

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XE

| Product Status             | Active                                                                            |
|----------------------------|-----------------------------------------------------------------------------------|
| Core Processor             | MIPS32® M-Class                                                                   |
| Core Size                  | 32-Bit Single-Core                                                                |
| Speed                      | 200MHz                                                                            |
| Connectivity               | CANbus, EBI/EMI, Ethernet, I <sup>2</sup> C, PMP, SPI, SQI, UART/USART, USB OTG   |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, POR, PWM, WDT                      |
| Number of I/O              | 78                                                                                |
| Program Memory Size        | 512KB (512K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                             |
| EEPROM Size                |                                                                                   |
| RAM Size                   | 128K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 2.1V ~ 3.6V                                                                       |
| Data Converters            | A/D 40x12b                                                                        |
| Oscillator Type            | Internal                                                                          |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                 |
| Mounting Type              | Surface Mount                                                                     |
| Package / Case             | 100-TQFP                                                                          |
| Supplier Device Package    | 100-TQFP (12x12)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512efk100t-i-pt |
|                            |                                                                                   |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Register<br>Number | Register<br>Name | Function                                                                                                                                  |  |  |  |  |  |  |  |
|--------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 12                 | Status           | Processor status and control.                                                                                                             |  |  |  |  |  |  |  |
|                    | IntCtl           | Interrupt control of vector spacing.                                                                                                      |  |  |  |  |  |  |  |
|                    | SRSCtl           | Shadow register set control.                                                                                                              |  |  |  |  |  |  |  |
|                    | SRSMap           | Shadow register mapping control.                                                                                                          |  |  |  |  |  |  |  |
|                    | View_IPL         | Allows the Priority Level to be read/written without                                                                                      |  |  |  |  |  |  |  |
|                    |                  | extracting or inserting that bit from/to the Status register.                                                                             |  |  |  |  |  |  |  |
|                    | SRSMAP2          | Contains two 4-bit fields that provide the mapping from a vector number to the shadow set number to use when servicing such an interrupt. |  |  |  |  |  |  |  |
| 13                 | Cause            | Describes the cause of the last exception.                                                                                                |  |  |  |  |  |  |  |
|                    | NestedExc        | Contains the error and exception level status bit values that existed prior to the current exception.                                     |  |  |  |  |  |  |  |
|                    | View_RIPL        | nables read access to the RIPL bit that is available in the Cause register.                                                               |  |  |  |  |  |  |  |
| 14                 | EPC              | Program counter at last exception.                                                                                                        |  |  |  |  |  |  |  |
|                    | NestedEPC        | Contains the exception program counter that existed prior to the current exception.                                                       |  |  |  |  |  |  |  |
| 15                 | PRID             | Processor identification and revision                                                                                                     |  |  |  |  |  |  |  |
|                    | Ebase            | Exception base address of exception vectors.                                                                                              |  |  |  |  |  |  |  |
|                    | CDMMBase         | Common device memory map base.                                                                                                            |  |  |  |  |  |  |  |
| 16                 | Config           | Configuration register.                                                                                                                   |  |  |  |  |  |  |  |
|                    | Config1          | Configuration register 1.                                                                                                                 |  |  |  |  |  |  |  |
|                    | Config2          | Configuration register 2.                                                                                                                 |  |  |  |  |  |  |  |
|                    | Config3          | Configuration register 3.                                                                                                                 |  |  |  |  |  |  |  |
|                    | Config4          | Configuration register 4.                                                                                                                 |  |  |  |  |  |  |  |
|                    | Config5          | Configuration register 5.                                                                                                                 |  |  |  |  |  |  |  |
|                    | Config7          | Configuration register 7.                                                                                                                 |  |  |  |  |  |  |  |
| 17                 | LLAddr           | Load link address (MPU only).                                                                                                             |  |  |  |  |  |  |  |
| 18                 | WatchLo          | Low-order watchpoint address (MPU only).                                                                                                  |  |  |  |  |  |  |  |
| 19                 | WatchHi          | High-order watchpoint address (MPU only).                                                                                                 |  |  |  |  |  |  |  |
| 20-22              | Reserved         | Reserved in the PIC32 core.                                                                                                               |  |  |  |  |  |  |  |
| 23                 | Debug            | EJTAG debug register.                                                                                                                     |  |  |  |  |  |  |  |
|                    | TraceControl     | EJTAG trace control.                                                                                                                      |  |  |  |  |  |  |  |
|                    | TraceControl2    | EJTAG trace control 2.                                                                                                                    |  |  |  |  |  |  |  |
|                    | UserTraceData1   | EJTAG user trace data 1 register.                                                                                                         |  |  |  |  |  |  |  |
|                    | TraceBPC         | EJTAG trace breakpoint register.                                                                                                          |  |  |  |  |  |  |  |
|                    | Debug2           | Debug control/exception status 1.                                                                                                         |  |  |  |  |  |  |  |
| 24                 | DEPC             | Program counter at last debug exception.                                                                                                  |  |  |  |  |  |  |  |
|                    | UserTraceData2   |                                                                                                                                           |  |  |  |  |  |  |  |
| 25                 | PerfCtl0         | Performance counter 0 control.                                                                                                            |  |  |  |  |  |  |  |
|                    | PerfCnt0         | Performance counter 0.                                                                                                                    |  |  |  |  |  |  |  |
|                    | PerfCtl1         | Performance counter 1 control.                                                                                                            |  |  |  |  |  |  |  |
|                    | PerfCnt1         | Performance counter 1.                                                                                                                    |  |  |  |  |  |  |  |
| 26                 | ErrCtl           | Software test enable of way-select and data RAM arrays for I-Cache and D-Cache (MPU only).                                                |  |  |  |  |  |  |  |
| 27                 | Reserved         | Reserved in the PIC32 core.                                                                                                               |  |  |  |  |  |  |  |
| 28                 | TagLo/DataLo     | Low-order portion of cache tag interface (MPU only).                                                                                      |  |  |  |  |  |  |  |
| 29                 | Reserved         | Reserved in the PIC32 core.                                                                                                               |  |  |  |  |  |  |  |
| 30                 | ErrorEPC         | Program counter at last error exception.                                                                                                  |  |  |  |  |  |  |  |
| 31                 | DeSave           | Debug exception save.                                                                                                                     |  |  |  |  |  |  |  |
|                    |                  |                                                                                                                                           |  |  |  |  |  |  |  |

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|
| 31:24        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 31.24        |                   | NMIKEY<7:0>       |                   |                   |                   |                   |                  |                  |  |  |  |
| 23:16        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |  |
| 23.10        |                   | —                 | —                 | —                 | —                 |                   | —                | —                |  |  |  |
| 15.0         | U-0               | U-0               | U-0               | R/W-0             | U-0               | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 15:8         |                   | —                 | —                 | MVEC              | —                 |                   | TPC<2:0>         |                  |  |  |  |
| 7.0          | U-0               | U-0               | U-0               | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 7:0          |                   | _                 |                   | INT4EP            | INT3EP            | INT2EP            | INT1EP           | INT0EP           |  |  |  |

#### REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

#### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ad as '0'          |
|-------------------|------------------|---------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

bit 31-24 **NMIKEY<7:0>:** Non-Maskable Interrupt Key bits When the correct key (0x4E) is written, a software NMI will be generated. The status is indicated by the GNMI bit (RNMICON<19>).

#### bit 23-13 Unimplemented: Read as '0'

- bit 12 MVEC: Multi Vector Configuration bit
  - 1 = Interrupt controller configured for multi vectored mode
  - 0 = Interrupt controller configured for single vectored mode

#### bit 11 Unimplemented: Read as '0'

- bit 10-8 **TPC<2:0>:** Interrupt Proximity Timer Control bits
  - 111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer
  - 110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer
  - 101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer
  - 100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer
  - 011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer
  - 010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer
  - 001 = Interrupts of group priority 1 start the Interrupt Proximity timer
  - 000 = Disables Interrupt Proximity timer

#### bit 7-5 Unimplemented: Read as '0'

- bit 4 INT4EP: External Interrupt 4 Edge Polarity Control bit
  - 1 = Rising edge
  - 0 = Falling edge
- bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit
  - 1 = Rising edge
  - 0 = Falling edge
- bit 2 **INT2EP:** External Interrupt 2 Edge Polarity Control bit
  - 1 = Rising edge
  - 0 = Falling edge
- bit 1 INT1EP: External Interrupt 1 Edge Polarity Control bit
  - 1 = Rising edge
  - 0 = Falling edge
- bit 0 INTOEP: External Interrupt 0 Edge Polarity Control bit
  - 1 = Rising edge
  - 0 = Falling edge

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2         | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------------|------------------|------------------|--|--|--|
| 21.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0                       | U-0              | U-0              |  |  |  |
| 31:24        | _                 | —                 | _                 | _                 | _                 | _                         | —                | —                |  |  |  |
| 22.10        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0                       | U-0              | U-0              |  |  |  |
| 23:16        |                   | _                 | _                 |                   | _                 |                           | —                | —                |  |  |  |
| 45.0         | U-0               | U-0               | U-0               | U-0               | U-0               | R-0                       | R-0              | R-0              |  |  |  |
| 15:8         | —                 | —                 | —                 | _                 | _                 | SRIPL<2:0> <sup>(1)</sup> |                  |                  |  |  |  |
| 7.0          | R-0               | R-0               | R-0               | R-0               | R-0               | R-0                       | R-0              | R-0              |  |  |  |
| 7:0          | SIRQ<7:0>         |                   |                   |                   |                   |                           |                  |                  |  |  |  |

#### **REGISTER 7-3: INTSTAT: INTERRUPT STATUS REGISTER**

| Legend:           |                  |                           |                    |
|-------------------|------------------|---------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ad as '0'          |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

bit 31-11 Unimplemented: Read as '0'

bit 10-8 SRIPL<2:0>: Requested Priority Level bits for Single Vector Mode bits<sup>(1)</sup> 111-000 = The priority level of the latest interrupt presented to the CPU

- bit 7-6 Unimplemented: Read as '0'
- bit 7-0 SIRQ<7:0>: Last Interrupt Request Serviced Status bits 11111111-00000000 = The last interrupt request number serviced by the CPU
- Note 1: This value should only be used when the interrupt controller is configured for Single Vector mode.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|--|
| 31:24        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |  |
| 31.24        | IPTMR<31:24>      |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
| 23:16        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |  |
| 23.10        | IPTMR<23:16>      |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
| 15:8         | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |  |
| 10.0         | IPTMR<15:8>       |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
| 7:0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |  |
| 7.0          | IPTMR<7:0>        |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |

#### **IPTMR: INTERRUPT PROXIMITY TIMER REGISTER REGISTER 7-4:**

| Legend:           |                  |                           |                    |
|-------------------|------------------|---------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ad as '0'          |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

bit 31-0 IPTMR<31:0>: Interrupt Proximity Timer Reload bits

Used by the Interrupt Proximity Timer as a reload value when the Interrupt Proximity timer is triggered by an interrupt event.

| IABL                     | LE 10-3:                        | וט        |       | ANNEL | J THROU | JGH CH | ANNEL | 7 REGI |      | AP   |      |      |      |   |
|--------------------------|---------------------------------|-----------|-------|-------|---------|--------|-------|--------|------|------|------|------|------|---|
| ess                      |                                 | Ð         |       |       |         |        |       |        |      | Bit  | s    |      |      |   |
| /irtual Addr<br>(BF81_#) | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15 | 30/14 | 29/13   | 28/12  | 27/11 | 26/10  | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | I |

#### A TUDOUCU CUANNEL 7 DE

| ess                         |                                                    |               |                   |                                                                               |           |       |                 |       |      | Bit    | s      |        |        |        |        |        |        |        |            |
|-----------------------------|----------------------------------------------------|---------------|-------------------|-------------------------------------------------------------------------------|-----------|-------|-----------------|-------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|
| Virtual Address<br>(BF81_#) | Register<br>Name <sup>(1)</sup>                    | Bit Range     | 31/15             | 30/14                                                                         | 29/13     | 28/12 | 27/11           | 26/10 | 25/9 | 24/8   | 23/7   | 22/6   | 21/5   | 20/4   | 19/3   | 18/2   | 17/1   | 16/0   | All Resets |
|                             | DOLIGOON                                           | 31:16         |                   |                                                                               |           | CHPIG | SN<7:0>         |       |      |        | _      | _      | _      | _      | _      | _      | _      | _      | 0000       |
| 1060                        | DCH0CON                                            | 15:0          | CHBUSY            | USY — CHPIGNEN — CHPATLEN — CHCHNS CHEN CHAED CHCHN CHAEN — CHEDET CHPRI<1:0> |           |       |                 |       |      |        |        |        | l<1:0> | 0000   |        |        |        |        |            |
| 1070                        | DCH0ECON                                           | 31:16         | _                 | _                                                                             | —         | _     | —               | _     | _    | —      |        |        |        | CHAIR  | Q<7:0> |        |        |        | OOFF       |
| 1070                        | 15:0 CHSIRQ<7:0> CFORCE CABORT PATEN SIRQEN AIRQEN |               |                   |                                                                               |           |       |                 |       |      |        | FF00   |        |        |        |        |        |        |        |            |
| 1080                        | DCH0INT                                            | 31:16         | —                 | —                                                                             | —         | —     | —               | —     | —    | —      | CHSDIE | CHSHIE | CHDDIE | CHDHIE | CHBCIE | CHCCIE | CHTAIE | CHERIE | 0000       |
| 1000                        | Derioitti                                          | 15:0          | —                 | —                                                                             | —         | _     | —               | —     | —    | —      | CHSDIF | CHSHIF | CHDDIF | CHDHIF | CHBCIF | CHCCIF | CHTAIF | CHERIF | 0000       |
| 1090                        | DCH0SSA                                            | 31:16<br>15:0 |                   | CHSSA<31:0>                                                                   |           |       |                 |       |      |        |        |        |        |        |        |        |        |        |            |
| 10A0                        | DCH0DSA                                            | 31:16<br>15:0 |                   |                                                                               |           |       |                 |       |      | CHDSA  | <31:0> |        |        |        |        |        |        |        | 0000       |
|                             |                                                    | 31:16         |                   |                                                                               |           |       | _               |       |      |        |        |        |        |        |        |        |        |        | 0000       |
| 10B0                        | DCH0SSIZ                                           | 15:0          |                   |                                                                               |           |       |                 |       |      | CHSSIZ | <15:0> |        |        |        |        |        |        |        | 0000       |
|                             |                                                    | 31:16         |                   | _                                                                             | _         | _     | _               | _     | _    | _      | _      |        | _      | _      |        |        | _      |        | 0000       |
| 10C0                        | DCH0DSIZ                                           | 15:0          | CHDSIZ<15:0> 0000 |                                                                               |           |       |                 |       |      |        |        |        |        |        |        |        |        |        |            |
|                             |                                                    | 31:16         | _                 | _                                                                             | _         | _     | _               | _     | _    | _      | _      | _      | _      | _      | _      | _      | _      | _      | 0000       |
| 10D0                        | DCH0SPTR                                           | 15:0          |                   |                                                                               |           |       |                 |       |      | CHSPTR | <15:0> |        |        |        |        |        |        |        | 0000       |
| 4050                        |                                                    | 31:16         | _                 | _                                                                             | _         | _     | _               | _     | _    | _      | _      | —      | _      | _      | —      | _      | _      |        | 0000       |
| 10E0                        | DCH0DPTR                                           | 15:0          |                   |                                                                               |           |       |                 |       |      | CHDPTR | <15:0> |        |        |        |        |        |        |        | 0000       |
| 10E0                        | DCH0CSIZ                                           | 31:16         | —                 | —                                                                             | —         | _     | —               | —     | _    | _      |        |        |        |        | -      | _      |        | _      | 0000       |
| 101.0                       | DCI IOCOIZ                                         | 15:0          | CHCSIZ<15:0> 000  |                                                                               |           |       |                 |       |      |        |        |        |        | 0000   |        |        |        |        |            |
| 1100                        | DCH0CPTR                                           | 31:16         | —                 | —                                                                             | —         | —     | —               | —     | —    | —      | —      | —      | —      | —      | —      | —      | —      | —      | 0000       |
| 1100                        |                                                    | 15:0          |                   |                                                                               | · · · · · |       |                 |       |      | CHCPTR | <15:0> |        |        |        |        |        |        |        | 0000       |
| 1110                        | DCH0DAT                                            | 31:16         | —                 | _                                                                             | —         | _     | —               | —     | —    | —      | —      | —      | —      | —      | —      | —      | —      |        | 0000       |
| -                           |                                                    | 15:0          |                   |                                                                               |           |       |                 |       |      | CHPDAT | <15:0> |        |        |        |        |        |        |        | 0000       |
| 1120                        | DCH1CON                                            | 31:16         |                   |                                                                               |           | CHPIG | N<7:0>          |       |      |        |        | —      | _      | _      | —      |        | _      |        | 0000       |
| -                           |                                                    | 15:0          | CHBUSY            | —                                                                             | CHPIGNEN  | —     | CHPATLEN        | —     | —    | CHCHNS | CHEN   | CHAED  | CHCHN  | CHAEN  | —      | CHEDET | CHPR   | l<1:0> | 0000       |
| 1130                        | DCH1ECON                                           | 31:16         | —                 | _                                                                             | —         | _     | —               | —     | —    | _      |        |        |        | CHAIR  |        |        |        |        | 00FF       |
|                             |                                                    | 15:0          |                   |                                                                               |           |       | Q<7:0>          |       |      |        | CFORCE | CABORT | PATEN  | SIRQEN | AIRQEN | —      | —      | -      | FF00       |
| 1140                        | DCH1INT                                            | 31:16         | _                 |                                                                               | -         |       |                 |       | _    | _      | CHSDIE | CHSHIE | CHDDIE | CHDHIE | CHBCIE | CHCCIE | CHTAIE | CHERIE | 0000       |
|                             |                                                    | 15:0          | —                 | —                                                                             | _         | —     | —               | _     |      | —      | CHSDIF | CHSHIF | CHDDIF | CHDHIF | CHBCIF | CHCCIF | CHTAIF | CHERIF | 0000       |
| 1150                        | DCH1SSA                                            | 31:16<br>15:0 |                   |                                                                               |           |       |                 |       |      | CHSSA- | <31:0> |        |        |        |        |        |        |        | 0000       |
| 1100                        |                                                    | 31:16         |                   |                                                                               |           |       |                 |       |      |        | .24.0. |        |        |        |        |        |        |        | 0000       |
| 1160                        | DCH1DSA                                            | 15:0          |                   |                                                                               |           |       | s '0'. Reset va |       |      | CHDSA  | 31:0>  |        |        |        |        |        |        |        | 0000       |

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information. Note 1:

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Family

| Bit Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |  |
|-----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|--|
| 21.24     | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |  |
| 31:24     | CHSSA<31:24>      |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
| 00:40     | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |  |
| 23:16     | CHSSA<23:16>      |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
| 45.0      | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |  |
| 15:8      | CHSSA<15:8>       |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
| 7.0       | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |  |
| 7:0       | CHSSA<7:0>        |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |

### REGISTER 10-10: DCHxSSA: DMA CHANNEL x SOURCE START ADDRESS REGISTER

| Legend:           |                  |                        |                    |
|-------------------|------------------|------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | read as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |

bit 31-0 CHSSA<31:0> Channel Source Start Address bits Channel source start address. Note: This must be the physical address of the source.

Γ.

#### REGISTER 10-11: DCHxDSA: DMA CHANNEL x DESTINATION START ADDRESS REGISTER

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|
| 04.04        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 31:24        | CHDSA<31:24>      |                   |                   |                   |                   |                   |                  |                  |  |  |  |
| 00.40        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 23:16        | CHDSA<23:16>      |                   |                   |                   |                   |                   |                  |                  |  |  |  |
| 45.0         | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 15:8         | CHDSA<15:8>       |                   |                   |                   |                   |                   |                  |                  |  |  |  |
| 7.0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 7:0          |                   |                   |                   | CHDSA             | <7:0>             |                   |                  |                  |  |  |  |

| Legend:           |                  |                           |                    |
|-------------------|------------------|---------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ead as '0'         |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

bit 31-0 CHDSA<31:0>: Channel Destination Start Address bits Channel destination start address.

Note: This must be the physical address of the destination.

# 11.0 HI-SPEED USB WITH ON-THE-GO (OTG)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 51. "Hi-Speed USB with **On-The-Go** (OTG)" (DS60001326) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 embedded host, device, or OTG implementation with a minimum of external components.

The module supports Hi-Speed, Full-Speed, or Low-Speed in any of the operating modes. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the RAM controller, packet encode/decode, UTM synchronization, end-point control, a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 11-1.

The USB module includes the following features:

- USB Hi-Speed, Full-Speed, and Low-Speed support for host and device
- USB OTG support with one or more Hi-Speed, Full-Speed, or Low-Speed device
- Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- Integrated USB transceiver
- Transaction handshaking performed by hardware
- Integrated 8-channel DMA to access system RAM and Flash
- Seven transmit endpoints and seven receive endpoints, in addition to Endpoint 0
- Session Request Protocol (SRP) and Host Negotiation Protocol (HNP) support
- Suspend and resume signaling support
- Dynamic FIFO sizing
- Integrated RAM for the FIFOs, eliminating the need for system RAM for the FIFOs
- Link power management support
  - Note 1: The implementation and use of the USB specifications, as well as other third party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.
    - If the USB module is used, the Primary Oscillator (POSC) is limited to either 12 MHz or 24 MHz.

|              | 1)                |                   | 0)                |                   |                   |                   |                  |                  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|              | U-0               | U-0               | U-0               | U-0               | R/W-0             | R/W-0, HC         | R/W-0            | R/W-0, HC        |
| 31:24        |                   |                   |                   |                   | -                 |                   | —                | FLSHFIFO         |
|              | _                 |                   | —                 | _                 | DISPING           | DTWREN            | DATATGGL         | FLOHFIFU         |
|              | R/W-0, HC         | R/W-0, HC         | R/W-0, HC         | R/C-0, HS         | R/W-0, HS         | R-0, HS           | R-0              | R-0              |
| 23:16        | SVCSETEND         | SVCRPR            | SENDSTALL         | SETUPEND          | DATAEND           | SENTSTALL         |                  | RXPKTRDY         |
|              | NAKTMOUT          | STATPKT           | REQPKT            | ERROR             | SETUPPKT          | RXSTALL           |                  |                  |
| 15:8         | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 15.6         | —                 | —                 | —                 | _                 | -                 | —                 | _                | —                |
| 7:0          | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 7.0          | _                 | _                 | _                 | _                 | _                 | _                 | _                | _                |

# REGISTER 11-5: USBIE0CSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 0)

| Legend:           | HC = Hardware Cleared | HS = Hardware Set         |                    |
|-------------------|-----------------------|---------------------------|--------------------|
| R = Readable bit  | W = Writable bit      | U = Unimplemented bit, re | ead as '0'         |
| -n = Value at POR | '1' = Bit is set      | '0' = Bit is cleared      | x = Bit is unknown |

bit 31-28 Unimplemented: Read as '0'

- bit 27 DISPING: Disable Ping tokens control bit (*Host mode*)

   1 = USB Module will not issue PING tokens in data and status phases of a Hi-Speed Control transfer
   0 = Ping tokens are issued

   bit 26 DTWREN: Data Toggle Write Enable bit (*Host mode*)

   1 = Enable the current state of the Endpoint 0 data toggle to be written. Automatically cleared.
   0 = Disable data toggle write
- bit 25 **DATATGGL:** Data Toggle bit (*Host mode*)

When read, this bit indicates the current state of the Endpoint 0 data toggle.

If DTWREN = 1, this bit is writable with the desired setting.

If DTWREN = 0, this bit is read-only.

- bit 24 FLSHFIFO: Flush FIFO Control bit
  - 1 = Flush the next packet to be transmitted/read from the Endpoint 0 FIFO. The FIFO pointer is reset and the TXPKTRDY/RXPKTRDY bit is cleared. Automatically cleared when the operation completes. Should only be used when TXPKTRDY/RXPKTRDY = 1.
  - 0 = No Flush operation
- bit 23 SVCSETEND: Clear SETUPEND Control bit (Device mode)
  - 1 = Clear the SETUPEND bit in this register. This bit is automatically cleared.
  - 0 = Do not clear

NAKTMOUT: NAK Time-out Control bit (Host mode)

- 1 = Endpoint 0 is halted following the receipt of NAK responses for longer than the time set by the NAKLIM<4:0> bits (USBICSR<28:24>)
- 0 = Allow the endpoint to continue
- bit 22 SVCRPR: Serviced RXPKTRDY Clear Control bit (Device mode)
  - 1 = Clear the RXPKTRDY bit in this register. This bit is automatically cleared.
  - 0 = Do not clear

**STATPKT:** Status Stage Transaction Control bit (*Host mode*)

- 1 = When set at the same time as the TXPKTRDY or REQPKT bit is set, performs a status stage transaction
- 0 = Do not perform a status stage transaction

| RPn Port Pin         | RPnR SFR              | RPnR bits                  | RPnR Value to Peripheral<br>Selection         |
|----------------------|-----------------------|----------------------------|-----------------------------------------------|
| RPD1                 | RPD1R                 | RPD1R<3:0>                 | 0000 = <u>No Connect</u>                      |
| RPG9                 | RPG9R                 | RPG9R<3:0>                 |                                               |
| RPB14                | RPB14R                | RPB14R<3:0>                | 0010 = <u>U2TX</u><br>0011 = <u>U5RTS</u>     |
| RPD0                 | RPD0R                 | RPD0R<3:0>                 | 0100 = U6TX                                   |
| RPB6                 | RPB6R                 | RPB6R<3:0>                 | 0101 = Reserved                               |
| RPD5                 | RPD5R                 | RPD5R<3:0>                 | 0110 = SS2<br>0111 = Reserved                 |
| RPB2                 | RPB2R                 | RPB2R<3:0>                 | 1000 = SDO4                                   |
| RPF3                 | RPF3R                 | RPF3R<3:0>                 | 1001 = Reserved                               |
| RPF13 <sup>(1)</sup> | RPF13R <sup>(1)</sup> | RPF13R<3:0> <sup>(1)</sup> | 1010 = SDO6 <sup>(1)</sup><br>1011 = OC2      |
| RPC2 <sup>(1)</sup>  | RPC2R <sup>(1)</sup>  | RPC2R<3:0> <sup>(1)</sup>  | 1011 = 002<br>1100 = 001                      |
| RPE8 <sup>(1)</sup>  | RPE8R <sup>(1)</sup>  | RPE8R<3:0> <sup>(1)</sup>  | 1101 <b>= OC</b> 9                            |
| RPF2 <sup>(1)</sup>  | RPF2R <sup>(1)</sup>  | RPF2R<3:0> <sup>(1)</sup>  | 1110 = Reserved<br>1111 = C2TX <sup>(3)</sup> |

#### TABLE 12-3: OUTPUT PIN SELECTION (CONTINUED)

Note 1: This selection is not available on 64-pin devices.

2: This selection is not available on 64-pin or 100-pin devices.

3: This selection is not available on devices without a CAN module.

#### 17.1 Input Capture Control Registers

# TABLE 17-2: INPUT CAPTURE 1 THROUGH INPUT CAPTURE 9 REGISTER MAP

| ÷ ŧ                         |                       |               |       |       |       |       |       |       |       | Bit    | S      |      |       |      |       |      |          |      |              |
|-----------------------------|-----------------------|---------------|-------|-------|-------|-------|-------|-------|-------|--------|--------|------|-------|------|-------|------|----------|------|--------------|
| Virtual Address<br>(BF84_#) | Register<br>Name      | Bit Range     | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9  | 24/8   | 23/7   | 22/6 | 21/5  | 20/4 | 19/3  | 18/2 | 17/1     | 16/0 | All Resets   |
|                             | IC1CON <sup>(1)</sup> | 31:16         |       | —     |       | —     | —     |       | —     |        |        | _    |       |      | —     |      | —        | _    | 0000         |
| 2000                        |                       | 15:0          | ON    | _     | SIDL  | _     |       |       | FEDGE | C32    | ICTMR  | ICI< | :1:0> | ICOV | ICBNE |      | ICM<2:0> |      | 0000         |
| 2010                        | IC1BUF                | 31:16<br>15:0 |       |       |       |       |       |       |       | IC1BUF | <31:0> |      |       |      |       |      |          |      | XXXX         |
| 0000                        | 10000N(1)             | 31:16         | _     | —     | —     | —     | —     | —     | —     | —      | _      | —    | —     | —    | —     | —    | _        | _    | 0000         |
| 2200                        | IC2CON <sup>(1)</sup> | 15:0          | ON    | —     | SIDL  | -     | —     | —     | FEDGE | C32    | ICTMR  | ICI< | 1:0>  | ICOV | ICBNE |      | ICM<2:0> |      | 0000         |
| 2210                        | IC2BUF                | 31:16<br>15:0 |       |       |       |       |       |       |       | IC2BUF | <31:0> |      |       |      |       |      |          |      | XXXX         |
| 2400                        | IC3CON <sup>(1)</sup> | 31:16         | _     |       | _     |       | —     | —     | —     | _      | _      | _    | _     | _    | —     | _    | —        | _    | 0000         |
| 2400                        | IC3CON*               | 15:0          | ON    | —     | SIDL  | —     |       |       | FEDGE | C32    | ICTMR  | ICI< | 1:0>  | ICOV | ICBNE |      | ICM<2:0> |      | 0000         |
| 2410                        | IC3BUF                | 31:16<br>15:0 |       |       |       |       |       |       |       | IC3BUF | <31:0> |      |       |      |       |      |          |      | XXXX<br>XXXX |
| 2600                        | IC4CON <sup>(1)</sup> | 31:16         | _     | _     | _     | _     | _     | _     | _     | _      | _      | _    | _     | _    | _     | _    | _        | _    | 0000         |
| 2000                        | 104001                | 15:0          | ON    | _     | SIDL  | _     | _     | -     | FEDGE | C32    | ICTMR  | ICI< | :1:0> | ICOV | ICBNE |      | ICM<2:0> |      | 0000         |
| 2610                        | IC4BUF                | 31:16<br>15:0 |       |       |       |       |       |       |       | IC4BUF | <31:0> |      |       |      |       |      |          |      | XXXX         |
| 2800                        | IC5CON <sup>(1)</sup> | 31:16         | _     |       |       |       | _     | _     |       |        |        | _    |       | _    | _     | _    | _        |      | 0000         |
| 2000                        | 1030011               | 15:0          | ON    |       | SIDL  |       | _     | _     | FEDGE | C32    | ICTMR  | ICI< | 1:0>  | ICOV | ICBNE |      | ICM<2:0> |      | 0000         |
| 2810                        | IC5BUF                | 31:16<br>15:0 |       |       |       |       |       |       |       | IC5BUF | <31:0> |      |       |      |       |      |          |      | XXXX<br>XXXX |
| 2A00                        | IC6CON <sup>(1)</sup> | 31:16         | _     | —     | —     | —     | —     | —     | —     | _      | _      | —    | —     | —    | - 1   | —    | —        | _    | 0000         |
| 2400                        |                       | 15:0          | ON    | —     | SIDL  | -     |       |       | FEDGE | C32    | ICTMR  | ICI< | :1:0> | ICOV | ICBNE |      | ICM<2:0> |      | 0000         |
| 2A10                        | IC6BUF                | 31:16<br>15:0 |       |       |       |       |       |       |       | IC6BUF | <31:0> |      |       |      |       |      |          |      | XXXX         |
| 2C00                        | IC7CON <sup>(1)</sup> | 31:16         | _     | —     | —     | —     | —     | —     | —     | —      | —      | —    | —     | —    | —     | —    | —        | —    | 0000         |
| 2000                        |                       | 15:0          | ON    | —     | SIDL  | -     |       |       | FEDGE | C32    | ICTMR  | ICI< | :1:0> | ICOV | ICBNE |      | ICM<2:0> |      | 0000         |
| 2C10                        | IC7BUF                | 31:16<br>15:0 |       |       |       |       |       |       |       | IC7BUF | <31:0> |      |       |      |       |      |          |      | XXXX         |
| 2500                        | IC8CON <sup>(1)</sup> | 31:16         | _     |       | _     |       | —     | —     | —     | _      | _      | _    | _     | _    | —     | _    | —        | _    | 0000         |
| 2E00                        |                       | 15:0          | ON    | _     | SIDL  | _     | _     |       | FEDGE | C32    | ICTMR  | ICI< | 1:0>  | ICOV | ICBNE |      | ICM<2:0> |      | 0000         |
| 2E10                        | IC8BUF                | 31:16<br>15:0 |       |       |       |       |       |       |       | IC8BUF | <31:0> |      |       |      |       |      |          |      | XXXX<br>XXXX |
| 2000                        | IC9CON <sup>(1)</sup> | 31:16         | —     | —     | _     | —     |       |       | _     | _      | —      |      | —     | —    |       |      | _        | _    | 0000         |
| 3000                        |                       | 15:0          | ON    | _     | SIDL  | _     | _     | —     | FEDGE | C32    | ICTMR  | ICI< | 1:0>  | ICOV | ICBNE |      | ICM<2:0> |      | 0000         |
| 3010                        | IC9BUF                | 31:16<br>15:0 |       |       |       |       |       |       |       | IC9BUF | <31:0> |      |       |      |       |      |          |      | xxxx<br>xxxx |

This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more Note 1: information.

| Bit<br>Range | Bit<br>31/23/15/7             | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3   | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |
|--------------|-------------------------------|-------------------|-------------------|-------------------|---------------------|-------------------|------------------|------------------|--|--|
| 04.04        | U-0                           | U-0               | U-0               | R/W-0             | R/W-0               | R/W-0             | R/W-0            | R/W-0            |  |  |
| 31:24        | —                             | _                 | _                 | INIT1SCHECK       | INIT1CO             | UNT<1:0>          | INIT1TY          | PE<1:0>          |  |  |
| 00.40        | R/W-0                         | R/W-0             | R/W-0             | R/W-0             | R/W-0               | R/W-0             | R/W-0            | R/W-0            |  |  |
| 23:16        | INIT1CMD3<7:0> <sup>(1)</sup> |                   |                   |                   |                     |                   |                  |                  |  |  |
| 45.0         | R/W-0                         | R/W-0             | R/W-0             | R/W-0             | R/W-0               | R/W-0             | R/W-0            | R/W-0            |  |  |
| 15:8         | INIT1CMD2<7:0> <sup>(1)</sup> |                   |                   |                   |                     |                   |                  |                  |  |  |
| 7.0          | R/W-0                         | R/W-0             | R/W-0             | R/W-0             | R/W-0               | R/W-0             | R/W-0            | R/W-0            |  |  |
| 7:0          |                               |                   |                   | INIT1CMD1<        | 7:0> <sup>(1)</sup> |                   |                  |                  |  |  |

#### REGISTER 20-25: SQI1XCON3: SQI XIP CONTROL REGISTER 3

# Legend:

| R = Readable bit  | W = Writable bit | bit U = Unimplemented bit, read as '0' |                    |
|-------------------|------------------|----------------------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared                   | x = Bit is unknown |

#### bit 31-29 Unimplemented: Read as '0'

- bit 28 INIT1SCHECK: Flash Initialization 1 Command Status Check bit
  - 1 = Check the status after executing the INIT1 command
  - 0 = Do not check the status

#### bit 27-26 INIT1COUNT<1:0>: Flash Initialization 1 Command Count bits

- 11 = INIT1CMD1, INIT1CMD2, and INIT1CMD3 are sent
- 10 = INIT1CMD1 and INIT1CMD2 are sent, but INIT1CMD3 is still pending
- 01 = INIT1CMD1 is sent, but INIT1CMD2 and INIT1CMD3 are still pending
- 00 = No commands are sent

#### bit 25-24 INIT1TYPE<1:0>: Flash Initialization 1 Command Type bits

- 11 = Reserved
- 10 = INIT1 commands are sent in Quad Lane mode
- 01 = INIT1 commands are sent in Dual Lane mode
- 00 = INIT1 commands are sent in Single Lane mode
- bit 24-16 **INIT1CMD3<7:0>:** Flash Initialization Command 3 bits<sup>(1)</sup> Third command of the Flash initialization.
- bit 15-8 **INIT1CMD2<7:0>:** Flash Initialization Command 2 bits<sup>(1)</sup> Second command of the Flash initialization.
- bit 7-0 **INIT1CMD1<7:0>:** Flash Initialization Command 1 bits<sup>(1)</sup> First command of the Flash initialization.
- **Note 1:** INIT1CMD1 can be WEN and INIT1CMD2 can be SECTOR UNPROTECT.

**Note:** Some Flash devices require Write Enable and Sector Unprotect commands before read/write operations and this register is useful in working with those Flash types (XIP mode only)

| Bit<br>Range | Bit<br>31/23/15/7      | Bit<br>30/22/14/6      | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |
|--------------|------------------------|------------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|
| 04.04        | U-0                    | U-0                    | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |  |
| 31:24        | —                      | —                      | —                 | _                 | —                 | -                 | -                | —                |  |  |  |
| 00.40        | U-0                    | U-0                    | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |  |
| 23:16        | —                      | —                      | —                 | _                 | —                 | —                 | _                | —                |  |  |  |
|              | R/W-0                  | R/W-0                  | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 15:8         | RCS2 <sup>(1)</sup>    | RCS1 <sup>(3)</sup>    |                   |                   |                   |                   |                  |                  |  |  |  |
|              | RADDR15 <sup>(2)</sup> | RADDR14 <sup>(4)</sup> | RADDR<13:8>       |                   |                   |                   |                  |                  |  |  |  |
| 7:0          | R/W-0                  | R/W-0                  | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
|              | RADDR<7:0>             |                        |                   |                   |                   |                   |                  |                  |  |  |  |

#### REGISTER 23-9: PMRADDR: PARALLEL PORT READ ADDRESS REGISTER

| Legend:           |                  |                        |                    |
|-------------------|------------------|------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | read as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |

#### bit 31-16 **Unimplemented:** Read as '0'

| RCS2: Chip Select 2 bit <sup>(1)</sup>                                                                             |
|--------------------------------------------------------------------------------------------------------------------|
| 1 = Chip Select 2 is active                                                                                        |
| 0 = Chip Select 2 is inactive (RADDR15 function is selected)                                                       |
| RADDR<15>: Target Address bit 15 <sup>(2)</sup>                                                                    |
| RCS1: Chip Select 1 bit <sup>(3)</sup>                                                                             |
| <ul><li>1 = Chip Select 1 is active</li><li>0 = Chip Select 1 is inactive (RADDR14 function is selected)</li></ul> |
|                                                                                                                    |

- bit 14 RADDR<14>: Target Address bit 14<sup>(4)</sup>
- bit 13-0 RADDR<13:0>: Address bits
- Note 1: When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.
  - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00.
  - **3:** When the CSF<1:0> bits (PMCON<7:6>) = 10.
  - **4:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1'.

#### **RTCCON: REAL-TIME CLOCK AND CALENDAR CONTROL REGISTER REGISTER 25-1:**

| Bit<br>Range | Bit<br>31/23/15/7               | Bit<br>30/22/14/6           | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3          | Bit<br>26/18/10/2 | Bit<br>25/17/9/1       | Bit<br>24/16/8/0 |
|--------------|---------------------------------|-----------------------------|-------------------|-------------------|----------------------------|-------------------|------------------------|------------------|
| 24.24        | U-0                             | U-0                         | U-0               | U-0               | U-0                        | U-0               | R/W-0                  | R/W-0            |
| 31:24        | —                               | _                           | _                 | _                 | _                          |                   | CAL                    | _<9:8>           |
| 00.40        | R/W-0                           | R/W-0                       | R/W-0             | R/W-0             | R/W-0                      | R/W-0             | R/W-0                  | R/W-0            |
| 23:16        | CAL<7:0>                        |                             |                   |                   |                            |                   |                        |                  |
|              | R/W-0                           | U-0                         | R/W-0             | U-0               | U-0                        | R/W-0             | R/W-0                  | R/W-0            |
| 15:8         | ON <sup>(1)</sup>               | —                           | SIDL              | —                 |                            | RTCCLK            | RTCCLKSEL<1:0> OL      |                  |
|              | R/W-0                           | R-0                         | U-0               | U-0               | R/W-0                      | R-0               | R-0                    | R/W-0            |
| 7:0          | RTC<br>OUTSEL<0> <sup>(2)</sup> | RTC<br>CLKON <sup>(5)</sup> |                   |                   | RTC<br>WREN <sup>(3)</sup> | RTC<br>SYNC       | HALFSEC <sup>(4)</sup> | RTCOE            |

| Legend:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

#### bit 31-26 Unimplemented: Read as '0'

bit 25-16 CAL<9:0>: Real-Time Clock Drift Calibration bits, which contain a signed 10-bit integer value 0111111111 = Maximum positive adjustment, adds 511 real-time clock pulses every one minute 000000001 = Minimum positive adjustment, adds 1 real-time clock pulse every one minute 000000000 = No adjustment 1111111111 = Minimum negative adjustment, subtracts 1 real-time clock pulse every one minute 1000000000 = Maximum negative adjustment, subtracts 512 real-time clock pulses every one minute ON: RTCC On bit<sup>(1)</sup> bit 15 1 = RTCC module is enabled 0 = RTCC module is disabled bit 14 Unimplemented: Read as '0' bit 13 SIDL: Stop in Idle Mode bit 1 = Disables RTCC operation when CPU enters Idle mode 0 = Continue normal operation when CPU enters Idle mode bit 12-11 Unimplemented: Read as '0' **Note 1:** The ON bit is only writable when RTCWREN = 1.

- **2:** Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
- 3: The RTCWREN bit can be set only when the write sequence is enabled.
- 4: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).
- 5: This bit is undefined when RTCCLKSEL < 1:0 > = 00 (LPRC is the clock source).

#### Note: This register is reset only on a Power-on Reset (POR).

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6     | Bit<br>29/21/13/5     | Bit<br>28/20/12/4         | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-----------------------|-----------------------|---------------------------|-------------------|-------------------|------------------|------------------|
| 31:24        | U-0               | U-0                   | U-0                   | U-0                       | U-0               | U-0               | U-0              | U-0              |
| 31.24        | _                 | —                     | _                     |                           | —                 | —                 | _                | —                |
| 23:16        | U-0               | U-0                   | U-0                   | R/W-0                     | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 23.10        | _                 | —                     | _                     | FSIZE<4:0> <sup>(1)</sup> |                   |                   |                  |                  |
| 15:8         | U-0               | S/HC-0                | S/HC-0                | R/W-0                     | U-0               | U-0               | U-0              | U-0              |
| 10.0         | _                 | FRESET                | UINC                  | DONLY <sup>(1)</sup>      | —                 | —                 | _                | —                |
| 7.0          | R/W-0             | R-0                   | R-0                   | R-0                       | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 7:0          | TXEN              | TXABAT <sup>(2)</sup> | TXLARB <sup>(3)</sup> | TXERR <sup>(3)</sup>      | TXREQ             | RTREN             | TXPR             | <1:0>            |

#### **REGISTER 29-20:** CiFIFOCONn: CAN FIFO CONTROL REGISTER 'n' ('n' = 0-31)

#### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, r | ead as '0'         |
|-------------------|------------------|--------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared     | x = Bit is unknown |

#### bit 31-21 Unimplemented: Read as '0'

- bit 20-16 FSIZE<4:0>: FIFO Size bits<sup>(1)</sup>
  - 11111 = FIFO is 32 messages deep
  - •

  - •

00010 = FIFO is 3 messages deep 00001 = FIFO is 2 messages deep 00000 = FIFO is 1 message deep

#### bit 15 Unimplemented: Read as '0'

#### bit 14 FRESET: FIFO Reset bits

1 = FIFO will be reset when bit is set, cleared by hardware when FIFO is reset. After setting, the user application should poll whether this bit is clear before taking any action
 0 = No effect

# bit 13 **UINC:** Increment Head/Tail bit

 $\frac{TXEN = 1:}{VEN} (FIFO \text{ configured as a Transmit FIFO})$ When this bit is set, the FIFO head will increment by a single message  $\frac{TXEN = 0:}{VEN} (FIFO \text{ configured as a Receive FIFO})$ When this bit is set, the FIFO tail will increment by a single message

#### bit 12 DONLY: Store Message Data Only bit<sup>(1)</sup>

<u>TXEN = 1:</u> (FIFO configured as a Transmit FIFO) This bit is not used and has no effect.

<u>TXEN = 0:</u> (FIFO configured as a Receive FIFO)

- 1 =Only data bytes will be stored in the FIFO
- 0 = Full message is stored, including identifier
- bit 11-8 Unimplemented: Read as '0'
- bit 7 **TXEN:** TX/RX Buffer Selection bit
  - 1 = FIFO is a Transmit FIFO
    - 0 = FIFO is a Receive FIFO
- **Note 1:** These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits (CiCON<23:21>) = 100).
  - 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
  - 3: This bit is reset on any read of this register or when the FIFO is reset.

Table 30-1, Table 30-2, Table 30-3 and Table 30-4 show four interfaces and the associated pins that can be used with the Ethernet Controller.

#### TABLE 30-1: MII MODE DEFAULT INTERFACE SIGNALS (FMIIEN = 1, FETHIO = 1)

| Pin Name | Description          |  |  |  |  |
|----------|----------------------|--|--|--|--|
| EMDC     | Management Clock     |  |  |  |  |
| EMDIO    | Management I/O       |  |  |  |  |
| ETXCLK   | Transmit Clock       |  |  |  |  |
| ETXEN    | Transmit Enable      |  |  |  |  |
| ETXD0    | Transmit Data        |  |  |  |  |
| ETXD1    | Transmit Data        |  |  |  |  |
| ETXD2    | Transmit Data        |  |  |  |  |
| ETXD3    | Transmit Data        |  |  |  |  |
| ETXERR   | Transmit Error       |  |  |  |  |
| ERXCLK   | Receive Clock        |  |  |  |  |
| ERXDV    | Receive Data Valid   |  |  |  |  |
| ERXD0    | Receive Data         |  |  |  |  |
| ERXD1    | Receive Data         |  |  |  |  |
| ERXD2    | Receive Data         |  |  |  |  |
| ERXD3    | Receive Data         |  |  |  |  |
| ERXERR   | Receive Error        |  |  |  |  |
| ECRS     | Carrier Sense        |  |  |  |  |
| ECOL     | Collision Indication |  |  |  |  |

# TABLE 30-2:RMII MODE DEFAULT<br/>INTERFACE SIGNALS<br/>(FMIIEN = 0, FETHIO = 1)

| Pin Name | Description                        |
|----------|------------------------------------|
| EMDC     | Management Clock                   |
| EMDIO    | Management I/O                     |
| ETXEN    | Transmit Enable                    |
| ETXD0    | Transmit Data                      |
| ETXD1    | Transmit Data                      |
| EREFCLK  | Reference Clock                    |
| ECRSDV   | Carrier Sense – Receive Data Valid |
| ERXD0    | Receive Data                       |
| ERXD1    | Receive Data                       |
| ERXERR   | Receive Error                      |

**Note:** Ethernet controller pins that are not used by selected interface can be used by other peripherals.

#### TABLE 30-3: MII MODE ALTERNATE INTERFACE SIGNALS (FMIIEN = 1, FETHIO = 0)

| Pin Name  | Description                           |
|-----------|---------------------------------------|
| AEMDC     | Management Clock                      |
| AEMDIO    | Management I/O                        |
| AETXCLK   | Transmit Clock                        |
| AETXEN    | Transmit Enable                       |
| AETXD0    | Transmit Data                         |
| AETXD1    | Transmit Data                         |
| AETXD2    | Transmit Data                         |
| AETXD3    | Transmit Data                         |
| AETXERR   | Transmit Error                        |
| AERXCLK   | Receive Clock                         |
| AERXDV    | Receive Data Valid                    |
| AERXD0    | Receive Data                          |
| AERXD1    | Receive Data                          |
| AERXD2    | Receive Data                          |
| AERXD3    | Receive Data                          |
| AERXERR   | Receive Error                         |
| AECRS     | Carrier Sense                         |
| AECOL     | Collision Indication                  |
| Note: The | e MII mode Alternate Interface is not |

**Note:** The MII mode Alternate Interface is not available on 64-pin devices.

# TABLE 30-4:RMII MODE ALTERNATE<br/>INTERFACE SIGNALS<br/>(FMIIEN = 0, FETHIO = 0)

| Pin Name | Description                        |
|----------|------------------------------------|
| AEMDC    | Management Clock                   |
| AEMDIO   | Management I/O                     |
| AETXEN   | Transmit Enable                    |
| AETXD0   | Transmit Data                      |
| AETXD1   | Transmit Data                      |
| AEREFCLK | Reference Clock                    |
| AECRSDV  | Carrier Sense – Receive Data Valid |
| AERXD0   | Receive Data                       |
| AERXD1   | Receive Data                       |
| AERXERR  | Receive Error                      |

| Bit<br>Range | Bit<br>31/23/15/7            | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3    | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|------------------------------|-------------------|-------------------|-------------------|----------------------|-------------------|------------------|------------------|
| 31:24        | U-0                          | U-0               | U-0               | U-0               | U-0                  | U-0               | U-0              | U-0              |
| 31.24        | —                            | —                 | _                 | _                 | —                    | _                 | _                | —                |
| 23:16        | U-0                          | U-0               | U-0               | U-0               | U-0                  | U-0               | U-0              | U-0              |
| 23.10        |                              | —                 |                   |                   |                      | _                 |                  | _                |
| 15:8         | R/W-0                        | R/W-0             | R/W-0             | R/W-0             | R/W-0                | R/W-1             | R/W-0            | R/W-1            |
| 15.0         | MACMAXF<15:8> <sup>(1)</sup> |                   |                   |                   |                      |                   |                  |                  |
| 7:0          | R/W-1                        | R/W-1             | R/W-1             | R/W-0             | R/W-1                | R/W-1             | R/W-1            | R/W-0            |
| 7.0          |                              |                   |                   | MACMAXF           | <7:0> <sup>(1)</sup> |                   |                  |                  |

#### REGISTER 30-28: EMAC1MAXF: ETHERNET CONTROLLER MAC MAXIMUM FRAME LENGTH REGISTER

| Legend:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                      |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|--------------------|
| R = Readable bit W = Writable bit U = Unimplemented bit, read as the second sec |                  |                      | ead as '0'         |
| -n = Value at POR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

#### bit 31-16 Unimplemented: Read as '0'

bit 15-0 MACMAXF<15:0>: Maximum Frame Length bits<sup>(1)</sup> These bits reset to 0x05EE, which represents a maximum receive frame o

These bits reset to 0x05EE, which represents a maximum receive frame of 1518 octets. An untagged maximum size Ethernet frame is 1518 octets. A tagged frame adds four octets for a total of 1522 octets. If a shorter/longer maximum length restriction is desired, program this 16-bit field.

**Note 1:** If a proprietary header is allowed, this bit should be adjusted accordingly. For example, if 4-byte headers are prepended to frames, MACMAXF could be set to 1527 octets. This would allow the maximum VLAN tagged frame plus the 4-byte header.

**Note:** Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 31:24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31.24        |                   | —                 |                   | -                 | —                 |                   | -                | —                |
| 00.40        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23:16        |                   | —                 | _                 | _                 | —                 | _                 | _                | —                |
| 45.0         | R/W-0             | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 15:8         | ON                | —                 |                   | —                 | —                 | -                 | —                | —                |
| 7.0          | U-0               | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 7:0          | _                 | CVROE             | CVRR              | CVRSS             |                   | CVR<              | <3:0>            |                  |

#### REGISTER 32-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

## Legend:

| R = Readable bit  | W = Writable bit | V = Writable bit U = Unimplemented bit, read as '0' |                    |
|-------------------|------------------|-----------------------------------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared                                | x = Bit is unknown |

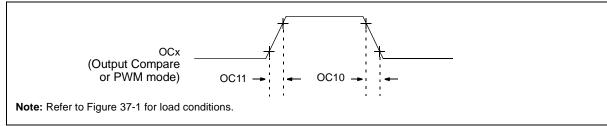
#### bit 31-16 Unimplemented: Read as '0'

| DIL 31-10 | ommplemented. Read as 0                                                                                                              |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------|
| bit 15    | <b>ON:</b> Comparator Voltage Reference On bit<br>1 = Module is enabled                                                              |
|           | Setting this bit does not affect other bits in the register.                                                                         |
|           | 0 = Module is disabled and does not consume current.                                                                                 |
|           | Clearing this bit does not affect the other bits in the register.                                                                    |
| bit 14-7  | Unimplemented: Read as '0'                                                                                                           |
| bit 6     | CVROE: CVREFOUT Enable bit                                                                                                           |
|           | 1 = Voltage level is output on CVREFOUT pin                                                                                          |
|           | 0 = Voltage level is disconnected from CVREFOUT pin                                                                                  |
| bit 5     | CVRR: CVREF Range Selection bit                                                                                                      |
|           | 1 = 0 to 0.67 CVRSRC, with CVRSRC/24 step size                                                                                       |
|           | 0 = 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size                                                                             |
| bit 4     | CVRSS: CVREF Source Selection bit                                                                                                    |
|           | 1 = Comparator voltage reference source, CVRSRC = (VREF+) - (VREF-)<br>0 = Comparator voltage reference source, CVRSRC = AVDD - AVSS |
| bit 3-0   | <b>CVR&lt;3:0&gt;:</b> CVREF Value Selection $0 \le CVR<3:0> \le 15$ bits                                                            |
|           | When CVRR = 1:                                                                                                                       |
|           | $CVREF = (CVR < 3:0 > /24) \bullet (CVRSRC)$                                                                                         |
|           | When CVRR = 0:                                                                                                                       |
|           | $CVREF = 1/4 \bullet (CVRSRC) + (CVR < 3:0 > /32) \bullet (CVRSRC)$                                                                  |
|           |                                                                                                                                      |

#### TABLE 33-2: PERIPHERAL MODULE DISABLE REGISTER SUMMARY

| ess                         | Register<br>Name <sup>(1)</sup> | Bit Range |       | Bits  |        |        |         |         |         |         |        |         |       |        |        |        |        |        |            |
|-----------------------------|---------------------------------|-----------|-------|-------|--------|--------|---------|---------|---------|---------|--------|---------|-------|--------|--------|--------|--------|--------|------------|
| Virtual Address<br>(BF80_#) |                                 |           | 31/15 | 30/14 | 29/13  | 28/12  | 27/11   | 26/10   | 25/9    | 24/8    | 23/7   | 22/6    | 21/5  | 20/4   | 19/3   | 18/2   | 17/1   | 16/0   | All Resets |
| 0040                        |                                 | 31:16     | _     |       | _      | _      |         |         | -       |         |        | —       |       |        |        | -      | _      |        | 0000       |
| 0010                        | TIMET                           | 15:0      | —     | _     | —      | CVRMD  | —       | _       | _       | —       | _      |         | _     | _      | _      | _      | —      | ADCMD  | 0000       |
| 0050                        | PMD2                            | 31:16     | —     | _     | —      | —      | _       | _       | _       | _       | -      | —       | _     | _      | _      | _      | —      | -      | 0000       |
| 0030                        | PIVID2                          | 15:0      | —     | -     | _      | _      | -       | -       | -       | -       | -      | —       | -     | _      | -      | -      | CMP2MD | CMP1MD | 0000       |
| 0060                        | PMD3                            | 31:16     | _     |       |        | _      |         |         |         | OC9MD   | OC8MD  | OC7MD   | OC6MD | OC5MD  | OC4MD  | OC3MD  | OC2MD  | OC1MD  | 0000       |
| 0000                        |                                 | 15:0      | -     | -     | _      |        |         | -       | -       | IC9MD   | IC8MD  | IC7MD   | IC6MD | IC5MD  | IC4MD  | IC3MD  | IC2MD  | IC1MD  | 0000       |
| 0070                        | PMD4                            | 31:16     | _     |       | -      | _      |         |         |         |         |        | —       |       |        |        |        | -      |        | 0000       |
| 0070                        | PIVID4                          | 15:0      | _     |       |        | _      |         |         |         | T9MD    | T8MD   | T7MD    | T6MD  | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   | 0000       |
| 0080                        | PMD5                            | 31:16     | -     | -     | CAN2MD | CAN1MD |         | -       | -       | USBMD   |        | —       | -     | I2C5MD | I2C4MD | I2C3MD | I2C2MD | I2C1MD | 0000       |
| 0060                        | PIVIDS                          | 15:0      | -     | _     | SPI6MD | SPI5MD | SPI4MD  | SPI3MD  | SPI2MD  | SPI1MD  | —      | —       | U6MD  | U5MD   | U4MD   | U3MD   | U2MD   | U1MD   | 0000       |
| 0090                        | PMD6                            | 31:16     |       | _     | _      | ETHMD  | _       | _       | _       | _       | SQI1MD | _       | _     | _      | _      | _      | EBIMD  | PMPMD  | 0000       |
| 0090                        | FIVIDO                          | 15:0      |       | _     | _      | _      | REFO4MD | REFO3MD | REFO2MD | REFO1MD | _      | _       | _     | _      | _      | _      | _      | RTCCMD | 0000       |
| 0040                        | PMD7                            | 31:16     | _     |       | _      | _      |         | _       | _       |         |        | CRYPTMD |       | RNGMD  | _      | _      | _      |        | 0000       |
| 00A0                        | PIVID/                          | 15:0      | _     | _     | _      | _      | -       | -       |         | -       | _      | —       | _     | DMAMD  | -      |        | _      | _      | 0000       |

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.


Note 1: All registers have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

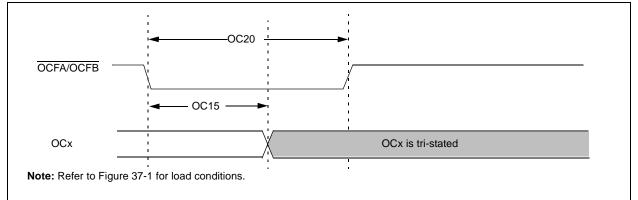
| DC CHA | RACT | ERISTICS                                                                                                                                                                                                                                                                                                     | Standard Operating Conditions: 2.1V to 3.6V<br>(unless otherwise stated)<br>Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial<br>$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |           |   |       |                           |  |  |
|--------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---|-------|---------------------------|--|--|
| Param. | Sym. | Characteristic                                                                                                                                                                                                                                                                                               | Min.                                                                                                                                                                                                            | Min. Typ. |   | Units | Conditions <sup>(1)</sup> |  |  |
|        | Vон  | Output High Voltage<br>I/O Pins:<br>4x Source Driver Pins -<br>RA3, RA9, RA10, RA14, RA15<br>RB0-RB2, RB4, RB6-RB7, RB11, RB13<br>RC12-RC15<br>RD0, RD6-RD7, RD11, RD14<br>RE8, RE9<br>RF2, RF3, RF8<br>RG15<br>RH0, RH1, RH4-RH6, RH8-RH13<br>RJ0-RJ2, RJ8, RJ9, RJ11                                       | 2.4                                                                                                                                                                                                             | _         | _ | V     | IOH ≥ -10 mA, VDD = 3.3V  |  |  |
| DO20   |      | Output High Voltage<br>I/O Pins:<br>8x Source Driver Pins -<br>RA0-RA2, RA4, RA5<br>RB3, RB5, RB8-RB10, RB12, RB14, RB15<br>RC1-RC4<br>RD1-RD5, RD9, RD10, RD12, RD13, RD15<br>RE4-RE7<br>RF0, RF4, RF5, RF12, RF13<br>RG0, RG1, RG6-RG9<br>RH2, RH3, RH7, RH14, RH15<br>RJ3-RJ7, RJ10, RJ12-RJ15<br>RK0-RK7 | 2.4                                                                                                                                                                                                             | _         | _ | V     | IOH ≥ -15 mA, VDD = 3.3V  |  |  |
|        |      | Output High Voltage<br>I/O Pins:<br>12x Source Driver Pins -<br>RA6, RA7<br>RE0-RE3<br>RF1<br>RG12-RG14                                                                                                                                                                                                      | 2.4                                                                                                                                                                                                             |           | _ | V     | IOH ≥ -20 mA, VDD = 3.3V  |  |  |

### TABLE 37-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS (CONTINUED)

Note 1: Parameters are characterized, but not tested.

#### FIGURE 37-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS




#### TABLE 37-28: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

| AC CHA        | RACTER | ISTICS                         | $\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |                        |      |       |                    |  |  |  |
|---------------|--------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|-------|--------------------|--|--|--|
| Param.<br>No. | Symbol | Characteristics <sup>(1)</sup> | Min.                                                                                                                                                                                                                                                                                    | Typical <sup>(2)</sup> | Max. | Units | Conditions         |  |  |  |
| OC10          | TccF   | OCx Output Fall Time           | —                                                                                                                                                                                                                                                                                       | _                      | _    | ns    | See parameter DO32 |  |  |  |
| OC11          | TCCR   | OCx Output Rise Time           | —                                                                                                                                                                                                                                                                                       | —                      | _    | ns    | See parameter DO31 |  |  |  |

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

#### FIGURE 37-9: OCx/PWM MODULE TIMING CHARACTERISTICS



#### TABLE 37-29: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

| AC CHAF      | RACTERIST | rics                           | $\begin{array}{l} \mbox{Standard Operating Conditions: 2.1V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$ |                        |     |       |            |  |  |  |
|--------------|-----------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----|-------|------------|--|--|--|
| Param<br>No. | Symbol    | Characteristics <sup>(1)</sup> | Min                                                                                                                                                                                                                                                                                 | Typical <sup>(2)</sup> | Max | Units | Conditions |  |  |  |
| OC15         | Tfd       | Fault Input to PWM I/O Change  | —                                                                                                                                                                                                                                                                                   | —                      | 50  | ns    |            |  |  |  |
| OC20         | TFLT      | Fault Input Pulse Width        | 50                                                                                                                                                                                                                                                                                  | —                      |     | ns    |            |  |  |  |

**Note 1:** These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

#### A.4 Resets

The PIC32MZ EF family of devices has updated the resets modules to incorporate the new handling of NMI resets from the WDT, DMT, and the FSCM. In addition, some bits have been moved, as summarized in Table A-5.

#### TABLE A-5: RESET DIFFERENCES

| PIC32MX5XX/6XX/7XX Feature                                                                                                               | PIC32MZ EF Feature                                                                                                                                                                                                                   |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Power                                                                                                                                    | r Reset                                                                                                                                                                                                                              |  |  |  |  |
|                                                                                                                                          | The VREGS bit, which controls whether the internal regulator is<br>enabled in Sleep mode, has been moved from RCON in<br>PIC32MX5XX/6XX/7XX devices to a new PWRCON register in<br>PIC32MZ EF devices.                               |  |  |  |  |
| VREGS ( <b>RCON&lt;8&gt;</b> )                                                                                                           | VREGS ( <b>PWRCON&lt;0&gt;</b> )                                                                                                                                                                                                     |  |  |  |  |
| <ul> <li>1 = Regulator is enabled and is on during Sleep mode</li> <li>0 = Regulator is disabled and is off during Sleep mode</li> </ul> | <ul><li>1 = Voltage regulator will remain active during Sleep</li><li>0 = Voltage regulator will go to Stand-by mode during Sleep</li></ul>                                                                                          |  |  |  |  |
| Watchdog                                                                                                                                 | Fimer Reset                                                                                                                                                                                                                          |  |  |  |  |
| On PIC32MX devices, a WDT expiration immediately triggers a device reset.                                                                | On PIC32MZ EF devices, the WDT expiration now causes a NMI.<br>The WDTO bit in RNMICON indicates that the WDT caused the<br>NMI. A new timer, NMICNT, runs when the WDT NMI is triggered,<br>and if it expires, the device is reset. |  |  |  |  |
| WDT expiration immediately causes a device reset.                                                                                        | WDT expiration causes a NMI, which can then trigger the<br>device reset.<br>WDTO (RNMICON<24>)<br>1 = WDT time-out has occurred and caused a NMI<br>0 = WDT time-out has not occurred                                                |  |  |  |  |
|                                                                                                                                          | NMICNT<7:0> (RNMICON<7:0>)                                                                                                                                                                                                           |  |  |  |  |

#### A.5 USB

The PIC32MZ EF family of devices has a new Hi-Speed USB module, which requires the updated USB stack from Microchip. In addition, the USB PLL was also updated. See **A.1** "Oscillator and PLL Configuration" for more information and Table A-6 for a list of additional differences.

#### TABLE A-6: USB DIFFERENCES

| PIC32MX5XX/6XX/7XX Feature                                                                                                                                                            | PIC32MZ EF Feature                                                                                                |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Debug Mode                                                                                                                                                                            |                                                                                                                   |  |  |  |  |  |
| On PIC32MX devices, when stopping on a breakpoint during debugging, the USB module can be configured to stop or continue execution from the Freeze Peripherals dialog in MPLAB X IDE. |                                                                                                                   |  |  |  |  |  |
| VBUSON Pin                                                                                                                                                                            |                                                                                                                   |  |  |  |  |  |
| PIC32MX devices feature a VBUSON pin for controlling the external transceiver power supply.                                                                                           | On PIC32MZ EF devices, the VBUSON pin is not available. A port pin can be used to achieve the same functionality. |  |  |  |  |  |