

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512efk100-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber						
Pin Name	QFN/ TOEP VTLA T		144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description			
			•		PO	RTA	·		
RA0	_	17	A11	22	I/O	ST	PORTA is a bidirectional I/O port		
RA1	—	38	B21	56	I/O	ST			
RA2	—	59	A41	85	I/O	ST			
RA3	—	60	B34	86	I/O	ST			
RA4	—	61	A42	87	I/O	ST			
RA5	—	2	B1	2	I/O	ST			
RA6	—	89	A61	129	I/O	ST			
RA7	—	90	B51	130	I/O	ST			
RA9	—	28	B15	39	I/O	ST			
RA10	_	29	A20	40	I/O	ST]		
RA14	_	66	B37	95	I/O	ST			
RA15	_	67	A45	96	I/O	ST			
PORTB									
RB0	16	25	A18	36	I/O	ST	PORTB is a bidirectional I/O port		
RB1	15	24	A17	35	I/O	ST			
RB2	14	23	A16	34	I/O	ST			
RB3	13	22	A14	31	I/O	ST			
RB4	12	21	A13	26	I/O	ST			
RB5	11	20	B11	25	I/O	ST			
RB6	17	26	B14	37	I/O	ST			
RB7	18	27	A19	38	I/O	ST			
RB8	21	32	B18	47	I/O	ST			
RB9	22	33	A23	48	I/O	ST			
RB10	23	34	B19	49	I/O	ST	_		
RB11	24	35	A24	50	I/O	ST	_		
RB12	27	41	A27	59	I/O	ST	_		
RB13	28	42	B23	60	I/O	ST	-		
RB14	29	43	A28	61	I/O	ST	-		
RB15	30	44	B24	62	I/O	ST			
D O1		-				RTC			
RC1	—	6	B3	6	I/O	ST	PORTC is a bidirectional I/O port		
RC2		7	A6	11	I/O	ST	4		
RC3		8	B5	12	I/O	ST	4		
RC4	-	9	A7	13	I/O	ST	4		
RC12	31	49	B28	71	I/O	ST	4		
RC13	47	72	B41	105	I/O	ST	4		
RC14	48	73	A49	106	I/O	ST	4		
RC15 Legend:	32	50 MOS-comp	A33	72	I/O	ST	Analog input P = Power		

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select I = Input

		Pin Nu	mber							
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description			
PORTK										
RK0	—	_	_	19	I/O	ST	PORTK is a bidirectional I/O port			
RK1	_	—		51	I/O	ST				
RK2	—	_		52	I/O	ST				
RK3	—	_		53	I/O	ST				
RK4	_	—		92	I/O	ST				
RK5	_	—		93	I/O	ST				
RK6	—	—		94	I/O	ST]			
RK7	—	—	—	126	I/O	ST]			
Legend:	CMOS = C	MOS-comp	atible input	t or output		Analog =	Analog input P = Power			

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS (CONTINUED)

d: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer Analog = Analog input O = Output PPS = Peripheral Pin Select P = Power I = Input

i – mput

3.7 M-Class Core Configuration

Register 3-1 through Register 3-4 show the default configuration of the M-Class core, which is included on the PIC32MZ EF family of devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	r-1	U-0	U-0	U-0	U-0	U-0	U-0	R-0	
31:24		—	—	_	—		—	ISP	
22:46	R-0	R-0	R-1	R-0	U-0	R-1	R-0	R-0	
23:16	DSP	UDI	SB	MDU	—	MM<1:0>		BM	
45.0	R-0	R-0	R-0	R-0	R-0	R-1	R-0	R-0	
15:8	BE	AT<	1:0>		AR<2:0>			MT<2:1>	
7.0	R-1	U-0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-0	
7:0	MT<0>		_	_	_		K0<2:0>		

REGISTER 3-1: CONFIG: CONFIGURATION REGISTER; CP0 REGISTER 16, SELECT 0

Legend:	r = Reserved bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is unk$		

bit 31 Reserved: This bit is hardwired to '1' to indicate the presence of the Config1 register. bit 30-25 Unimplemented: Read as '0' bit 24 ISP: Instruction Scratch Pad RAM bit 0 = Instruction Scratch Pad RAM is not implemented bit 23 DSP: Data Scratch Pad RAM is not implemented bit 24 UDI: User-defined bit 0 = CorExtend User-Defined Instructions are not implemented bit 21 SB: SimpleBE bit 1 = Only Simple Byte Enables are allowed on the internal bus interface bit 20 MDU: Multiply/Divide Unit bit 0 = Fast, high-performance MDU bit 19 Unimplemented: Read as '0' bit 18-17 MM-1:00: Warge Mode bits 10 = Merging is allowed bit 15 BE: Endian Mode bit 0 = Burst order is sequential bit 14-3 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9: VIT-2:0>: MMUU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 2- Ko2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 002 = Cacheable, non-coherent, write-back, write allocate 003 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 mapped to 010.		
bit 24 ISP: Instruction Scratch Pad RAM bit 0 = Instruction Scratch Pad RAM is not implemented bit 23 DSP: Data Scratch Pad RAM is not implemented bit 22 UDI: User-defined bit 0 = CorExtend User-Defined Instructions are not implemented bit 21 SB: SimpleBE bit 1 = Only Simple Byte Enables are allowed on the internal bus interface bit 20 MDU: Multiply/Divide Unit bit 0 = Fast, high-performance MDU bit 19 Unimplemented: Read as '0' bit 18-17 MM<1:0>: Merge Mode bits 10 = Merging is allowed bit 16 BM: Burst Mode bit 0 = Burst order is sequential bit 15 BE: Endian Mode bit 0 = Little-endian bit 14-13 AT<:0>: Architecture Type bits 001 = MIPS32 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 6-3 Unimplemented: Read as '0' bit 2-0 Ko<2:0>: Kseg0 Coherency Algorithm bits 01 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 011 = Cacheable, non-coherent, write-through, write allocate 010 = Cacheable, non-coherent, write	bit 31	Reserved: This bit is hardwired to '1' to indicate the presence of the Config1 register.
0 = Instruction Scratch Pad RAM is not implemented bit 23 DSP: Data Scratch Pad RAM bit 0 = Data Scratch Pad RAM is not implemented bit 22 UDI: User-defined bit 0 = CorExtend User-Defined Instructions are not implemented bit 21 SB: SimpleBE bit 1 = Only Simple Byte Enables are allowed on the internal bus interface bit 20 MDU: Multiply/Divide Unit bit 0 = Fast, high-performance MDU bit 19 Unimplemented: Read as '0' bit 18-17 MM<1:0>: Merging is allowed bit 16 BW: Burst Mode bit 0 = Burst order is sequential bit 16 BE: Endian Mode bit 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 001 = MIPS32 bit 14-13 AT<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 97 MT<2:0>: MMU Type bits 001 = MClass MPU Microprocessor core uses a TLB-based MMU bit 2-0 KO<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-through, write allocate 010 = Uncached 010 = Cacheable, non-coherent, write-through, not write allocate 010 = Cacheable, non-coherent, write-thr	bit 30-25	Unimplemented: Read as '0'
 0 = Data Scratch Pad RAM is not implemented bit 22 UDI: User-defined bit 0 = CorExtend User-Defined Instructions are not implemented bit 21 SB: SimpleBE bit	bit 24	
 0 = CorExtend User-Defined Instructions are not implemented bit 21 SB: SimpleBE bit 1 = Only Simple Byte Enables are allowed on the internal bus interface bit 20 MDU: Multiply/Divide Unit bit 0 = Fast, high-performance MDU bit 19 Unimplemented: Read as '0' bit 18-17 MM<1:0>: Merging is allowed bit 18-17 MM<1:0>: Merge Mode bits 10 = Merging is allowed bit 16 BM: Burst Mode bit 0 = Burst order is sequential 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 2-0 KO<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, no write allocate 010 = Cachea	bit 23	
1 = Only Simple Byte Enables are allowed on the internal bus interface bit 20 MDU: Multiply/Divide Unit bit 0 = Fast, high-performance MDU bit 19 Unimplemented: Read as '0' bit 18-17 MM<1:0>: Merge Mode bits 10 = Merging is allowed bit 18 BM: Burst Mode bit 0 = Burst order is sequential bit 15 BE: Endian Mode bit 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = MIPS32 Release 2 bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 0102 = Uncached 011 = Cacheable, non-coherent, write-through, write allocate 0102 = Cacheable, non-coherent, write-through, write allocate 0103 = Cacheable, non-coherent, write-through, no write allocate 0104 = Cacheable, non-coherent, write-through, no write allocate 0105 = Cacheable, non-coherent, write-through, no write allocate 0105 = Cacheable, non-coherent, write-through, no write allocate 0106 = Ca	bit 22	
 0 = Fast, high-performance MDU bit 19 Unimplemented: Read as '0' bit 18-17 MM<1:0>: Merge Mode bits 10 = Merging is allowed bit 16 BM: Burst Mode bit 0 = Burst order is sequential bit 15 BE: Endian Mode bit 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 6-3 Unimplemented: Read as '0' bit 2-0 KO<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-through, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 	bit 21	
bit 18-17 MM-1:0>: Merge Mode bits 10 = Merging is allowed bit 16 BM: Burst Mode bit 0 = Burst order is sequential bit 15 BE: Endian Mode bit 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = MIPS32 Release 2 bit 6-3 Unimplemented: Read as '0' bit 6-3 Unimplemented: Read as '0' bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 001 = Cacheable, non-coherent, write-through, no write allocate 000 = Cacheable, non-coherent, write-through, no write allocate 001 = Cacheable, non-coherent, write-through, no write allocate 001 = Cacheable, non-coherent, write-through, no write allocate 000 = Cacheable, non-coherent, write-through, no write allocate 001 = Cacheable, non-coherent, write-through, no write allocate 000 = Cacheable, non-coherent, write-through, no write allocate <t< td=""><td>bit 20</td><td></td></t<>	bit 20	
10 = Merging is allowed bit 16 BM: Burst Mode bit 0 = Burst order is sequential bit 15 BE: Endian Mode bit 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, no write allocate 000	bit 19	Unimplemented: Read as '0'
 0 = Burst order is sequential bit 15 BE: Endian Mode bit 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 6-3 Unimplemented: Read as '0' bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 	bit 18-17	0
 0 = Little-endian bit 14-13 AT<1:0>: Architecture Type bits 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 6-3 Unimplemented: Read as '0' bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 	bit 16	
 00 = MIPS32 bit 12-10 AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 6-3 Unimplemented: Read as '0' bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 	bit 15	
 001 = MIPS32 Release 2 bit 9-7 MT<2:0>: MMU Type bits 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 6-3 Unimplemented: Read as '0' bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 	bit 14-13	
 001 = M-Class MPU Microprocessor core uses a TLB-based MMU bit 6-3 Unimplemented: Read as '0' bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 	bit 12-10	
bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111	bit 9-7	
 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111 	bit 6-3	Unimplemented: Read as '0'
000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111	bit 2-0	011 = Cacheable, non-coherent, write-back, write allocate
		000 = Cacheable, non-coherent, write-through, no write allocate All other values are not used and mapped to other values. 100, 101, and 110 are mapped to 010. 111

is

TABLE 4-17: SYSTEM BUS TARGET 9 REGISTER MAP

SSS											Bits								
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
A420		31:16	MULTI	—	—	—		CODE	<3:0>			—		—	—	—	—		0000
A420		15:0				INI	ΓID<7:0>					REGIO	N<3:0>		—	С	MD<2:0>		0000
A424	SBT9ELOG2	31:16			_	-	-	-	-	-		-		-	—	-	_		0000
A424	3B19ELOG2	15:0			_	-	-	-	-	-		-		-	—	-	GROU	P<1:0>	0000
A428	SBT9ECON	31:16			_	-	-	-	-	ERRP		-		-	—	-	_		0000
A420	SBISECON	15:0	_	—	—	—	_	—	—	_	_	_	_	_	—	_	—	-	0000
A430	0 SBT9ECLRS	31:16	_	_	—	—	—	—	—	—	_	—	—	—	—	—	—	_	0000
A430		15:0	_	_	—	—	—	—	—	—	_	—	—	—	—	—	—	CLEAR	0000
A438	SBT9ECLRM	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	_	—	_	0000
7430		15:0	_	—	—	—	—	_		—	—	_	—		_	_	—	CLEAR	0000
A440	SBT9REG0	31:16 BA						BA	SE<21:6>					-			xxxx		
/1440	OBTINEOU	15:0			BA	SE<5:0>			PRI				SIZE<4:0:	>		_	—	_	xxxx
A450	SBT9RD0	31:16	_	—	—	_	_	_		_			_		—	_	—	_	xxxx
/ 1400	OBTINE	15:0	_	—	—	_	_	_		_			_		GROUP3	GROUP2	GROUP1	GROUP0	xxxx
A458	SBT9WR0	31:16	_	—	—	_	_	_		_			_		—	_	—	_	xxxx
/100	OBIOMIN	15:0	_	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
A460	SBT9REG1	31:16								BA	SE<21:6>								xxxx
/100	OBTOREOT	15:0			BA	SE<5:0>			PRI	—			SIZE<4:0:	>		—	—	_	xxxx
A470	SBT9RD1	31:16	—	—	—	—	—	—	—	—	_	—	_	—	—	—	—		xxxx
	SETURET	15:0	—	—	—	—	—	—	—	—	_	—	_	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
A478	SBT9WR1	31:16	_	_	—	—	—	—	—	—	—	—	_	—	—	—	—	_	xxxx
	20100000	15:0		—	—	—	—	—	—	—		_	_	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

REGISTER 11-11: USBIENCSR3: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 3 (ENDPOINT 1-7)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit Bit 29/21/13/5 28/20/12/4		Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x			
31:24		RXFIFC)SZ<3:0>			TXFIFO	SZ<3:0>				
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	—	—	—	—			
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10.0	RXINTERV<7:0>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	SPEEI	D<1:0>	PROTO	COL<1:0>	TEP<3:0>						

Leaend:

Logena.							
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-28 RXFIFOSZ<3:0>: Receive FIFO Size bits

	1111 = Reserved 1110 = Reserved 1101 = 8192 bytes
	1101 = 4096 bytes
	•
	•
	•
	0011 = 8 bytes 0010 = Reserved 0001 = Reserved 0000 = Reserved or endpoint has not been configured
	This register only has this interpretation when dynamic sizing is not selected. It is not valid where dynamic FIFO sizing is used.
bit 27-24	TXFIFOSZ<3:0>: Transmit FIFO Size bits 1111 = Reserved 1110 = Reserved 1101 = 8192 bytes 1100 = 4096 bytes
	•
	•
	•
	0011 = 8 bytes 0010 = Reserved 0001 = Reserved 0000 = Reserved or endpoint has not been configured

This register only has this interpretation when dynamic sizing is not selected. It is not valid where dynamic

FIFO sizing is used.

bit 23-16 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
31:24	DMAADDR<31:24>														
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
23:16	DMAADDR<23:16>														
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
15:8	DMAADDR<15:8>														
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0							
7:0		•	•	DMAAD	DMAADDR<7:0>										

REGISTER 11-22: USBDMAXA: USB DMA CHANNEL 'x' MEMORY ADDRESS REGISTER ('x' = 1-8)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMAADDR<31:0>: DMA Memory Address bits

This register identifies the current memory address of the corresponding DMA channel. The initial memory address written to this register during initialization must have a value such that its modulo 4 value is equal to '0'. The lower two bits of this register are read only and cannot be set by software. As the DMA transfer progresses, the memory address will increment as bytes are transferred.

REGISTE	ER 11-23: U	USBDMAxN	: USB DMA	CHANNEL	'x' COUNT	REGISTER	('X' = 1-8)	
Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit
Danaa	24/22/4E/7	20/22/44/6	20/24/42/5	20/20/42/4	27/40/44/2	26/40/40/2	25/47/0/4	2 A / A C /0

Range	31/23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0			
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24		DMACOUNT<31:24>									
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	DMACOUNT<23:16>										
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10.0	DMACOUNT<15:8>										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0				DMACOL	JNT<7:0>						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMACOUNT<31:0>: DMA Transfer Count bits

This register identifies the current DMA count of the transfer. Software will set the initial count of the transfer which identifies the entire transfer length. As the count progresses this count is decremented as bytes are transferred.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	_	—	_	_	-
00.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—		—	_		
45.0	R/W-y	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	—	—	_	—	_	_	_
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0		_		_	_	_		_

REGISTER 15-1: DMTCON: DEADMAN TIMER CONTROL REGISTER

Legend:			y = Value set from Configuration bits on POR		
	R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
	-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15 **ON:** Deadman Timer Module Enable bit⁽¹⁾

1 = Deadman Timer module is enabled

0 = Deadman Timer module is disabled

The reset value of this bit is determined by the setting of the FDMTEN bit (DEVCFG1<3>).

bit 13-0 Unimplemented: Read as '0'

Note 1: This bit only has control when FDMTEN (DEVCFG1<3>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—	_	_	_		—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		-		-	_			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	STEP1<7:0>							
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0		_			_	_		_

REGISTER 15-2: DMTPRECLR: DEADMAN TIMER PRECLEAR REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-8	STEP1<7:0>: Preclear Enable bits
	01000000 = Enables the Deadman Timer Preclear (Step 1)
	All other write patterns = Set BAD1 flag.
	These bits are cleared when a DMT reset event occurs. STEP1<7:0> is also cleared if the
	STEP2<7:0> bits are loaded with the correct value in the correct sequence.
bit 7-0	Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	_	_	_	-	_		—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	-	_		—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	-	_		—
7.0	R-0, HC, HS	R-0, HC, HS	R-0, HC, HS	U-0	U-0	U-0	U-0	R-0, HC, HS
7:0	BAD1	BAD2	DMTEVENT	_		_	_	WINOPN

REGISTER 15-4: DMTSTAT: DEADMAN TIMER STATUS REGISTER

Legend:	HC = Hardware Cleared	HS = Hardware Set	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	'0'
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is$	is unknown

bit 31-8	Unimplemented: Read as '0'
bit 7	BAD1: Bad STEP1<7:0> Value Detect bit
	1 = Incorrect STEP1<7:0> value was detected
	0 = Incorrect STEP1<7:0> value was not detected
bit 6	BAD2: Bad STEP2<7:0> Value Detect bit
	1 = Incorrect STEP2<7:0> value was detected
	0 = Incorrect STEP2<7:0> value was not detected
bit 5	DMTEVENT: Deadman Timer Event bit
	1 = Deadman timer event was detected (counter expired or bad STEP1<7:0> or STEP2<7:0> value was entered prior to counter increment)
	0 = Deadman timer even was not detected
bit 4-1	Unimplemented: Read as '0'
bit 0	WINOPN: Deadman Timer Clear Window bit
	1 = Deadman timer clear window is open
	0 = Deadman timer clear window is not open

NOTES:

REGIST	TER 23-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)
bit 7-6	CSF<1:0>: Chip Select Function bits ⁽¹⁾
	11 = Reserved
	10 = PMCS1 and PMCS2 function as Chip Select
	01 = PMCS2 functions as Chip Select and PMCS1 functions as address bit 14 00 = PMCS1 and PMCS2 function as address bit 14 and address bit 15
64 C	
bit 5	ALP: Address Latch Polarity bit ⁽¹⁾
	 Active-high (PMALL and PMALH) Active-low (PMALL and PMALH)
bit 4	CS2P: Chip Select 2 Polarity bit ⁽¹⁾
	1 = Active-high (PMCS2)
	$0 = \text{Active-low}(\overline{\text{PMCS2}})$
bit 3	CS1P: Chip Select 1 Polarity bit ⁽¹⁾
	1 = Active-high (PMCS1)
	$0 = \text{Active-low}(\overline{PMCS1})$
bit 2	Unimplemented: Read as '0'
bit 1	WRSP: Write Strobe Polarity bit
	For Slave Modes and Master mode 2 (MODE<1:0> = 00,01,10):
	1 = Write strobe active-high (PMWR)
	0 = Write strobe active-low (PMWR)
	For Master mode 1 (MODE<1:0> = 11):
	1 = Enable strobe active-high (PMENB) 0 = Enable strobe active-low (PMENB)
bit 0	
DILU	RDSP: Read Strobe Polarity bit For Slave modes and Master mode 2 (MODE<1:0> = 00,01,10):
	1 = Read Strobe active-high (PMRD)
	$0 = \text{Read Strobe active-ling}(\underline{(\text{MRD})})$
	For Master mode 1 (MODE<1:0> = 11):
	1 = Read/write strobe active-high (PMRD/PMWR)
	0 = Read/write strobe active-low (PMRD/PMWR)

Note 1: These bits have no effect when their corresponding pins are used as address lines.

REGISTER 28-1: ADCCON1: ADC CONTROL REGISTER 1 (CONTINUED)

bit 3 STRGLVL: Scan Trigger High Level/Positive Edge Sensitivity bit

- 1 = Scan trigger is high level sensitive. Once STRIG mode is selected (TRGSRCx<4:0> in the ADCTRGx register), the scan trigger will continue for all selected analog inputs, until the STRIG option is removed.
- 0 = Scan trigger is positive edge sensitive. Once STRIG mode is selected (TRGSRCx<4:0> in the ADCTRGx register), only a single scan trigger will be generated, which will complete the scan of all selected analog inputs.
- bit 2-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC						
31:24		CVDDATA<15:8>							
23:16	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC						
23.10	CVDDATA<7:0>								
15.0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	
15:8		—	AINID<5:0>						
7.0	R/W-0	R/W-0	R-0, HS, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	ENDCMP	DCMPGIEN	DCMPED	IEBTWN	IEHIHI	IEHILO	IELOHI	IELOLO	

REGISTER 28-20: ADCCMPCON1: ADC DIGITAL COMPARATOR 1 CONTROL REGISTER

Legend:	HS = Hardware Set	HC = Hardware Cleared
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is unknown$

bit 31-16 CVDDATA<15:0>: CVD Data Status bits

In CVD mode, these bits obtain the CVD differential output data (subtraction of CVD positive and negative measurement), whenever a Digital Comparator interrupt is generated. The value in these bits is compliant with the FRACT bit (ADCCON1<23>) and is always signed.

bit 15-14 Unimplemented: Read as '0'

bit 13-8 AINID<5:0>: Digital Comparator 0 Analog Input Identification (ID) bits

When a digital comparator event occurs (DCMPED = 1), these bits identify the analog input being monitored by Digital Comparator 0.

Note: In normal ADC mode, only analog inputs <31:0> can be processed by the Digital Comparator 0. The Digital Comparator 0 also supports the CVD mode, in which all Class 2 and Class 3 analog inputs may be stored in the AINID<5:0> bits.

111111 = Reserved
•
101101 = Reserved
101100 = AN44 is being monitored
101001 = AN43 is being monitored
•
000001 = AN1 is being monitored
000000 = ANO is being monitored
ENDCMP: Digital Comparator 0 Enable bit
1 = Digital Comparator 0 is enabled
0 = Digital Comparator 0 is not enabled, and the DCMPED status bit (ADCCMP0CON<5>) is cleared
DCMPGIEN: Digital Comparator 0 Global Interrupt Enable bit
1 = A Digital Comparator 0 interrupt is generated when the DCMPED status bit (ADCCMP0CON<5>) is set 0 = A Digital Comparator 0 interrupt is disabled
DCMPED: Digital Comparator 0 "Output True" Event Status bit
The logical conditions under which the digital comparator gets "True" are defined by the IEBTWN, IEHIHI,
IEHILO, IELOHI, and IELOLO bits.
Note: This bit is cleared by reading the AINID<5:0> bits or by disabling the Digital Comparator module (by setting ENDCMP to '0').
1 = Digital Comparator 0 output true event has occurred (output of Comparator is '1')
0 = Digital Comparator 0 output is false (output of comparator is '0')
IEBTWN: Between Low/High Digital Comparator 0 Event bit
1 = Generate a digital comparator event when DCMPLO<15:0> \leq DATA<31:0> < DCMPHI<15:0>

Bit Range	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	
	31/23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0	
31:24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	
	—				ADCEIS<2:0			S<1:0>	
23:16	U-0	R/W-0	R/W-0	R/W-0	R/W-0 ADCDIV<6:0:	R/W-0	R/W-0	R/W-0	
45.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
15:8	8 <u> </u>								
7:0	R/W-0 R/W-0 <th< td=""></th<>								
				SAMC	<7:0>				
Legend:									
R = Readal	ole bit	W = Writable	e bit	U = Unimple	mented bit, r	ead as '0'			
-n = Value a	at POR	'1' = Bit is se		'0' = Bit is cl		x = Bit is un	known		
bit 31-29	-	ented: Read a							
bit 28-26		0>: ADCx Ea							
		data ready inte							
	110 = 1 he c	data ready inte	errupt is gene	rated 7 ADC	clocks prior to	o the end of c	conversion		
	•								
	•								
		lata ready inte							
		data ready inte			-				
		All options are							
		ADCxTIME<2							
bit 25-24		o '101' are va : 0>: ADCx Re			on of 6-bit, of	Duons from 0	00 10 011 2	are valid.	
011 20-24			Solution Sele						
	11 = 12 bits 10 = 10 bits								
	01 = 8 bits								
	00 = 6 bits								
	Note:	Changing the	resolution of	the ADC does	s not shift the	result in the	corresponding		
		register. The result will still occupy 12 bits, with the corresponding lower unused bits set to '0'. For example, a resolution of 6 bits will result in ADCDATAx<5:0> being set to '0', and							
		ADCDATAx<1					0		
bit 23	Unimpleme	nted: Read a	IS '0'						
bit 22-16	ADCDIV<6:	0>: ADCx Clo	ock Divisor bit	S					
	These bits divide the ADC control clock with period To to generate the clock for ADCx (TADx).								
	1111111 =	254 * TQ = TA	DX						
	:								
	•	0 + T - T							
		6 * TQ = TADx							
	0000010 = 4 * TQ = TADx 0000001 = 2 * TQ = TADx								
	0000001 = 0000000 = 0000000000000000000		·						
bit 15-10		ented: Read a	IS '0'						
bit 9-0	-	>: ADCx Sam							
		r = period of th		rsion clock fo	r the dedicate	ed ADC contr	olled by the A	DCDIV<6:0	
		.1 = 1025 TAD	x						
	•								
	000000000								

0000000000 = 2 TADx

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	FLTEN3	MSEL3<1:0>		FSEL3<4:0>					
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	FLTEN2	MSEL2<1:0>		FSEL2<4:0>					
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	FLTEN1	MSEL1<1:0>		FSEL1<4:0>					
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	FLTEN0	MSEL	0<1:0>		F	SEL0<4:0>			

REGISTER 29-10: CIFLTCON0: CAN FILTER CONTROL REGISTER 0

Legend:

R = Readable bit	Readable bit W = Writable bit		ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN3: Filter 3 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL3<1:0>: Filter 3 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 28-24	FSEL3<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN2: Filter 2 Enable bit
DIL 23	FLIENZ: Filler 2 Enable bit
DIL 23	1 = Filter is enabled
DIL 23	
bit 22-21	1 = Filter is enabled
	 1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected
	 1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected
	 1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected
bit 22-21	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected</pre>
	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits</pre>
bit 22-21	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31</pre>
bit 22-21	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits</pre>
bit 22-21	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31</pre>
bit 22-21	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31</pre>
bit 22-21	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 .</pre>
bit 22-21	<pre>1 = Filter is enabled 0 = Filter is disabled MSEL2<1:0>: Filter 2 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected FSEL2<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31</pre>

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 30-3: ETHTXST: ETHERNET CONTROLLER TX PACKET DESCRIPTOR START ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24				TXSTADD	R<31:24>			
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10								
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	5:8 TXSTADDR<15:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
7.0	TXSTADDR<7:2>						_	_

Legend:

Legenu.				
R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-2 **TXSTADDR<31:2>:** Starting Address of First Transmit Descriptor bits This register should not be written while any transmit, receive or DMA operations are in progress. This address must be 4-byte aligned (bits 1-0 must be '00').

bit 1-0 Unimplemented: Read as '0'

Note 1: This register is only used for TX operations.
 2: This register will be updated by hardware with the last descriptor used by the last successfully transmitted packet.

REGISTER 30-4: ETHRXST: ETHERNET CONTROLLER RX PACKET DESCRIPTOR START ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	4 RXSTADDR<31:24>							
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10								
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	15:8 RXSTADDR<15:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
7.0	RXSTADDR<7:2>							—

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-2 **RXSTADDR<31:2>:** Starting Address of First Receive Descriptor bits

This register should not be written while any transmit, receive or DMA operations are in progress. This address must be 4-byte aligned (bits 1-0 must be '00').

bit 1-0 Unimplemented: Read as '0'

Note 1: This register is only used for RX operations.
 2: This register will be updated by hardware with the last descriptor used by the last successfully transmitted packet.

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments		
D300	VIOFF	Input Offset Voltage	_	±10		mV	AVDD = VDD, AVSS = VSS		
D301	VICM	Input Common Mode Voltage	0	—	Vdd	V	AVDD = VDD, AVSS = VSS (Note 2)		
D302	CMRR	Common Mode Rejection Ratio	55	—		dB	Max VICM = (VDD – 1)V (Note 2, 4)		
D303	TRESP	Response Time		150		ns	AVDD = VDD, AVSS = VSS (Notes 1, 2)		
D304	ON2ov	Comparator Enabled to Out- put Valid	—	—	10	μs	Comparator module is configured before setting the comparator ON bit (Note 2)		
D305	IVref	Internal Voltage Reference	1.194	1.2	1.206	V	—		

TABLE 37-14: COMPARATOR SPECIFICATIONS

Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

- 2: These parameters are characterized but not tested.
- **3:** The Comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.
- 4: CMRR measurement characterized with a 1 MΩ resistor in parallel with a 25 pF capacitor to Vss.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 3): 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments	
D312	TSET	Internal 4-bit DAC Comparator Reference Settling time	_		10	μs	See Note 1	
D313	DACREFH	CVREF Input Voltage Reference Range	AVss	_	AVdd	V	CVRSRC with CVRSS = 0	
			VREF-		VREF+	V	CVRSRC with CVRSS = 1	
D314	DVREF	CVREF Programmable Output Range	0		0.625 x DACREFH	V	0 to 0.625 DACREFH with DACREFH/24 step size	
			0.25 x DACREFH		0.719 x DACREFH	V	0.25 x DACREFH to 0.719 DACREFH with DACREFH/32 step size	
D315	DACRES	Resolution	—		DACREFH/24		CVRCON <cvrr> = 1</cvrr>	
					DACREFH/32		CVRCON <cvrr> = 0</cvrr>	
D316	DACACC	Absolute Accuracy ⁽²⁾	—	_	1/4	LSB	DACREFH/24, CVRCON <cvrr> = 1</cvrr>	
			—	_	1/2	LSB	DACREFH/32, CVRCON <cvrr> = 0</cvrr>	

Note 1: Settling time was measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but is not tested in manufacturing.

2: These parameters are characterized but not tested.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param. No.	Symbol	Characteris	stics ⁽²⁾	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
DO31	TioR	Port Output Rise Tin I/O Pins: 4x Source Driver Pins RA3, RA9, RA10, RA RB0-RB2, RB4, RB6- RB13	- 14, RA15	_	_	9.5	ns	Cload = 50 pF
		RC12-RC15 RD0, RD6-RD7, RD1 ² RE8, RE9 RF2, RF3, RF8 RG15 RH0, RH1, RH4-RH6, RJ0-RJ2, RJ8, RJ9, F	, RH8-RH13	_	_	6	ns	Cload = 20 pF
	Port Output Rise Time I/O Pins: 8x Source Driver Pins - RA0-RA2, RA4, RA5 RB3, RB5, RB8-RB10, RB12, RB14, RB15 RC1-RC4		_		8	ns	Cload = 50 pF	
	I/O Pins:	2, RF13 4, RH15	_	_	6	ns	Cload = 20 pF	
		12x Source Driver Pins -		_	_	3.5	ns	CLOAD = 50 pF
RE0-RE3 RF1		RE0-RE3		—	_	2	ns	CLOAD = 20 pF

TABLE 37-23: I/O TIMING REQUIREMENTS

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

TABLE 37-33: SPIx MODULE SLAVE MODE (CKE = 1) TIM	MING REQUIREMENTS (CONTINUED)
---	-------------------------------

AC CHARACTERISTICS			Standard Operating Conditions: 2.1V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param. No.	Symbol Characteristics ⁽¹⁾		Min.	Typical ⁽²⁾	Max.	Units	Conditions	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	88	_		ns	_	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 4)	2.5	_	12	ns	-	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	10	_		ns	—	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	12.5	ns	_	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 20 ns.

4: Assumes 30 pF load on all SPIx pins.

TABLE 39-3: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARACTE	ERISTICS		Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Parameter No. Typical ⁽²⁾ Maximum ⁽⁴⁾		Units	Conditions					
Idle Current (IIDLE): Core Off, Clock on Base Current (Note 1)								
MDC35 41 60		mA 252 MHz						

Note 1: The test conditions for IIDLE current measurements are as follows:

- Oscillator mode is EC+PLL with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled (USBPMD = 1), VUSB3V3 is connected to Vss, PBCLKx divisor = 1:128 (' $x' \neq 7$)
- CPU is in Idle mode (CPU core Halted)
- L1 Cache and Prefetch modules are disabled
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared (except USBPMD)
- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- 4: Data in the "Maximum" column is at 3.3V, +85°C at specified operating frequency, unless otherwise stated. Parameters are for design guidance only and are not tested.

A.8 Flash Programming

The PIC32MZ EF family of devices incorporates a new Flash memory technology. Applications ported from PIC32MX5XX/6XX/7XX devices that take advantage of Run-time Self Programming will need to adjust the Flash programming steps to incorporate these changes.

Table A-9 lists the differences (indicated by **Bold** type) that will affect software migration.

PIC32MX5XX/6XX/7XX Feature	PIC32MZ EF Feature						
Program Flash Write Protection							
On PIC32MX devices, the Program Flash write-protect bits are part of the Flash Configuration words (DEVCFG0).	On PIC32MZ EF devices, the write-protect register is contained separately as the NVMPWP register. It has been expanded to 24 bits, and now represents the address below, which all Flash memory is protected. Note that the lower 14 bits are forced to zero, so that all memory locations in the page are protected.						
PWP< 7 :0> (DEVCFG0<19:12>)	PWP< 23 :0> (NVMPWP<23:0>)						
<pre>11111111 = Disabled 11111110 = 0xBD000FFF 11111101 = 0xBD001FFF 1111100 = 0xBD002FFF 11111011 = 0xBD003FFF 11111010 = 0xBD005FFF 1111001 = 0xBD005FFF 11110111 = 0xBD007FFF 11110110 = 0xBD008FFF 11110101 = 0xBD009FFF 11110011 = 0xBD000FFF 11110011 = 0xBD000FFF 11110010 = 0xBD000FFF 11110001 = 0xBD000FFF 11110001 = 0xBD00FFF</pre>	Physical memory below address 0x1Dxxxxxx is write protected, where 'xxxxxx' is specified by PWP<23:0>. When PWP<23:0> has a value of '0', write protection is disabled for the entire pro- gram Flash. If the specified address falls within the page, the entire page and all pages below the current page will be pro- tected.						
	rotection						
On PIC32MX devices, code protection is enabled by the CP (DEVCFG<28>) bit.	On PIC32MZ EF devices, code protection is enabled by the CP (DEVCP0 <28>) bit.						
Boot Flash Write Protection							
On PIC32MX devices, Boot Flash write protection is enable by the BWP (DEVCFG<24>) bit and protects the entire Boot Flash memory.	On PIC32MZ EF devices, Boot Flash write protection is divided into pages and is enable by the LBWPx and UBWPx bits in the NVMBWP register.						
Low-Voltage Detect Status							
LVDSTAT (NVMCON<11>) 1 = Low-voltage event is active 0 = Low-voltage event is not active	The LVDSTAT bit is not available in PIC32MZ EF devices.						