

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	MIPS32® M-Class
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, PMP, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	97
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 3.6V
Data Converters	A/D 48x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	124-VFTLA Dual Rows, Exposed Pad
Supplier Device Package	124-VTLA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz0512efk124-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5: **PIN NAMES FOR 144-PIN DEVICES (CONTINUED)**

144-PIN LQFP AND TQFP (TOP VIEW)

PIC32MZ0512EF(E/F/K)144 PIC32MZ1024EF(G/H/M)144 PIC32MZ1024EF(E/F/K)144 PIC32MZ2048EF(G/H/M)144

144

		1					
Pin Number	Full Pin Name	Pin Number	Full Pin Name				
73	VBUS	109	RPD1/SCK1/RD1				
74	VUSB3V3	110	EBID14/RPD2/PMD14/RD2				
75	Vss	111	EBID15/RPD3/PMD15/RD3				
76	D-	112	EBID12/RPD12/PMD12/RD12				
77	D+	113	EBID13/PMD13/RD13				
78	RPF3/USBID/RF3	114	ETXERR/RJ0				
79	SDA3/RPF2/RF2	115	EMDIO/RJ1				
80	SCL3/RPF8/RF8	116	EBIRDY3/RJ2				
81	ERXD0/RH8	117	EBIA22/RJ3				
82	ERXD3/RH9	118	SQICS0/RPD4/RD4				
83	ECOL/RH10	119	SQICS1/RPD5/RD5				
84	EBIRDY2/RH11	120	ETXEN/RPD6/RD6				
85	SCL2/RA2	121	ETXCLK/RPD7/RD7				
86	EBIRDY1/SDA2/RA3	122	Vdd				
87	EBIA14/PMCS1/PMA14/RA4	123	Vss				
88	Vdd	124	EBID11/RPF0/PMD11/RF0				
89	Vss	125	EBID10/RPF1/PMD10/RF1				
90	EBIA9/RPF4/SDA5/PMA9/RF4	126	EBIA21/RK7				
91	EBIA8/RPF5/SCL5/PMA8/RF5	127	EBID9/RPG1/PMD9/RG1				
92	EBIA18/RK4	128	EBID8/RPG0/PMD8/RG0				
93	EBIA19/RK5	129	TRCLK/SQICLK/RA6				
94	EBIA20/RK6	130	TRD3/SQID3/RA7				
95	RPA14/SCL1/RA14	131	EBICS0/RJ4				
96	RPA15/SDA1/RA15	132	EBICS1/RJ5				
97	EBIA15/RPD9/PMCS2/PMA15/RD9	133	EBICS2/RJ6				
98	RPD10/SCK4/RD10	134	EBICS3/RJ7				
99	EMDC/RPD11/RD11	135	EBID0/PMD0/RE0				
100	ECRS/RH12	136	Vss				
101	ERXDV/ECRSDV/RH13	137	Vdd				
102	RH14	138	EBID1/PMD1/RE1				
103	EBIA23/RH15	139	TRD2/SQID2/RG14				
104	RPD0/RTCC/INT0/RD0	140	TRD1/SQID1/RG12				
105	SOSCI/RPC13/RC13	141	TRD0/SQID0/RG13				
106	SOSCO/RPC14/T1CK/RC14	142	EBID2/PMD2/RE2				
107	Vdd	143	EBID3/RPE3/PMD3/RE3				
108	Vss	144	EBID4/AN18/PMD4/RE4				

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.4 "Peripheral Pin Select (PPS)" for restrictions.

2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See Section 12.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
					Output	Compare	
OC1	PPS	PPS	PPS	PPS	0	_	Output Compare Outputs 1-9
OC2	PPS	PPS	PPS	PPS	0	—	
OC3	PPS	PPS	PPS	PPS	0	_	1
OC4	PPS	PPS	PPS	PPS	0	_	1
OC5	PPS	PPS	PPS	PPS	0	_	1
OC6	PPS	PPS	PPS	PPS	0	_	1
OC7	PPS	PPS	PPS	PPS	0	_	1
OC8	PPS	PPS	PPS	PPS	0	_	1
OC9	PPS	PPS	PPS	PPS	0	_	1
OCFA	PPS	PPS	PPS	PPS	I	ST	Output Compare Fault A Input
OCFB	30	44	B24	62	I	ST	Output Compare Fault B Input
Legend:	CMOS = CI ST = Schm		•	•	_	Analog =	Analog input P = Power

TABLE 1-4: OC1 THROUGH OC9 PINOUT I/O DESCRIPTIONS

d: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

Analog = Analog input	P = Power
O = Output	I = Input
PPS = Peripheral Pin Select	

TABLE 1-5: EXTERNAL INTERRUPTS PINOUT I/O DESCRIPTIONS

		Pin Nu	mber										
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description						
	External Interrupts												
INT0	46	71	A48	104	Ι	ST	External Interrupt 0						
INT1	PPS	PPS	PPS	PPS	I	ST	External Interrupt 1						
INT2	PPS	PPS	PPS	PPS	I	ST	External Interrupt 2						
INT3	PPS	PPS	PPS	PPS	I	ST	External Interrupt 3						
INT4	PPS	PPS	PPS	PPS	I	ST	External Interrupt 4						
Legend:	CMOS = CI	MOS-comp	atible input	or output	•	Analog =	Analog input P = Power						

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer Analog = Analog inputP = PowerO = OutputI = InputPPS = Peripheral Pin Select

2.9 Designing for High-Speed Peripherals

The PIC32MZ EF family devices have peripherals that operate at frequencies much higher than typical for an embedded environment. Table 2-1 lists the peripherals that produce high-speed signals on their external pins:

TABLE 2-1: PERIPHERALS THAT PRODUCE HS SIGNALS ON EXTERNAL PINS

Peripheral	High-Speed Signal Pins	Maximum Speed on Signal Pin
EBI	EBIAx, EBIDx	50 MHz
SQI1	SQICLK, SQICSx, SQIDx	50 MHz
HS USB	D+, D-	480 MHz

Due to these high-speed signals, it is important to consider several factors when designing a product that uses these peripherals, as well as the PCB on which these components will be placed. Adhering to these recommendations will help achieve the following goals:

- Minimize the effects of electromagnetic interference to the proper operation of the product
- Ensure signals arrive at their intended destination at the same time
- Minimize crosstalk
- Maintain signal integrity
- Reduce system noise
- Minimize ground bounce and power sag

2.9.1 SYSTEM DESIGN

2.9.1.1 Impedance Matching

When selecting parts to place on high-speed buses, particularly the SQI bus, if the impedance of the peripheral device does not match the impedance of the pins on the PIC32MZ EF device to which it is connected, signal reflections could result, thereby degrading the quality of the signal.

If it is not possible to select a product that matches impedance, place a series resistor at the load to create the matching impedance. See Figure 2-4 for an example.

FIGURE 2-4: SERIES RESISTOR

2.9.1.2 PCB Layout Recommendations

The following list contains recommendations that will help ensure the PCB layout will promote the goals previously listed.

Component Placement

- Place bypass capacitors as close to their component power and ground pins as possible, and place them on the same side of the PCB
- Devices on the same bus that have larger setup times should be placed closer to the PIC32MZ EF device

• Power and Ground

- Multi-layer PCBs will allow separate power and ground planes
- Each ground pin should be connected to the ground plane individually
- Place bypass capacitor vias as close to the pad as possible (preferably inside the pad)
- If power and ground planes are not used, maximize width for power and ground traces
- Use low-ESR, surface-mount bypass capacitors

• Clocks and Oscillators

- Place crystals as close as possible to the PIC32MZ EF device OSC/SOSC pins
- Do not route high-speed signals near the clock or oscillator
- Avoid via usage and branches in clock lines (SQICLK)
- Place termination resistors at the end of clock lines
- Traces
 - Higher-priority signals should have the shortest traces
 - Match trace lengths for parallel buses (EBIAx, EBIDx, SQIDx)
 - Avoid long run lengths on parallel traces to reduce coupling
 - Make the clock traces as straight as possible
 - Use rounded turns rather than right-angle turns
 - Have traces on different layers intersect on right angles to minimize crosstalk
 - Maximize the distance between traces, preferably no less than three times the trace width
 - Power traces should be as short and as wide as possible
 - High-speed traces should be placed close to the ground plane

The FPU implements a high-performance 7-stage pipeline:

- Decode, register read and unpack (FR stage)
- Multiply tree, double pumped for double (M1 stage)
- Multiply complete (M2 stage)
- Addition first step (A1 stage)
- Addition second and final step (A2 stage)
- Packing to IEEE format (FP stage)
- Register writeback (FW stage)

The FPU implements a bypass mechanism that allows the result of an operation to be forwarded directly to the instruction that needs it without having to write the result to the FPU register and then read it back.

Table 3-5 lists the Coprocessor 1 Registers for the FPU.

Register Number	Register Name	Function
0	FIR	Floating Point implementation register. Contains information that identifies the FPU.
25	FCCR	Floating Point condition codes register.
26	FEXR	Floating Point exceptions register.
28	FENR	Floating Point enables register.
31	FCSR	Floating Point Control and Status register.

TABLE 3-5: FPU (CP1) REGISTERS

3.2 Power Management

The processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or halting the clocks, which reduces system power consumption during Idle periods.

3.2.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see **Section 33.0 "Power-Saving Features"**.

3.2.2 LOCAL CLOCK GATING

The majority of the power consumed by the processor core is in the clock tree and clocking registers. The PIC32MZ family makes extensive use of local gatedclocks to reduce this dynamic power consumption.

3.3 L1 Instruction and Data Caches

3.3.1 INSTRUCTION CACHE (I-CACHE)

The I-Cache is an on-core memory block of 16 Kbytes. Because the I-Cache is virtually indexed, the virtual-tophysical address translation occurs in parallel with the cache access rather than having to wait for the physical address translation. The tag holds 22 bits of physical address, a valid bit, and a lock bit. The LRU replacement bits are stored in a separate array.

The I-Cache block also contains and manages the instruction line fill buffer. Besides accumulating data to be written to the cache, instruction fetches that reference data in the line fill buffer are serviced either by a bypass of that data, or data coming from the external interface. The I-Cache control logic controls the bypass function.

The processor core supports I-Cache locking. Cache locking allows critical code or data segments to be locked into the cache on a per-line basis, enabling the system programmer to maximize the efficiency of the system cache.

The cache locking function is always available on all I-Cache entries. Entries can then be marked as locked or unlocked on a per entry basis using the CACHE instruction.

3.3.2 DATA CACHE (D-CACHE)

The D-Cache is an on-core memory block of 4 Kbytes. This virtually indexed, physically tagged cache is protected. Because the D-Cache is virtually indexed, the virtual-to-physical address translation occurs in parallel with the cache access. The tag holds 22 bits of physical address, a valid bit, and a lock bit. There is an additional array holding dirty bits and LRU replacement algorithm bits for each set of the cache.

In addition to I-Cache locking, the processor core also supports a D-Cache locking mechanism identical to the I-Cache. Critical data segments are locked into the cache on a per-line basis. The locked contents can be updated on a store hit, but cannot be selected for replacement on a cache miss.

The D-Cache locking function is always available on all D-Cache entries. Entries can then be marked as locked or unlocked on a per-entry basis using the CACHE instruction.

3.3.3 ATTRIBUTES

The processor core I-Cache and D-Cache attributes are listed in the Configuration registers (see Register 3-1 through Register 3-4).

TABLE 4-14: SYSTEM BUS TARGET 6 REGISTER MAP

ess		â	Bits																
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
9820	SBT6ELOG1	31:16	MULTI		—	—		CODE	<3:0>						—		_		0000
9020	SBIOLLOGI	15:0				INI	TID<7:0>					REGIO	N<3:0>		—	С	MD<2:0>		0000
9824	SBT6ELOG2	31:16	_	—	—	—	—	-	_	-	—	—	_	_	—	-	—	-	0000
9024	SBIOLLOGZ	15:0	_	—	—	—	—	-	_	-	—	—	_	_	—	-	GROU	P<1:0>	0000
9828	SBT6ECON	31:16	_	—	—	—	—	-	_	ERRP	—	—	_	_	—	-	—	-	0000
9020	SBIOLCON	15:0	—	_	—	—	—	_	_	_	_	_	—	_	—	_	—	_	0000
9830	SBT6ECLRS	31:16	—	—	—	—	—	_	_	_	_	—	—	_	—	_	—	-	0000
3030	SDIGECERS	15:0	—	—	—	—	—	_	_	_	_	—	—	_	—	_	—	CLEAR	0000
9838	SBT6ECLRM	31:16	—	—	—	—	—	_	_	_	_	—	—	_	—	_	—	-	0000
3030	SBIOLOCIUM	15:0	—	—	—	—	—	_	_	_	—	_	—	_	—	_	—	CLEAR	0000
9840	SBT6REG0	31:16								BA	SE<21:6>								xxxx
0040	OBTORCEOU	15:0			BA	SE<5:0>			PRI	_			SIZE<4:0:	>		_	—	_	xxxx
9850	SBT6RD0	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	xxxx
0000	CETOREO	15:0	_	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
9858	SBT6WR0	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	xxxx
0000	eb romite	15:0	_	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
9860	SBT6REG1	31:16								BA	SE<21:6>								xxxx
0000	OBTOREOT	15:0			BA	SE<5:0>			PRI	—			SIZE<4:0:	>		—	—	—	xxxx
9870	SBT6RD1	31:16	—	—	—	—	—	_	_	_	—	_	_	_	—		—	-	xxxx
	5010101	15:0	_	_	—	—	—	_	—	—	_	—	_	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
9878	SBT6WR1	31:16	_	_	—	—	—	_	—	—	_	—	_	_	—	—	—	—	xxxx
0010	9070 SB10WR1	15:0	—	—	—	—	—	—	—	—	—	_	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

7.1 CPU Exceptions

CPU coprocessor 0 contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including boundary cases in data, external events or program errors. Table 7-1 lists the exception types in order of priority.

TABLE 7-1: MIPS32[®] M-CLASS MICROPROCESSOR CORE EXCEPTION TYPES

Exception Type (In Order of Priority)	Description	Branches to	Status Bits Set	Debug Bits Set	EXCCODE	XC32 Function Name
		Highest Priority				
Reset	Assertion MCLR or a Power-on Reset (POR).	0xBFC0_0000	BEV, ERL	—	_	_on_reset
Soft Reset	Assertion of a software Reset.	0xBFC0_0000	BEV, SR, ERL	—	—	_on_reset
DSS	EJTAG debug single step.	0xBFC0_0480	—	DSS	_	_
DINT	EJTAG debug interrupt. Caused by the assertion of the external EJ_DINT input or by setting the EjtagBrk bit in the ECR register.	0xBFC0_0480	—	DINT	—	_
NMI	Assertion of NMI signal.	0xBFC0_0000	BEV, NMI, ERL	—	—	_nmi_handler
Machine Check	TLB write that conflicts with an existing entry.	EBASE+0x180	MCHECK, EXL	—	0x18	_general_exception_handler
Interrupt	Assertion of unmasked hardware or software inter- rupt signal.	See Table 7-2.	IPL<2:0>		0x00	See Table 7-2.
Deferred Watch	Deferred watch (unmasked by K DM=>!(K DM) transition).	EBASE+0x180	WP, EXL		0x17	_general_exception_handler
DIB	EJTAG debug hardware instruction break matched.	0xBFC0_0480	—	DIB	_	
WATCH	A reference to an address that is in one of the Watch registers (fetch).	EBASE+0x180	EXL	—	0x17	_general_exception_handler
AdEL	Fetch address alignment error. Fetch reference to protected address.	EBASE+0x180	EXL	—	0x04	_general_exception_handler
TLBL	Fetch TLB miss or fetch TLB hit to page with $V = 0$.	EBASE if Status.EXL = 0	—	—	0x02	—
		EBASE+0x180 if Status.EXL == 1	—		0x02	_general_exception_handler
TLBL Execute Inhibit	An instruction fetch matched a valid TLB entry that had the XI bit set.	EBASE+0x180	EXL	—	0x14	_general_exception_handler
IBE	Instruction fetch bus error.	EBASE+0x180	EXL	—	0x06	_general_exception_handler

11.0 HI-SPEED USB WITH ON-THE-GO (OTG)

Note: This data sheet summarizes the features of the PIC32MZ EF family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 51. "Hi-Speed USB with **On-The-Go** (OTG)" (DS60001326) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 embedded host, device, or OTG implementation with a minimum of external components.

The module supports Hi-Speed, Full-Speed, or Low-Speed in any of the operating modes. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the RAM controller, packet encode/decode, UTM synchronization, end-point control, a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 11-1.

The USB module includes the following features:

- USB Hi-Speed, Full-Speed, and Low-Speed support for host and device
- USB OTG support with one or more Hi-Speed, Full-Speed, or Low-Speed device
- Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- Integrated USB transceiver
- Transaction handshaking performed by hardware
- Integrated 8-channel DMA to access system RAM and Flash
- Seven transmit endpoints and seven receive endpoints, in addition to Endpoint 0
- Session Request Protocol (SRP) and Host Negotiation Protocol (HNP) support
- Suspend and resume signaling support
- Dynamic FIFO sizing
- Integrated RAM for the FIFOs, eliminating the need for system RAM for the FIFOs
- Link power management support
 - Note 1: The implementation and use of the USB specifications, as well as other third party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.
 - If the USB module is used, the Primary Oscillator (POSC) is limited to either 12 MHz or 24 MHz.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
31:24	_		TXHUBPRT<6:0>										
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
23.10	MULTTRAN	TXHUBADD<6:0>											
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
15.0	_	_	_	_	_	_	_	—					
7.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0	_	TXFADDR<6:0>											

REGISTER 11-18: USBExTXA: USB ENDPOINT 'x' TRANSMIT ADDRESS REGISTER

I agand.

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 Unimplemented: Read as '0'

bit 30-24 **TXHUBPRT<6:0>:** TX Hub Port bits (Host mode) When a Low-Speed or Full-Speed device is connected to this endpoint through a Hi-Speed USB 2.0 hub, this field records the port number of that USB 2.0 hub.

- bit 23 MULTTRAN: TX Hub Multiple Translators bit (Host mode) 1 = The USB 2.0 hub has multiple transaction translators
 - 0 = The USB 2.0 hub has a single transaction translator

bit 22-16 **TXHUBADD<6:0>:** TX Hub Address bits (Host mode) When a Low-Speed or Full-Speed device is connected to this endpoint through a Hi-Speed USB 2.0 hub, these bits record the address of the USB 2.0 hub.

bit 15-7 Unimplemented: Read as '0'

bit 6-0 TXFADDR<6:0>: TX Functional Address bits (Host mode)

Specifies the address for the target function that is be accessed through the associated endpoint. It needs to be defined for each TX endpoint that is used.

I/O Ports Control Registers 12.5

TABLE 12-4:	PORTA	REGISTI
IADLL 12-4.		

FER MAP FOR 100-PIN, 124-PIN, AND 144-PIN DEVICES ONLY

ess)		۵								Bits	;								
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	ANSELA	31:16	—	—	_	_		-	—		—	_	—	—	—		—	—	0000
0000	ANGLLA	15:0	—	—	_	_	_	ANSA10	ANSA9	_	—	—	ANSA5	—	—	_	ANSA1	ANSA0	0623
0010	TRISA	31:16	—	—	—	_		_	—	_	_	_	_	—	—	_	_	_	0000
0010	11(10/1	15:0	TRISA15	TRISA14	—	—	—	TRISA10	TRISA9	—	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
0020	PORTA	31:16	—	—	—	_		_	—	_	_	_	_	—	—	_	_	_	0000
0020	1 OKIA	15:0	RA15	RA14	—	—	—	RA10	RA9	—	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
0030	LATA	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	2,000	15:0	LATA15	LATA14	—	—	_	LATA10	LATA9	—	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
0040	ODCA	31:16	—	—	_	_	—	_	—	_	—	—	—	—	—	—	—	—	0000
0010	020/1	15:0	ODCA15	ODCA14	_	_	_	ODCA10	ODCA9	_	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
0050	CNPUA	31:16	—	—	_	_	—	_	—	_	—	—	—	—	—	—	—	—	0000
	0.1. 0.1.	15:0	CNPUA15	CNPUA14	_	_	—	CNPUA10	CNPUA9	_	CNPUA7	CNPUA6	CNPUA5	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
0060	CNPDA	31:16	—	—	_	—	—	_	—	_	—	—	—	—	—	—	—	—	0000
	0		CNPDA15	CNPDA14	_	—	—	CNPDA10	CNPDA9	_	CNPDA7	CNPDA6	CNPDA5	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
0070	CNCONA	31:16	—	—	—	_	-	_	—	_	—		—	—	—		—	—	0000
		15:0	ON	—	—	_	EDGEDETECT	_	—	_	—		—	—	—		—	—	0000
0080	CNENA	31:16	—	—				—	—		—	—	—	—	—	—	—	_	0000
		15:0	CNENA15	CNENA14	—	_	_	CNENA10	CNENA9		CNENA7	CNENA6	CNENA5	CNENA4	CNENA3	CNENA2	CNENA1	CNENA0	0000
		31:16	—	—	—	_	_	—	—	_	—	—	—	—	—	—	—	_	0000
0090	CNSTATA	15:0	CN STATA15	CN STATA14	_	_	—	CN STATA10	CN STATA9	—	CN STATA7	CN STATA6	CN STATA5	CN STATA4	CN STATA3	CN STATA2	CN STATA1	CN STATA0	0000
00A0	CNNEA	31:16	—	—	_	-	_	_	—	_	—	_	—	_	_	-	—	—	0000
UUAU	CINILA	15:0	CNNEA15	CNNEA14	_	-	_	CNNEA10	CNNEA9	_	CNNEA7	CNNEA6	CNNEA5	CNNEA4	CNNEA3	CNNEA2	CNNEA1	CNNEA0	0000
00B0	CNFA	31:16	—	—	_	-	_	_	—	_	_	_	_	_	_	-	—	—	0000
0080	CINIA	15:0	CNFA15	CNFA14	_	-	_	CNFA10	CNFA9	_	CNFA7	CNFA76	CNFA5	CNFA4	CNFA3	CNFA2	CNFA71	CNFA0	0000
0000	SRCON0A	31:16	—	—	_	_	-	_	—	_	—	_	—	_	—		—	—	0000
0000	SICONUA	15:0	—	—	_	_	-	_	—	_	SR0A7	SR0A6	—	_	—		—	—	0000
0000	SRCON1A	31:16	—	—	_		-	_	—	_	—		—	—	—		—	—	0000
0000	SICONTA	15:0	—	_	_	—		_	—	_	SR1A7	SR0A6	_	_	_		_	_	0000

x = Unknown value on Reset; --- = Unimplemented, read as '0'; Reset values are shown in hexadecimal. Legend:

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for Note 1: more information.

TABLE 18-2: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 9 REGISTER MAP (CONTINUED)

ess		0								Bi		-		-					
Virtual Address (BF84_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4A00	OC6CON	31:16	_	_	_	_	_	_	_	_	_	_	—	—		_	—	_	0000
		15:0	ON	—	SIDL	—	—	—	—	—	—	—	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
4A10	OC6R	31:16 15:0								OC6R	<31:0>								xxxx xxxx
4A20	OC6RS	31:16 15:0								OC6RS	<31:0>								xxxx xxxx
4000	OC7CON	31:16	_		—	_	-	_	-	-	—		_		—	_	_	_	0000
4000		15:0	ON		SIDL	_	-	_	-	-	—		OC32	OCFLT	OCTSEL		OCM<2:0>		0000
4C10	OC7R	31:16 15:0								OC7R-	<31:0>								xxxx xxxx
4C20	OC7RS	31:16 15:0								OC7RS	<31:0>								xxxx xxxx
4500	00000	31:16	_	_	—	—	—	—	—	—	—	—	_	—	_		_	_	0000
4E00	OC8CON	15:0	ON	-	SIDL	_	_	_	-	_	_	_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
4E10	OC8R	31:16 15:0								OC8R	<31:0>								xxxx xxxx
4E20	OC8RS	31:16 15:0								OC8RS	<31:0>								xxxx xxxx
5000	00000	31:16	_	_	_	—	_	—	_	_	—	—	—	—	_	_	_	_	0000
5000	OC9CON	15:0	ON	-	SIDL	—	-	—	_	_	_		OC32	OCFLT	OCTSEL		OCM<2:0>		0000
5010	OC9R	31:16								OCOR	~21.0								xxxx
5010	OCSR	15:0		OC9R<31:0>															
5020	OC9RS	31:16 15:0								OC9RS	<31:0>								xxxx

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.3 "CLR, SET, and INV Registers" for more information.

REGISTE		SPI CONTROL REGISTER (CONTINUED)
bit 17		lse Edge Select bit (Framed SPI mode only)
		tion pulse coincides with the first bit clock
	-	tion pulse precedes the first bit clock
bit 16	ENHBUF: Enhanced Bu	
	1 = Enhanced Buffer me	
	0 = Enhanced Buffer me	
bit 15	ON: SPI/I ² S Module On	
	$1 = SPI/I^2S$ module is e $0 = SPI/I^2S$ module is c	
1.1.4.4		
bit 14	Unimplemented: Read	
bit 13	SIDL: Stop in Idle Mode	
		ion when CPU enters in Idle mode
h:+ 40	0 = Continue operation	
bit 12	DISSDO: Disable SDO	
	1 = SDOx pin is not use 0 = SDOx pin is control	ed by the module. Pin is controlled by associated PORT register
hi+ 11 10		-
bit 11-10	•	Bit Communication Select bits
	When AUDEN = 1:	Communication
	MODE32 MODE16	Communication
	1 1 1 0	24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame 32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
	0 1	16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame
	0 0	16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame
		· · · · · · · · · · · · · · · · · · ·
	When AUDEN = 0:	
	MODE32 MODE16	Communication
	1 x	32-bit
	0 1	16-bit
	0 0	8-bit
bit 9	SMP: SPI Data Input Sa	ample Phase bit
	Master mode (MSTEN =	
		at end of data output time
	Slave mode (MSTEN =	at middle of data output time
		<u>o).</u> hen SPI is used in Slave mode. The module always uses SMP = 0.
bit 8	CKE: SPI Clock Edge S	
DILO		changes on transition from active clock state to Idle clock state (see CKP bit)
	•	changes on transition from Idle clock state to active clock state (see CKP bit)
bit 7	SSEN: Slave Select En	
	$1 = \overline{SSx}$ pin is used for	
		for Slave mode, pin is controlled by the port function.
bit 6	CKP: Clock Polarity Sel	ect bit ⁽³⁾
		s a high level; active state is a low level
	0 = Idle state for clock	s a low level; active state is a high level
Note 1:	•	tten when the ON bit = 0. Refer to Section 37.0 "Electrical Characteristics" for
0	maximum clock frequer	
2:	mode (FRMEN = 1).	ne Framed SPI mode. The user should program this bit to '0' for the Framed SPI
э.		SPI/I ² S module functions as if the CKP bit is equal to '1', regardless of the actual
3:	value of the CKP bit.	Single of the difference of the the one of the equal to \pm , regardless of the actual
4:		acy compatibility and is superseded by PPS functionality on these devices (see
7.		ral Pin Select (PPS)" for more information).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	_	—	—	-	_	—
22.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16					—			-
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	_	—	_	_	_
7.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
7:0			_		AREIF	PKTIF	CBDIF	PENDIF

REGISTER 26-6: CEINTSRC: CRYPTO ENGINE INTERRUPT SOURCE REGISTER

Legend:

5						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-4 Unimplemented: Read as '0'

- bit 3 AREIF: Access Response Error Interrupt bit
 - 1 = Error occurred trying to access memory outside the Crypto Engine
 - 0 = No error has occurred
- bit 2 **PKTIF:** DMA Packet Completion Interrupt Status bit
 - 1 = DMA packet was completed
 - 0 = DMA packet was not completed

bit 1 CBDIF: BD Transmit Status bit

- 1 = Last BD transmit was processed
- 0 = Last BD transmit has not been processed
- bit 0 PENDIF: Crypto Engine Interrupt Pending Status bit
 - 1 = Crypto Engine interrupt is pending (this value is the result of an OR of all interrupts in the Crypto Engine)
 - 0 = Crypto Engine interrupt is not pending

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	—	_	-	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	—	-	—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8		—	_	_	_	_	—	—
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				_	AREIE	PKTIE	BDPIE	PENDIE ⁽¹⁾

REGISTER 26-7: CEINTEN: CRYPTO ENGINE INTERRUPT ENABLE REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-4 Unimplemented: Read as '0'
- bit 3 AREIE: Access Response Error Interrupt Enable bit
 - 1 = Access response error interrupts are enabled
 - 0 = Access response error interrupts are not enabled
- bit 2 PKTIE: DMA Packet Completion Interrupt Enable bit
 - 1 = DMA packet completion interrupts are enabled
 - 0 = DMA packet completion interrupts are not enabled
- bit 1 BDPIE: DMA Buffer Descriptor Processor Interrupt Enable bit
 - 1 = BDP interrupts are enabled
 - 0 = BDP interrupts are not enabled
- bit 0 **PENDIE:** Master Interrupt Enable bit⁽¹⁾
 - 1 = Crypto Engine interrupts are enabled
 - 0 = Crypto Engine interrupts are not enabled

Note 1: The PENDIE bit is a global enable bit and must be enabled together with the other interrupts desired.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	-	_	—	—	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	—	—	—	_	—
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	_	_	LOAD	TRNGMODE	CONT	PRNGEN	TRNGEN
7.0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
7:0				PLEN	<7:0>			

REGISTER 27-2: RNGCON: RANDOM NUMBER GENERATOR CONTROL REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-13 **Unimplemented:** Read as '0'

bit 12 LOAD: Device Select bit

This bit is self-clearing and is used to load the seed from the TRNG (i.e., the random value) as a seed to the PRNG.

bit 11 TRNGMODE: TRNG Mode Selection bit

- 1 = Use ring oscillators with bias corrector
- 0 = Use ring oscillators with XOR tree

Note: Enabling this bit will generate numbers with a more even distribution of randomness.

bit 10 **CONT:** PRNG Number Shift Enable bit

- 1 = The PRNG random number is shifted every cycle
- 0 = The PRNG random number is shifted when the previous value is removed

bit 9 PRNGEN: PRNG Operation Enable bit

- 1 = PRNG operation is enabled
- 0 = PRNG operation is not enabled

bit 8 TRNGEN: TRNG Operation Enable bit

- 1 = TRNG operation is enabled
- 0 = TRNG operation is not enabled
- bit 7-0 **PLEN<7:0>:** PRNG Polynomial Length bits These bits contain the length of the polynomial used for the PRNG.

REGISTER 28-7: ADCIMCON3: ADC INPUT MODE CONTROL REGISTER 3 (CONTINUED)

- bit 1 DIFF32: AN32 Mode bit⁽¹⁾
 - 1 = AN32 is using Differential mode
 - 0 = AN32 is using Single-ended mode
- bit 0 SIGN32: AN32 Signed Data Mode bit⁽¹⁾
 - 1 = AN32 is using Signed Data mode
 - 0 = AN32 is using Unsigned Data mode
- Note 1: This bit is not available on 64-pin devices.
 - 2: This bit is not available on 64-pin and 100-pin devices.

	RE	GISTER						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	_	_	_	_	_	—
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.6				PMCS	<15:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				PMCS	S<7:0>			

REGISTER 30-9: ETHPMCS: ETHERNET CONTROLLER PATTERN MATCH CHECKSUM REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-8 PMCS<15:8>: Pattern Match Checksum 1 bits

bit 7-0 PMCS<7:0>: Pattern Match Checksum 0 bits

Note 1: This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 30-10: ETHPMO: ETHERNET CONTROLLER PATTERN MATCH OFFSET REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
51.24	—	—	_			_		_				
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23.10	—	—	—	_	—	—	—	—				
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15.6		PMO<15:8>										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7.0				PMO	<7:0>							

Le	gend:	
	Deside to the test	

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **PMO<15:0>:** Pattern Match Offset 1 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 34-7: CFGCON: CONFIGURATION CONTROL REGISTER (CONTINUED)

- bit 7 IOANCPEN: I/O Analog Charge Pump Enable bit
 The analog IO charge pump improves analog performance when the device is operating at lower voltages. However, the charge pumps consume additional current.
 1 = Charge pump is enabled
 0 = Charge pump is disabled
- bit 6 Unimplemented: Read as '0'
- bit 5-4 ECCCON<1:0>: Flash ECC Configuration bits
 - 11 = ECC and dynamic ECC are disabled (ECCCON<1:0> bits are writable)
 - 10 = ECC and dynamic ECC are disabled (ECCCON<1:0> bits are locked)
 - 01 = Dynamic Flash ECC is enabled (ECCCON<1:0> bits are locked)
 - 00 = Flash ECC is enabled (ECCCON<1:0> bits are locked; disables word Flash writes)
- bit 3 JTAGEN: JTAG Port Enable bit
 - 1 = Enable the JTAG port
 - 0 = Disable the JTAG port
- bit 2 TROEN: Trace Output Enable bit
 - 1 = Enable trace outputs and start trace clock (trace probe must be present)0 = Disable trace outputs and stop trace clock
- bit 1 Unimplemented: Read as '0'
- bit 0 TDOEN: TDO Enable for 2-Wire JTAG
 - 1 = 2-wire JTAG protocol uses TDO
 - 0 = 2-wire JTAG protocol does not use TDO
- Note 1: To change this bit, the unlock sequence must be performed. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

37.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MZ EF electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MZ EF devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Specifications for Extended Temperature devices (-40°C to +125°C) that are different from the specifications in this section are provided in **38.0** "Extended Temperature Electrical Characteristics".

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +85°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to VSS when $VDD \ge 2.1V$ (Note 3)	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to VSS when VDD < 2.1V (Note 3)	0.3V to +3.6V
Voltage on D+ or D- pin with respect to VUSB3V3	0.3V to (VUSB3V3 + 0.3V)
Voltage on VBUS with respect to VSS	0.3V to +5.5V
Maximum current out of Vss pin(s)	200 mA
Maximum current into VDD pin(s) (Note 2)	200 mA
Maximum current sunk/sourced by any 4x I/O pin (Note 4)	15 mA
Maximum current sunk/sourced by any 8x I/O pin (Note 4)	25 mA
Maximum current sunk/sourced by any 12x I/O pin (Note 4)	
Maximum current sunk by all ports	150 mA
Maximum current sourced by all ports (Note 2)	150 mA

- **Note 1:** Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 37-2).
 - 3: See the pin name tables (Table 2 through Table 4) for the 5V tolerant pins.
 - 4: Characterized, but not tested. Refer to parameters DO10, DO20, and DO20a for the 4x, 8x, and 12x I/O pin lists.

DC CHARACTERISTICS		Standard Operating Conditions: 2.1V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions ⁽¹⁾
		Output High Voltage I/O Pins:	1.5 2.0		_	V V	$IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \text{V}$ $IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
R/ RE RC RE RE RF RC RF	4x Source Driver Pins - RA3, RA9, RA10, RA14, RA15 RB0-RB2, RB4, RB6-RB7, RB11, RB13 RC12-RC15 RD0, RD6-RD7, RD11, RD14 RE8, RE9 RF2, RF3, RF8 RG15 RH0, RH1, RH4-RH6, RH8-RH13 RJ0-RJ2, RJ8, RJ9, RJ11	3.0			v	$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{ VD}$	
		Output High Voltage I/O Pins: 8x Source Driver Pins -	1.5	_	—	V	Ioh \geq -22 mA, Vdd = 3.3V
			2.0	_	_	V	$\text{IOH} \geq \text{-18 mA}, \text{VDD} = 3.3 \text{V}$
RC1-RC4	RB3, RB5, RB8-RB10, RB12, RB14, RB15 RC1-RC4 RD1-RD5, RD9, RD10, RD12, RD13, RD15 RE4-RE7 RF0, RF4, RF5, RF12, RF13 RG0, RG1, RG6-RG9 RH2, RH3, RH7, RH14, RH15 RJ3-RJ7, RJ10, RJ12-RJ15 RK0-RK7	3.0			V	IOH ≥ -10 mA, VDD = 3.3V	
		Output High Voltage	1.5	_	—	V	$\text{IOH} \geq \text{-32 mA}, \text{VDD} = 3.3 \text{V}$
		12x Source Driver Pins -	2.0	_	—	V	$\text{IOH} \geq \text{-25 mA}, \text{VDD} = 3.3 \text{V}$
		RA6, RA7 RE0-RE3 RF1 RG12-RG14	3.0	_	_	V	IOH \ge -14 mA, VDD = 3.3V

TABLE 37-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS (CONTINUED)

Note 1: Parameters are characterized, but not tested.

A.10 Package Differences

In general, PIC32MZ EF devices are mostly pin compatible with PIC32MX5XX/6XX/7XX devices; however, some pins are not. In particular, the VDD and Vss pins have been added and moved to different pins. In addition, I/O functions that were on fixed pins now will largely be on remappable pins.

TABLE A-11: PACKAGE DIFFERENCES

Pin On PIC32MZ EF devices, this requirement has been removed. No VCAP pin. /ss Pins There are more VDD pins on PIC32MZ EF devices, and many are located on different pins. VDD on 64-pin packages: 8, 26, 39, 54, 60 VDD on 100-pin packages: 14, 37, 46, 62, 74, 83, 93
No VCAP pin. /ss Pins There are more VDD pins on PIC32MZ EF devices, and many are located on different pins. VDD on 64-pin packages: 8, 26, 39, 54, 60
/ss Pins There are more VDD pins on PIC32MZ EF devices, and many are located on different pins. VDD on 64-pin packages: 8, 26, 39, 54, 60
There are more VDD pins on PIC32MZ EF devices, and many are located on different pins. VDD on 64-pin packages: 8, 26, 39, 54, 60
are located on different pins. VDD on 64-pin packages: 8, 26, 39, 54, 60
There are more Vss pins on PIC32MZ EF devices, and many are located on different pins.
Vss on 64-pin packages: 7, 25, 35, 40, 55, 59 Vss on 100-pin packages: 13, 36, 45, 53, 63, 75, 84, 92
) Pins
Peripheral functions on PIC32MZ EF devices are now routed through a PPS module, which routes the signals to the desired pins. When migrating software, it is necessary to initialize the PPS I/O functions in order to get the signal to and from the correct pin.
 PPS functionality for the following peripherals: CAN UART SPI (except SCK) Input Capture Output Compare External Interrupt (except INT0) Timer Clocks (except Timer1)