

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512efk100t-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

• Microchip's Worldwide Web site; http://www.microchip.com

· Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

		Pin Nu	mber							
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description			
AN36	—	—	B4	8	I	Analog	Analog Input Channels			
AN37	—	—	B12	27	I	Analog				
AN38	—	—	B17	43	I	Analog				
AN39	—	_	A22	44	I	Analog				
AN40	—	—	A30	65	I	Analog				
AN41	—	—	B26	66	I	Analog				
AN42	—	—	A31	67	I	Analog				
AN45	11	20	B11	25	I	Analog				
AN46	17	26	B14	37	I	Analog				
AN47	18	27	A19	38	I	Analog				
AN48	21	32	B18	47	Ι	Analog				
AN49	22	33	A23	48	I	Analog				

TABLE 1-1: ADC PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: CMOS = CMOS-compatible input or output TTL = Transistor-transistor Logic input buffer

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input O = Output PPS = Peripheral Pin Select P = Power I = Input

© 2015-2016 Microchip Technology Inc.

2.10 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-6 and Figure 2-7.

FIGURE 2-6: AUDIO PLAYBACK APPLICATION

FIGURE 2-7: LOW-COST CONTROLLERLESS (LCC) GRAPHICS APPLICATION WITH PROJECTED CAPACITIVE TOUCH

A block diagram of the PIC32MZ EF family processor core is shown in Figure 3-1.

FIGURE 3-1: PIC32MZ EF FAMILY MICROPROCESSOR CORE BLOCK DIAGRAM

4.0 MEMORY ORGANIZATION

Note:	This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive
	not intended to be a comprehensive
	reference source.For detailed
	information, refer to Section 48.
	"Memory Organization and
	Permissions" in the "PIC32 Family
	Reference Manual", which is available
	from the Microchip web site
	(www.microchip.com/PIC32).

PIC32MZ EF microcontrollers provide 4 GB of unified virtual memory address space. All memory regions, including program, data memory, SFRs and Configuration registers, reside in this address space at their respective unique addresses. The program and data memories can be optionally partitioned into user and kernel memories. In addition, PIC32MZ EF devices allow execution from data memory.

Key features include:

- 32-bit native data width
- Separate User (KUSEG) and Kernel (KSEG0/ KSEG1/KSEG2/KSEG3) mode address space
- Separate boot Flash memory for protected code
- Robust bus exception handling to intercept runaway code
- Cacheable (KSEG0/KSEG2) and non-cacheable (KSEG1/KSEG3) address regions
- Read/write permission access to predefined memory regions

4.1 Memory Layout

PIC32MZ EF microcontrollers implement two address schemes: virtual and physical. All hardware resources, such as program memory, data memory and peripherals, are located at their respective physical addresses. Virtual addresses are exclusively used by the CPU to fetch and execute instructions as well as access peripherals. Physical addresses are used by bus master peripherals, such as DMA and the Flash controller, that access memory independently of the CPU.

The main memory maps for the PIC32MZ EF devices are illustrated in Figure 4-1 through Figure 4-4. Figure 4-5 provides memory map information for boot Flash and boot alias. Table 4-1 provides memory map information for Special Function Registers (SFRs).

(1)		IRQ			Persistent			
Interrupt Source ^(*)	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
DMA Channel 0	_DMA0_VECTOR	134	OFF134<17:1>	IFS4<6>	IEC4<6>	IPC33<20:18>	IPC33<17:16>	No
DMA Channel 1	_DMA1_VECTOR	135	OFF135<17:1>	IFS4<7>	IEC4<7>	IPC33<28:26>	IPC33<25:24>	No
DMA Channel 2	_DMA2_VECTOR	136	OFF136<17:1>	IFS4<8>	IEC4<8>	IPC34<4:2>	IPC34<1:0>	No
DMA Channel 3	_DMA3_VECTOR	137	OFF137<17:1>	IFS4<9>	IEC4<9>	IPC34<12:10>	IPC34<9:8>	No
DMA Channel 4	_DMA4_VECTOR	138	OFF138<17:1>	IFS4<10>	IEC4<10>	IPC34<20:18>	IPC34<17:16>	No
DMA Channel 5	_DMA5_VECTOR	139	OFF139<17:1>	IFS4<11>	IEC4<11>	IPC34<28:26>	IPC34<25:24>	No
DMA Channel 6	_DMA6_VECTOR	140	OFF140<17:1>	IFS4<12>	IEC4<12>	IPC35<4:2>	IPC35<1:0>	No
DMA Channel 7	_DMA7_VECTOR	141	OFF141<17:1>	IFS4<13>	IEC4<13>	IPC35<12:10>	IPC35<9:8>	No
SPI2 Fault	_SPI2_FAULT_VECTOR	142	OFF142<17:1>	IFS4<14>	IEC4<14>	IPC35<20:18>	IPC35<17:16>	Yes
SPI2 Receive Done	_SPI2_RX_VECTOR	143	OFF143<17:1>	IFS4<15>	IEC4<15>	IPC35<28:26>	IPC35<25:24>	Yes
SPI2 Transfer Done	_SPI2_TX_VECTOR	144	OFF144<17:1>	IFS4<16>	IEC4<16>	IPC36<4:2>	IPC36<1:0>	Yes
UART2 Fault	_UART2_FAULT_VECTOR	145	OFF145<17:1>	IFS4<17>	IEC4<17>	IPC36<12:10>	IPC36<9:8>	Yes
UART2 Receive Done	_UART2_RX_VECTOR	146	OFF146<17:1>	IFS4<18>	IEC4<18>	IPC36<20:18>	IPC36<17:16>	Yes
UART2 Transfer Done	_UART2_TX_VECTOR	147	OFF147<17:1>	IFS4<19>	IEC4<19>	IPC36<28:26>	IPC36<25:24>	Yes
I2C2 Bus Collision Event ⁽²⁾	_I2C2_BUS_VECTOR	148	OFF148<17:1>	IFS4<20>	IEC4<20>	IPC37<4:2>	IPC37<1:0>	Yes
I2C2 Slave Event ⁽²⁾	_I2C2_SLAVE_VECTOR	149	OFF149<17:1>	IFS4<21>	IEC4<21>	IPC37<12:10>	IPC37<9:8>	Yes
I2C2 Master Event ⁽²⁾	_I2C2_MASTER_VECTOR	150	OFF150<17:1>	IFS4<22>	IEC4<22>	IPC37<20:18>	IPC37<17:16>	Yes
Control Area Network 1	_CAN1_VECTOR	151	OFF151<17:1>	IFS4<23>	IEC4<23>	IPC37<28:26>	IPC37<25:24>	Yes
Control Area Network 2	_CAN2_VECTOR	152	OFF152<17:1>	IFS4<24>	IEC4<24>	IPC38<4:2>	IPC38<1:0>	Yes
Ethernet Interrupt	_ETHERNET_VECTOR	153	OFF153<17:1>	IFS4<25>	IEC4<25>	IPC38<12:10>	IPC38<9:8>	Yes
SPI3 Fault	_SPI3_FAULT_VECTOR	154	OFF154<17:1>	IFS4<26>	IEC4<26>	IPC38<20:18>	IPC38<17:16>	Yes
SPI3 Receive Done	_SPI3_RX_VECTOR	155	OFF155<17:1>	IFS4<27>	IEC4<27>	IPC38<28:26>	IPC38<25:24>	Yes
SPI3 Transfer Done	_SPI3_TX_VECTOR	156	OFF156<17:1>	IFS4<28>	IEC4<28>	IPC39<4:2>	IPC39<1:0>	Yes
UART3 Fault	_UART3_FAULT_VECTOR	157	OFF157<17:1>	IFS4<29>	IEC4<29>	IPC39<12:10>	IPC39<9:8>	Yes
UART3 Receive Done	_UART3_RX_VECTOR	158	OFF158<17:1>	IFS4<30>	IEC4<30>	IPC39<20:18>	IPC39<17:16>	Yes
UART3 Transfer Done	_UART3_TX_VECTOR	159	OFF159<17:1>	IFS4<31>	IEC4<31>	IPC39<28:26>	IPC39<25:24>	Yes
I2C3 Bus Collision Event	_I2C3_BUS_VECTOR	160	OFF160<17:1>	IFS5<0>	IEC5<0>	IPC40<4:2>	IPC40<1:0>	Yes
I2C3 Slave Event	_I2C3_SLAVE_VECTOR	161	OFF161<17:1>	IFS5<1>	IEC5<1>	IPC40<12:10>	IPC40<9:8>	Yes

TABLE 7-2: INTERRUPT IRQ, VECTOR, AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EF Family Features" for the list of available peripherals.

2: This interrupt source is not available on 64-pin devices.

3: This interrupt source is not available on 100-pin devices.

4: This interrupt source is not available on 124-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
45.0	R/W-1	U-0	U-0	U-0	R-1	U-0	U-0	U-0
15:8	0N ⁽¹⁾	—	—	—	PBDIVRDY		—	—
7.0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
7:0	—				PBDIV<6:0>			

REGISTER 8-6: PBxDIV: PERIPHERAL BUS 'x' CLOCK DIVISOR CONTROL REGISTER ('x' = 1-7)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 Unimplemented: Read as '0'

bit 15 **ON:** Peripheral Bus 'x' Output Clock Enable bit⁽¹⁾ 1 = Output clock is enabled 0 = Output clock is disabled

bit 14-12 Unimplemented: Read as '0'

bit 11 **PBDIVRDY:** Peripheral Bus 'x' Clock Divisor Ready bit

- 1 = Clock divisor logic is not switching divisors and the PBxDIV<6:0> bits may be written
- 0 = Clock divisor logic is currently switching values and the PBxDIV<6:0> bits cannot be written

bit 10-7 Unimplemented: Read as '0'

- bit 6-0 **PBDIV<6:0>:** Peripheral Bus 'x' Clock Divisor Control bits
 - 1111111 = PBCLKx is SYSCLK divided by 128
 - 1111110 = PBCLKx is SYSCLK divided by 127
 - • • 0000011 = PBCLKx is SYSCLK divided by 4
 - 0000010 = PBCLKx is SYSCLK divided by 3
 - 0000001 = PBCLKx is SYSCLK divided by 2 (default value for $x \neq 7$)
 - 0000000 = PBCLKx is SYSCLK divided by 1 (default value for x = 7)
 - **Note 1:** The clock for peripheral bus 1 cannot be turned off. Therefore, the ON bit in the PB1DIV register cannot be written as a '0'.

Note: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

TABLE 12-16: PORTG REGISTER MAP FOR 64-PIN DEVICES ONLY

ess										Bi	ts								
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0600	ANSELG	31:16	—	—	—	—	_		_		—	—	—	—					0000
	/	15:0	_	—	—	—	—	-	ANSG9	ANSG8	ANSG7	ANSG6	_	—	-	-	_	_	03C0
0610	0 TRISG	31:16	_	—		_	_		-	_	_	—	_	—	_	_	_	_	0000
		15:0	_	—		_	_		TRISG9	TRISG8	TRISG7	TRISG6	_	_			_	_	03C0
0620	PORTG	31:16	_	—	—	—	_	_	—	_	_		_	_	—	_	—	—	0000
		15:0	_	_	_	_	_	_	RG9	RG8	RG7	RG6	_	_	_	_	_	_	xxxx
0630	LATG	31:16	_	_	_	_	_	_	—	—	—	_	_	_	_	_	_	—	0000
		15:0	_	_	_	_	_	_	LATG9	LATG8	LATG7	LATG6	_	_	_	_	_	—	xxxx
0640	ODCG	31:16		_		_	_		-	-	_	-							0000
		15:0		_		_	_		ODCG9	ODCG8	ODCG7	ODCG6		_					0000
0650	CNPUG	31:16		_		_	_		-	-	_	-							0000
		15:0		_		_	_		CNPUG9	CNPUG8	CNPUG7	CNPUG6		_					0000
0660	CNPDG	31:16	_	_		_	_				-		_	_	_		_		0000
		15:0	_	_	_	_	_	_	CNPDG9	CNPDG8	CNPDG7	CNPDG6	_	_	_	_	_	_	0000
0670	CNCONG	15:0	ON	_			EDGE DETECT		_		_	_		_					0000
	0.15110	31:16					_	_	_	_	_		_		_		_	_	0000
0680	CNENG	15:0	_	_	_	_	_	_	CNENG9	CNENG8	CNENG7	CNENG6	_	_	_	_	_	_	0000
		31:16	_	_	—	_	_	_	-	_	—		_	_	_	_	_	_	0000
0690	CNSTATG	15:0	_	_	_	_	_	_	CN STATG9	CN STATG8	CN STATG7	CN STATG6	_	_	_	_	_	_	0000
0040		31:16	_	_	_	_	_		_		_		_	_					0000
06A0	CNNEG	15:0	—	_	_	_	_		CNNEG9	CNNEG8	CNNEG7	CNNEG6	—	_		_			0000
06P0	CNEC	31:16	_	_	—	_	_	—	—	—	_	_	_	_	—	_	—	_	0000
0000	CINFG	15:0		—	—	—	_		CNFG9	CNFG8	CNFG7	CNFG6		_			_	_	0000
0600	SPCONOC	31:16	_	—	—	—	—	_	-	_	—		—	—	_	_	_	—	0000
0000	SRCONUG	15:0	_	_	_	_	_	_	SR0G9	_	_	SR0G6		_	_	_	_		0000
0600	SPCONIC	31:16	_	—	_	_	_	_	-	—	_	_	—	—	_	_	_	_	0000
0000	SICONIG	15.0	_	_					SR1G9			SR1G6	_						0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

REGISTER 14-1: TxCON: TYPE B TIMER CONTROL REGISTER ('x' = 2-9) (CONTINUED)

bit 2 Unimplemented: Read as '0'

- bit 1 TCS: Timer Clock Source Select bit⁽¹⁾
 - 1 = External clock from TxCK pin
 - 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'
- **Note 1:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer1, Timer3, Timer5, Timer7, and Timer9). All timer functions are set through the even numbered timers.
 - 2: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.
 - 3: This bit is available only on even numbered timers (Timer2, Timer4, Timer6, and Timer8).

25.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. "Real-Time Calendar Clock and (RTCC)" (DS60001125) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Lowpower optimization provides extended battery lifetime while keeping track of time. The following are key features of the RTCC module:

- · Time: hours, minutes, and seconds
- 24-hour format (military time)
- · Visibility of one-half second period
- Provides calendar: Weekday, date, month and year
- Alarm intervals are configurable for half of a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month, and one year
- · Alarm repeat with decrementing counter
- · Alarm with indefinite repeat: Chime
- Year range: 2000 to 2099
- Leap year correction
- · BCD format for smaller firmware overhead
- Optimized for long-term battery operation
- Fractional second synchronization
- User calibration of the clock crystal frequency with auto-adjust
- Calibration range: ±0.66 seconds error per month
- Calibrates up to 260 ppm of crystal error
- Uses external 32.768 kHz crystal or 32 kHz internal oscillator
- Alarm pulse, seconds clock, or internal clock output on RTCC pin

© 2015-2016 Microchip Technology Inc.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
31.24	EF	RRMODE<2:0	>		ERROP<2:0>	>	ERRPHASE<1:0>					
22.16	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0				
23.10	—	—		BDSTAT	FE<3:0>	START	ACTIVE					
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
10.0	BDCTRL<15:8>											
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0				BDCTRI	<7:0>							

REGISTER 26-5: CESTAT: CRYPTO ENGINE STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 ERRMODE<2:0>: Internal Error Mode Status bits

- 111 = Reserved
- 110 = Reserved
- 101 = Reserved
- 100 = Reserved
- 011 = CEK operation
- 010 = KEK operation
- 001 = Preboot authentication
- 000 = Normal operation

bit 28-26 ERROP<2:0>: Internal Error Operation Status bits

- 111 = Reserved
- 110 = Reserved
- 101 = Reserved
- 100 = Authentication
- 011 = Reserved
- 010 = Decryption
- 001 = Encryption
- 000 = Reserved

bit 25-24 ERRPHASE<1:0>: Internal Error Phase of DMA Status bits

- 11 = Destination data
- 10 = Source data
- 01 = Security Association (SA) access
- 00 = Buffer Descriptor (BD) access

bit 23-22 Unimplemented: Read as '0'

bit 21-18 BDSTATE<3:0>: Buffer Descriptor Processor State Status bits

The current state of the BDP:

- 1111 = Reserved
- •
- 0111 = Reserved
- 0110 = SA fetch
- 0101 = Fetch BDP is disabled
- 0100 = Descriptor is done
- 0011 = Data phase
- 0010 = BDP is loading
- 0001 = Descriptor fetch request is pending
- 0000 = BDP is idle
- bit 17 START: DMA Start Status bit
 - 1 = DMA start has occurred
 - 0 = DMA start has not occurred

28.1 **ADC Control Registers**

TABLE 28-1: ADC REGISTER MAP

ess										Bi	s								6
Virtual Addr (BF84_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
B000	ADCCON1	31:16	TRBEN TRBERR TRBMST<2:0>				>	TRBSLV<2:0>			FRACT	SELRE	S<1:0>		ST	RGSRC<4:0	>		0060
		15:0	ON	_	SIDL	AICPMPEN	CVDEN	FSSCLKEN	FSPBCLKEN	—	—		IRQVS<2:0>		STRGLVL		—		1000
B004	ADCCON2	31:16	BGVRRDY	REFFLT	EOSRDY	DY CVDCPL<2:0> SAMC<9:0>						.9:0>					0000		
		15:0	BGVRIEN	REFFLTIEN	EOSIEN	ADCEIOVR	_		ADCEIS<2:0>	•	_			Α	DCDIV<6:0>				0000
B008	ADCCON3	31:16	ADCS	EL<1:0>		-	CONCLK	(DIV<5:0>			DIGEN7			DIGEN4	DIGEN3	DIGEN2	DIGEN1	DIGEN0	0000
		15:0	١	/REFSEL<2:0)>	TRGSUSP	UPDIEN	UPDRDY	SAMP	RQCNVRT	GLSWTRG	GSWTRG			ADINSE	L<5:0>	1		0000
B00C	ADCTRGMODE	31:16	i —			—	_	—	SH4AL	.T<1:0>	SH3AL	.T<1:0>	SH2AL	T<1:0>	SH1AL	T<1:0>	SH0AL	.T<1:0>	0000
		15:0	-	—	—	STRGEN4	STRGEN3	STRGEN2	STRGEN1	STRGEN0	—	—	—	SSAMPEN4	SSAMPEN3	SSAMPEN2	SSAMPEN1	SSAMPEN	0 000
B010	ADCIMCON1	31:16	DIFF15	SIGN15	DIFF14	SIGN14	DIFF13	SIGN13	DIFF12	SIGN12	DIFF11	SIGN11	DIFF10	SIGN10	DIFF9	SIGN9	DIFF8	SIGN8	0000
		15:0	DIFF7	SIGN7	DIFF6	SIGN6	DIFF5	SIGN5	DIFF4	SIGN4	DIFF3	SIGN3	DIFF2	SIGN2	DIFF1	SIGN1	DIFF0	SIGN0	0000
B014	ADCIMCON2	31:16	DIFF31 ⁽¹⁾	SIGN31 ⁽¹⁾	DIFF30 ⁽¹⁾	SIGN30 ⁽¹⁾	DIFF29 ⁽¹⁾	SIGN29 ⁽¹⁾	DIFF28 ⁽¹⁾	SIGN28 ⁽¹⁾	DIFF27 ⁽¹⁾	SIGN27 ⁽¹⁾	DIFF26 ⁽¹⁾	SIGN26 ⁽¹⁾	DIFF25 ⁽¹⁾	SIGN25 ⁽¹⁾	DIFF24 ⁽¹⁾	SIGN24 ⁽¹⁾	0000
		15:0	DIFF23 ⁽¹⁾	SIGN23 ⁽¹⁾	DIFF22 ⁽¹⁾	SIGN22 ⁽¹⁾	DIFF21 ⁽¹⁾	SIGN21 ⁽¹⁾	DIFF20 ⁽¹⁾	SIGN20 ⁽¹⁾	DIFF19 ⁽¹⁾	SIGN19 ⁽¹⁾	DIFF18	SIGN18	DIFF17	SIGN17	DIFF16	SIGN16	0000
B018	ADCIMCON3	31:16	6 — (0)	- (0)	- (0)	- (0)	- (0)	- (2)	DIFF44	SIGN44	DIFF43	SIGN43	DIFF42 ⁽²⁾	SIGN42 ⁽²⁾	DIFF41 ⁽²⁾	SIGN41 ⁽²⁾	DIFF40 ⁽²⁾	SIGN40 ⁽²⁾	0000
		15:0	DIFF39 ⁽²⁾	SIGN39 ⁽²⁾	DIFF38 ⁽²⁾	SIGN38 ⁽²⁾	DIFF37(2)	SIGN37 ⁽²⁾	DIFF36 ⁽²⁾	SIGN36 ⁽²⁾	DIFF35 ⁽²⁾	SIGN35 ⁽²⁾	DIFF34 ⁽¹⁾	SIGN34 ⁽¹⁾	DIFF33 ⁽¹⁾	SIGN33 ⁽¹⁾	DIFF32 ⁽¹⁾	SIGN32 ⁽¹⁾	0000
B020	ADCGIRQEN1	31:16	AGIEN31(1)	AGIEN30(1)	AGIEN29(1)	AGIEN28(1)	AGIEN27(1)	AGIEN26(1)	AGIEN25(1)	AGIEN24(1)	AGIEN23(1)	AGIEN22(1)	AGIEN21(1)	AGIEN20(1)	AGIEN19(1)	AGIEN18	AGIEN17	AGIEN16	0000
		15:0	AGIEN15	AGIEN14	AGIEN13	AGIEN12	AGIEN11	AGIEN10	AGIEN9	AGIEN8	AGIEN7	AGIEN6	AGIEN5	AGIEN4	AGIEN3	AGIEN2	AGIEN1	AGIEN0	0000
B024	ADCGIRQEN2	31:16	5 —	_	_	-	-	-	-	-	-			-		-	-	-	0000
Daga	100000	15:0	-	-	-	AGIEN44	AGIEN43	AGIEN42(2)	AGIEN41(2)	AGIEN40(2)	AGIEN39(2)	AGIEN38(2)	AGIEN37(2)	AGIEN36(2)	AGIEN35(2)	AGIEN34	AGIEN33()	AGIEN32	,0000
B028	ADCCSS1	31:16	00045	00011	00010	CSS28(*)	CSS2/19	CSS26(1)	CSS25(1)	CSS24(1)	0007	CSS22 ⁽¹⁾	CSS210	CSS20(1)	CSS19 ⁽¹⁾	CSS18	0001	CSS16	0000
Dago	100000	15:0	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
B02C	ADCCSS2	31:16) —	_	_	-	-	-	-	-	-		-	— (2)	-	-	-	-	0000
DODO		15:0		(1)	(1)	CSS44	CSS43		LSS41(-)		LSS39(=)	LSS38-7		ADDV20(1)		ADDV40	00033 ⁽¹⁾	00032 ⁽¹⁾	0000
Б030	ADCDSTATT	15:0		ARD 130 /	ARD129'	ARD126' /		ARD126'	ARD125'	ARD124	ARD123'	ARD1221	ARDIZIV	ARDY20'	ARDT 19'	ARDTIS			0000
B034	ΔΟΟΟSΤΔΤ2	31.16	ARDITS	ARD114	AILDT 13	ANDTIZ			ARD19	ARDTO	ANDTI	ARDTO	ARDIS	ARD14	ARD13	ARDIZ		AILDTO	0000
0004	ADODOTATZ	15.0) 0000
B038	ADCCMPEN1	31.16	CMPE31 ⁽¹⁾	CMPE30 ⁽¹⁾	CMPE29(1)	CMPE28 ⁽¹⁾	CMPE27(1)	CMPE26 ⁽¹⁾	CMPE25 ⁽¹⁾	CMPF24(1)	CMPE23 ⁽¹⁾	CMPE22 ⁽¹⁾	CMPE21 ⁽¹⁾	CMPE20(1)	CMPF19(1)	CMPE18	CMPE17	CMPE16	0000
2000		15:0	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	0000
B03C	ADCCMP1	31:16	0	0	0	0 2.12	0	0	0 20	DCMPH	<15:0>	0111 20	0 20	0.111 2.1	0.000 200	01111 22	0.1.1 2.1	0	0000
		15:0								DCMPLO)<15:0>								0000
B040	ADCCMPEN2	31:16	CMPE31 ⁽¹⁾	CMPE30 ⁽¹⁾	CMPE29 ⁽¹⁾	CMPE28 ⁽¹⁾	CMPE27 ⁽¹⁾	CMPE26 ⁽¹⁾	CMPE25 ⁽¹⁾	CMPE24 ⁽¹⁾	CMPE23 ⁽¹⁾	CMPE22 ⁽¹⁾	CMPE21 ⁽¹⁾	CMPE20 ⁽¹⁾	CMPE19 ⁽¹⁾	CMPE18	CMPE17	CMPE16	0000
		15:0	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	0000
B044	ADCCMP2	31:16	16 DCMPHI<15:0> 0000																
		15:0	1							DCMPLC)<15:0>								0000
B048	ADCCMPEN3	31:16	CMPE31(1)	CMPE30 ⁽¹⁾	CMPE29 ⁽¹⁾	CMPE28 ⁽¹⁾	CMPE27 ⁽¹⁾	CMPE26 ⁽¹⁾	CMPE25 ⁽¹⁾	CMPE24 ⁽¹⁾	CMPE23 ⁽¹⁾	CMPE22 ⁽¹⁾	CMPE21(1)	CMPE20 ⁽¹⁾	CMPE19 ⁽¹⁾	CMPE18	CMPE17	CMPE16	0000
		15:0	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	0000
Note	4. This hit		inter in mot o	voilable on 64	nin dovices				•	•				•		•	•		

1: 2: 3:

This bit or register is not available on 64-pin and 100-pin devices. Before enabling the ADC, the user application must initialize the ADC calibration values by copying them from the factory-programmed DEVADCx Flash registers into the corresponding ADCxCFG registers.

REGISTER 28-6:	ADCIMCON2: ADC INPUT MODE CONTROL REGISTER 2 (CONTINUED)
----------------	--

bit 6	SIGN19: AN19 Signed Data Mode bit ⁽¹⁾
	1 = AN19 is using Signed Data mode
	0 = AN19 is using Unsigned Data mode
bit 5	DIFF18: AN18 Mode bit
	1 = AN18 is using Differential mode
	0 = AN18 is using Single-ended mode
bit 4	SIGN18: AN18 Signed Data Mode bit
	1 = AN18 is using Signed Data mode
	0 = AN18 is using Unsigned Data mode
bit 3	DIFF17: AN17 Mode bit
	1 = AN17 is using Differential mode
	0 = AN17 is using Single-ended mode
bit 2	SIGN17: AN17 Signed Data Mode bit
	1 = AN17 is using Signed Data mode
	0 = AN17 is using Unsigned Data mode
bit 1	DIFF16: AN16 Mode bit
	1 = AN16 is using Differential mode
	0 = AN16 is using Single-ended mode
bit 0	SIGN16: AN16 Signed Data Mode bit
	1 = AN16 is using Signed Data mode
	0 = AN16 is using Unsigned Data mode

Note 1: This bit is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24				ADCCFO	6<31:24>			
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16				ADCCFO	6<23:16>			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				ADCCF	G<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				ADCCF	G<7:0>			

REGISTER 28-33: ADCxCFG: ADCx CONFIGURATION REGISTER 'x' ('x' = 0 THROUGH 4 AND 7)

Legend:

- J			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 ADCCFG<31:0>: ADC Module Configuration Data bits

Prior to enabling the ADC, these registers should be written with the corresponding value stored in DEVADCx in software during ADC initialization.

Note: The bits in this register can only change when the applicable ANEN*x* bit in the ADCANCON register is cleared.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
31.24	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24
22:16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
23.10	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7.0	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0

REGISTER 29-7: CIRXOVF: CAN RECEIVE FIFO OVERFLOW STATUS REGISTER

Legend:

J			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 RXOVF<31:0>: FIFOx Receive Overflow Interrupt Pending bit

1 = FIFO has overflowed

0 = FIFO has not overflowed

REGISTER 29-8: CITMR: CAN TIMER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24				CANTS<	<15:8>			
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10				CANTS	<7:0>			
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0				CANTSPR	E<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				CANTSPF	RE<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CANTS<15:0>: CAN Time Stamp Timer bits

This is a free-running timer that increments every CANTSPRE system clocks when the CANCAP bit (CiCON<20>) is set.

bit 15-0 **CANTSPRE<15:0>:** CAN Time Stamp Timer Prescaler bits

1111 1111 1111 = CAN time stamp timer (CANTS) increments every 65,535 system clocks

٠

0000 0000 0000 = CAN time stamp timer (CANTS) increments every system clock

Note 1: CiTMR will be frozen when CANCAP = 0.

2: The CiTMR prescaler count will be reset on any write to CiTMR (CANTSPRE will be unaffected).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—		_	—		—	—
15.9	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	HTEN	MPEN		NOTPM		PMMODE	<3:0>	
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	CRCERREN	CRCOKEN	RUNTERREN	RUNTEN	UCEN	NOTMEEN	MCEN	BCEN

REGISTER 30-11: ETHRXFC: ETHERNET CONTROLLER RECEIVE FILTER CONFIGURATION REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **HTEN:** Enable Hash Table Filtering bit
 - 1 = Enable Hash Table Filtering
 - 0 = Disable Hash Table Filtering
- bit 14 **MPEN:** Magic Packet[™] Enable bit 1 = Enable Magic Packet Filtering 0 = Disable Magic Packet Filtering
 - 0 = Disable Magic Packet Filtering
- bit 13 Unimplemented: Read as '0'
- bit 12 NOTPM: Pattern Match Inversion bit
 - 1 = The Pattern Match Checksum must not match for a successful Pattern Match to occur
 - 0 = The Pattern Match Checksum must match for a successful Pattern Match to occur

This bit determines whether Pattern Match Checksum must match in order for a successful Pattern Match to occur.

- bit 11-8 **PMMODE<3:0>:** Pattern Match Mode bits
 - 1001 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Packet = Magic Packet)^(1,3)
 - 1000 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Hash Table Filter match)^(1,1)
 - 0111 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Broadcast Address)⁽¹⁾
 - 0110 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Broadcast Address)⁽¹⁾
 - 0101 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Unicast Address)⁽¹⁾
 - 0100 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Unicast Address)⁽¹⁾
 - 0011 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Station Address)⁽¹⁾
 - 0010 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Station Address)⁽¹⁾
 - 0001 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches)⁽¹⁾
 - 0000 = Pattern Match is disabled; pattern match is always unsuccessful

Note 1: XOR = True when either one or the other conditions are true, but not both.

- 2: This Hash Table Filter match is active regardless of the value of the HTEN bit.
- 3: This Magic Packet Filter match is active regardless of the value of the MPEN bit.

Note 1: This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
10.0	—	TXBUSE	RXBUSE	—	—	—	EWMARK	FWMARK
7.0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	RXDONE	PKTPEND	RXACT		TXDONE	TXABORT	RXBUFNA	RXOVFLW

REGISTER 30-14: ETHIRQ: ETHERNET CONTROLLER INTERRUPT REQUEST REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 14 **TXBUSE:** Transmit BVCI Bus Error Interrupt bit⁽²⁾
 - 1 = BVCI Bus Error has occurred
 - 0 = BVCI Bus Error has not occurred

This bit is set when the TX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.

- bit 13 **RXBUSE:** Receive BVCI Bus Error Interrupt bit⁽²⁾
 - 1 = BVCI Bus Error has occurred
 - 0 = BVCI Bus Error has not occurred

This bit is set when the RX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.

bit 12-10 Unimplemented: Read as '0'

- bit 9 EWMARK: Empty Watermark Interrupt bit⁽²⁾
 - 1 = Empty Watermark pointer reached

0 = No interrupt pending

This bit is set when the RX Descriptor Buffer Count is less than or equal to the value in the RXEWM bit (ETHRXWM<0:7>) value. It is cleared by BUFCNT bit (ETHSTAT<16:23>) being incremented by hardware. Writing a '0' or a '1' has no effect.

bit 8 FWMARK: Full Watermark Interrupt bit⁽²⁾

1 = Full Watermark pointer reached

0 = No interrupt pending

This bit is set when the RX Descriptor Buffer Count is greater than or equal to the value in the RXFWM bit (ETHRXWM<16:23>) field. It is cleared by writing the BUFCDEC (ETHCON1<0>) bit to decrement the BUFCNT counter. Writing a '0' or a '1' has no effect.

- Note 1: This bit is only used for TX operations.
 - 2: This bit is are only used for RX operations.

Note: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	-	—	—	—	—
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0				RXOVFLW	CNT<15:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				RXOVFLW	/CNT<7:0>			

REGISTER 30-16: ETHRXOVFLOW: ETHERNET CONTROLLER RECEIVE OVERFLOW STATISTICS REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **RXOVFLWCNT<15:0>:** Dropped Receive Frames Count bits Increment counter for frames accepted by the RX filter and subsequently dropped due to internal receive error (RXFIFO overrun). This event also sets the RXOVFLW bit (ETHIRQ<0>) interrupt flag.

Note 1: This register is only used for RX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

FIGURE 37-10: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

FIGURE 37-30: EJTAG TIMING CHARACTERISTICS

TABLE 37-49: EJTAG TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Co (unless otherwise state Operating temperature			nditions: 2.1V to 3.6V ed) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended	
Param. No.	Symbol	Description ⁽¹⁾	Min.	Max.	Units	Conditions
EJ1	Ттсксус	TCK Cycle Time	25		ns	
EJ2	Ттскнідн	TCK High Time	10	—	ns	—
EJ3	TTCKLOW	TCK Low Time	10	—	ns	—
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5	—	ns	—
EJ5	TTHOLD	TAP Signals Hold Time After Rising TCK	3	—	ns	—
EJ6	Ττροουτ	TDO Output Delay Time from Falling TCK	—	5	ns	—
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	—	5	ns	_
EJ8	TTRSTLOW	TRST Low Time	25	—	ns	
EJ9	Trf	TAP Signals Rise/Fall Time, All Input and Output	_	_	ns	_

Note 1: These parameters are characterized, but not tested in manufacturing.