				RX	HUBPRT<6	0>			MULTTRAN			RXHU	BADD<6:0>				0000		
5004	E6RXA	15:0		—	—	_	—	_	—	—	—			RXFA	DDR<6:0>				0000		
30B8	USB	31:16				TX	HUBPRT<6:	0>			MULTTRAN	AN TXHUBADD<6:0>					N TXHUBADD<6:0>			0000	
0000	E7TXA	15:0	—	—	—	—	—	_	—	—	—	TXFADDR<6:0>						TXFADDR<6:0>			0000
30BC	USB	31:16	—			RX	HUBPRT<6	:0>			MULTTRAN	JLTTRAN RXHUBADD<6:0>						0000			
0020	E7RXA	15:0	—	—	—	—	—	_	—	—	—			RXFA	DDR<6:0>				0000		
3100	USB	31:16							Inde	exed by the	same bits in U	SBIE0CSR0							0000		
0.00	E0CSR0	15:0								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		02.20001.0							0000		
3108	USB	31:16							Inde	exed by the	same bits in U	SBIE0CSR2							0000		
	E0CSR2	15:0																	0000		
310C	USB	31:16	_						Inde	exed by the	same bits in U	SBIE0CSR3							0000		
	E0CSR3	15:0																	0000		
3110	USB	31:16	_						Inde	exed by the	same bits in U	SBIE1CSR0							0000		
	E1CSR0	15:0																	0000		
3114	USB	31:16	_						Inde	exed by the	same bits in U	SBIE1CSR1							0000		
	E1CSR1	15:0																	0000		
3118	USB	31:16							Inde	exed by the	same bits in U	SBIE1CSR2							0000		
	EICSRZ	15:0																	0000		
311C	USB	31:16	-						Inde	exed by the	same bits in U	SBIE1CSR3							0000		
	EICSR3	15:0	15:0																		
3120	USB	31:16	1:16 Indexed by the same bits in USBIE2CSR0																		
<u> </u>	EZCORU	15:0	5:0 0000																		
3124	USB F2CSR1	31:16	4						Inde	exed by the	same bits in U	SBIE2CSR1							0000		
	LZCORI	15:0		Denote :		1	Deseturi		- to be seen at 1										0000		
Leger Note	 yend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Device mode. 																				

2: 3: 4:

Host mode.

Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0). Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24	DMAADDR<31:24>										
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	DMAADDR<23:16>										
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10.0	DMAADDR<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0			
7.0	DMAADDR<7:0>										

REGISTER 11-22: USBDMAXA: USB DMA CHANNEL 'x' MEMORY ADDRESS REGISTER ('x' = 1-8)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMAADDR<31:0>: DMA Memory Address bits

This register identifies the current memory address of the corresponding DMA channel. The initial memory address written to this register during initialization must have a value such that its modulo 4 value is equal to '0'. The lower two bits of this register are read only and cannot be set by software. As the DMA transfer progresses, the memory address will increment as bytes are transferred.

REGISTE	ER 11-23: l	JSBDMAxN:	: USB DMA	CHANNEL	'x' COUNT I	REGISTER (('X' = 1-8)	
Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit
Danas	24/22/45/7	20/22/4 4/0	20/24/42/5	20/20/42/4	07/40/44/0	00/40/40/0	05/47/0/4	04/40/

Range	31/23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0			
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24	DMACOUNT<31:24>										
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	DMACOUNT<23:16>										
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15.0	DMACOUNT<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0	DMACOUNT<7:0>										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMACOUNT<31:0>: DMA Transfer Count bits

This register identifies the current DMA count of the transfer. Software will set the initial count of the transfer which identifies the entire transfer length. As the count progresses this count is decremented as bytes are transferred.

TABLE 12-8: PORTD REGISTER MAP FOR 124-PIN AND 144-PIN DEVICES ONLY

ess										Bit	s								
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0300		31:16	—	-	—	-	—	—	—	_	—	—	-	-	—	—	—	—	0000
0000	ANGELD	15:0	ANSD15	ANSD14	—	—	—	—	—	—	—	—	—	_	—	—	—	—	C000
0310	TRISD	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0010	IIIIOD	15:0	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	_	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FEFF
0320	PORTD	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0020	TORTE	15:0	RD15	RD14	RD13	RD12	RD11	RD10	RD9	_	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
0330	I ATD	31:16	_	-	—	_	—	—	—	_	—	—	-	-	—	—	—	—	0000
	0.10	15:0	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	_	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
0340	ODCD	31:16		_	—	_	_	_	—	—	—	—	—	_	_	—	—	—	0000
		15:0	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	—	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000
0350	CNPUD	31:16		_	—	_	_	_	—	—	—	—	—	_	_	—	—	—	0000
		15:0	CNPUD15	CNPUD14	CNPUD13	CNPUD12	CNPUD11	CNPUD10	CNPUD9	—	CNPUD7	CNPUD6	CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUD0	0000
0360	CNPDD	31:16		—	—	—		—	—	—	—	—	—	—	—	—	—	—	0000
	-	15:0	CNPDD15	CNPDD14	CNPDD13	CNPDD12	CNPDD11	CNPDD10	CNPDD9	_	CNPDD7	CNPDD6	CNPDD5	CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	0000
0070	ONOOND	31:16	_	_	_	_		_	_	_	_		_	_	_	_	_	_	0000
0370	CNCOND	15:0	ON	-	—		EDGE DETECT	—	—	—	—	—			—	—	—	—	0000
0380		31:16	—	-	—	—	_	—	—	—	—	—	—	-	—	—	—	—	0000
0300	CINEIND	15:0	CNEND15	CNEND14	CNEND13	CNEND12	CNEND11	CNEND10	CNEND9	_	CNEND7	CNEND6	CNEND5	CNEND4	CNEND3	CNEND2	CNEND1	CNEND0	0000
		31:16	_		_		_	_	_	_	_	_			_	-	_	-	0000
0390	CNSTATD	15:0	CN STATD15	CN STATD14	CN STATD13	CN STATD12	CN STATD11	CN STATD10	CN STATD9	—	CN STATD7	CN STATD6	CN STATD5	CN STATD4	CN STATD3	CN STATD2	CN STATD1	CN STATD0	0000
0240		31:16	—	—	—	—	_	—		_	_	—	_	_	_	_	_	—	0000
03A0	CININED	15:0	CNNED15	CNNED14	CNNED13	CNNED12	CNNED11	CNNED10	CNNED9	—	CNNED7	CNNED6	CNNED5	CNNED4	CNNED3	CNNED2	CNNED1	CNNED0	0000
0200		31:16	—	—	—	—	_	—		_	_	—	_	_	_	_	_	—	0000
0360	CINFU	15:0	CNFD15	CNFD14	CNFD13	CNFD12	CNFD11	CNFD10	CNFD9	_	CNFD7	CNFD6	CNFD5	CNFD4	CNFD3	CNFD2	CNFD1	CNFD0	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information. Note 1:

15.0 DEADMAN TIMER (DMT)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The primary function of the Deadman Timer (DMT) is to reset the processor in the event of a software malfunction. The DMT is a free-running instruction fetch timer, which is clocked whenever an instruction fetch occurs until a count match occurs. Instructions are not fetched when the processor is in Sleep mode. The DMT consists of a 32-bit counter with a time-out count match value as specified by the DMTCNT<3:0> bits in the DEVCFG1 Configuration register.

A Deadman Timer is typically used in mission critical and safety critical applications, where any single failure of the software functionality and sequencing must be detected.

Figure 15-1 shows a block diagram of the Deadman Timer module.

FIGURE 15-1: DEADMAN TIMER BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24	INIT1SCHECK INIT1COUNT<1:0>							INIT1TYPE<1:0>			
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	INIT1CMD3<7:0> ⁽¹⁾										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	INIT1CMD2<7:0> ⁽¹⁾										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	INIT1CMD1<7:0> ⁽¹⁾										

REGISTER 20-25: SQI1XCON3: SQI XIP CONTROL REGISTER 3

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

- bit 28 INIT1SCHECK: Flash Initialization 1 Command Status Check bit
 - 1 = Check the status after executing the INIT1 command
 - 0 = Do not check the status

bit 27-26 INIT1COUNT<1:0>: Flash Initialization 1 Command Count bits

- 11 = INIT1CMD1, INIT1CMD2, and INIT1CMD3 are sent
- 10 = INIT1CMD1 and INIT1CMD2 are sent, but INIT1CMD3 is still pending
- 01 = INIT1CMD1 is sent, but INIT1CMD2 and INIT1CMD3 are still pending
- 00 = No commands are sent

bit 25-24 INIT1TYPE<1:0>: Flash Initialization 1 Command Type bits

- 11 = Reserved
- 10 = INIT1 commands are sent in Quad Lane mode
- 01 = INIT1 commands are sent in Dual Lane mode
- 00 = INIT1 commands are sent in Single Lane mode
- bit 24-16 **INIT1CMD3<7:0>:** Flash Initialization Command 3 bits⁽¹⁾ Third command of the Flash initialization.
- bit 15-8 **INIT1CMD2<7:0>:** Flash Initialization Command 2 bits⁽¹⁾ Second command of the Flash initialization.
- bit 7-0 **INIT1CMD1<7:0>:** Flash Initialization Command 1 bits⁽¹⁾ First command of the Flash initialization.
- **Note 1:** INIT1CMD1 can be WEN and INIT1CMD2 can be SECTOR UNPROTECT.

Note: Some Flash devices require Write Enable and Sector Unprotect commands before read/write operations and this register is useful in working with those Flash types (XIP mode only)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	-	_	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—	—		—			—
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
15:8	ON	—	SIDL	IREN	RTSMD	_	UEN<	1:0> ⁽¹⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL	<1:0>	STSEL

REGISTER 22-1: UxMODE: UARTx MODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: UARTx Enable bit
 - 1 = UARTx is enabled. UARTx pins are controlled by UARTx as defined by UEN<1:0> and UTXEN control bits
 - UARTx is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx and LATx registers; UARTx power consumption is minimal
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue operation when device enters Idle mode
 - 0 = Continue operation in Idle mode
- bit 12 IREN: IrDA Encoder and Decoder Enable bit
 - 1 = IrDA is enabled
 - 0 = IrDA is disabled
- bit 11 RTSMD: Mode Selection for UxRTS Pin bit
 - $1 = \overline{\text{UxRTS}}$ pin is in Simplex mode
 - $0 = \overline{\text{UxRTS}}$ pin is in Flow Control mode
- bit 10 Unimplemented: Read as '0'

bit 9-8 UEN<1:0>: UARTx Enable bits⁽¹⁾

- 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
- 10 = UxTX, UxRX, $\overline{\text{UxCTS}}$ and $\overline{\text{UxRTS}}$ pins are enabled and used
- 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
- 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
- bit 7 WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
 - 1 = Wake-up is enabled
 - 0 = Wake-up is disabled
- bit 6 LPBACK: UARTx Loopback Mode Select bit
 - 1 = Loopback mode is enabled
 - 0 = Loopback mode is disabled
- Note 1: These bits are present for legacy compatibility, and are superseded by PPS functionality on these devices. For additional information, see Section 12.4 "Peripheral Pin Select (PPS)".

FIGURE 26-4: FORMAT OF BD_SRCADDR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31-24		BD_SCRADDR<31:24>						
23-16				BD_SCRAD	DR<23:16>			
15-8		BD_SCRADDR<15:8>						
7-0				BD_SCRA	DDR<7:0>			

bit 31-0 BD_SCRADDR: Buffer Source Address

The source address of the buffer that needs to be passed through the PE-CRDMA for encryption or authentication. This address must be on a 32-bit boundary.

FIGURE 26-5: FORMAT OF BD_DSTADDR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31-24		BD_DSTADDR<31:24>						
23-16				BD_DSTAD	DR<23:16>			
15-8		BD_DSTADDR<15:8>						
7-0				BD_DSTAI	DDR<7:0>			

bit 31-0 BD_DSTADDR: Buffer Destination Address

The destination address of the buffer that needs to be passed through the PE-CRDMA for encryption or authentication. This address must be on a 32-bit boundary.

FIGURE 26-6: FORMAT OF BD_NXTADDR

Range 31/2	23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	ыт 27/19/11/3	ыт 26/18/10/2	ыт 25/17/9/1	ыт 24/16/8/0
31-24	BD_NXTADDR<31:24>							
23-16	BD_NXTADDR<23:16>							
15-8	BD_NXTADDR<15:8>							
7-0	BD_NXTADDR<7:0>							

bit 31-0 **BD_NXTADDR:** Next BD Pointer Address Has Next Buffer Descriptor The next buffer can be a next segment of the previous buffer or a new packet.

Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R-0, HS, HC							
31:24	EIRDY31 ⁽¹⁾	EIRDY30 ⁽¹⁾	EIRDY29 ⁽¹⁾	EIRDY28 ⁽¹⁾	EIRDY27 ⁽¹⁾	EIRDY26 ⁽¹⁾	EIRDY25 ⁽¹⁾	EIRDY24 ⁽¹⁾
00.40	R-0, HS, HC							
23:16	EIRDY23 ⁽¹⁾	EIRDY22 ⁽¹⁾	EIRDY21 ⁽¹⁾	EIRDY20 ⁽¹⁾	EIRDY19 ⁽¹⁾	EIRDY18	EIRDY17	EIRDY16
45.0	R-0, HS, HC							
15:8	EIRDY15	EIRDY14	EIRDY13	EIRDY12	EIRDY11	EIRDY10	EIRDY9	EIRDY8
7.0	R-0, HS, HC							
7:0	EIRDY7	EIRDY6	EIRDY5	EIRDY4	EIRDY3	EIRDY2	EIRDY1	EIRDY0

REGISTER 28-30: ADCEISTAT1: ADC EARLY INTERRUPT STATUS REGISTER 1

Legend:	HS = Hardware Set	HC = Hardware Cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 EIRDY31:EIRDY0: Early Interrupt for Corresponding Analog Input Ready bits

- 1 = This bit is set when the early interrupt event occurs for the specified analog input. An interrupt will be generated if early interrupts are enabled in the ADCEIEN1 register. For the Class 1 analog inputs, this bit will set as per the configuration of the ADCEIS<2:0> bits in the ADCXTIME register. For the shared ADC module, this bit will be set as per the configuration of the ADCEIS<2:0> bits in the ADCCIS<2:0> bits in the ADCCON2 register.
- 0 = Interrupts are disabled
- Note 1: This bit is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	FLTEN3	MSEL	3<1:0>		F	SEL3<4:0>		
22.46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	FLTEN2	MSEL2<1:0>		FSEL2<4:0>				
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	FLTEN1	MSEL	1<1:0>	FSEL1<4:0>				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	FLTEN0	MSEL	0<1:0>			SEL0<4:0>		

REGISTER 29-10: CIFLTCON0: CAN FILTER CONTROL REGISTER 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN3: Filter 3 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL3<1:0>: Filter 3 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
bit 28-24	FSEL3<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
hit 22	ELTEN2: Filter 2 Enable bit
DILZO	FLIENZ. FILLEI Z ETIADIE DIL
DIL 23	1 = Filter is enabled
Dit 23	1 = Filter is enabled 0 = Filter is disabled
bit 22-21	1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits
bit 22-21	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected</pre>
bit 22-21	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected</pre>
bit 22-21	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected</pre>
bit 22-21	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected ESEL 2<1:0>: ELEO Selection bits</pre>
bit 22-21 bit 20-16	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in EIEO buffer 31</pre>
bit 22-21 bit 20-16	<pre>1 = Filter is enabled 0 = Filter is enabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30</pre>
bit 22-21 bit 20-16	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30</pre>
bit 22-21 bit 20-16	<pre>1 = Filter is enabled 0 = Filter is enabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 •</pre>
bit 22-21 bit 20-16	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 .</pre>
bit 22-21 bit 20-16	<pre>1 = Filter is enabled 1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30</pre>
bit 22-21 bit 20-16	<pre>1 = Filter is enabled 0 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30</pre>

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
10.0	—	—	—	—	—	F	XBUFSZ<6:	4>
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
7.0		RXBUF	SZ<3:0>		_	_	_	_

REGISTER 30-2: ETHCON2: ETHERNET CONTROLLER CONTROL REGISTER 2

Legend:

Logonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-11 Unimplemented: Read as '0'

bit 10-4	RXBUFSZ<6:0>: RX Data Buffer Size for All RX Descriptors (in 16-byte increments) bits
	1111111 = RX data Buffer size for descriptors is 2032 bytes
	•
	•
	•
	1100000 = RX data Buffer size for descriptors is 1536 bytes
	•
	•
	•
	0000011 = RX data Buffer size for descriptors is 48 bytes
	0000010 = RX data Buffer size for descriptors is 32 bytes
	0000001 = RX data Buffer size for descriptors is 16 bytes
	0000000 = Reserved
bit 3-0	Unimplemented: Read as '0'
Note 1:	This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0.

33.3.1 CONTROLLING CONFIGURATION CHANGES

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32MZ EF devices include two features to prevent alterations to enabled or disabled peripherals:

- Control register lock sequence
- Configuration bit select lock

33.3.1.1 Control Register Lock

Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the PMDLOCK Configuration bit (CFGCON<12>). Setting PMDLOCK prevents writes to the control registers; clearing PMDLOCK allows writes.

To set or clear PMDLOCK, an unlock sequence must be executed. Refer to **Section 42. "Oscillators with Enhanced PLL"** (DS60001250) in the *"PIC32 Family Reference Manual"* for details.

33.3.1.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The PMDL1WAY Configuration bit (DEVCFG3<28>) blocks the PMDLOCK bit from being cleared after it has been set once. If PMDLOCK remains set, the register unlock procedure does not execute, and the PPS control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset. NOTES:

37.1 DC Characteristics

TABLE 37-1: OPERATING MIPS VS. VOLTAGE

Characteristic	VDD Range	Temp. Range	Max. Frequency	2	
	(In Volts) (Note 1)	(in °C)	PIC32MZ EF Devices	Comment	
DC5	2.1V-3.6V	-40°C to +85°C	200 MHz		

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is guaranteed, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 37-5 for BOR values.

TABLE 37-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Typical	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD - S IOH)	PD	PINT + PI/0		w	
I/O Pin Power Dissipation: PI/O = S (({VDD – VOH} x IOH) + S (VOL x IOL))					
Maximum Allowed Power Dissipation		(TJ — TA)/θJA			W

TABLE 37-3: THERMAL PACKAGING CHARACTERISTICS

Characteristics	Symbol	Typical	Max.	Unit	Notes
Package Thermal Resistance, 64-pin QFN (9x9x0.9 mm)	θJA	28	—	°C/W	1
Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)	θJA	49		°C/W	1
Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)	θJA	43		°C/W	1
Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)	θJA	40	—	°C/W	1
Package Thermal Resistance, 124-pin VTLA (9x9x0.9 mm)	θJA	30	—	°C/W	1
Package Thermal Resistance, 144-pin TQFP (16x16x1 mm)	θJA	42		°C/W	1
Package Thermal Resistance, 144-pin LQFP (20x20x1.4 mm)	θJA	39	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

FIGURE 37-20: **CANX MODULE I/O TIMING CHARACTERISTICS**

TABLE 37-37: CANX MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
CA10	TioF	Port Output Fall Time		—	_	ns	See parameter DO32
CA11	TioR	Port Output Rise Time	_	—		ns	See parameter DO31
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter	700			ns	_

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.